UNAM
Usted está aquí: Inicio / Actividades académicas / Seminarios Institucionales / Seminario de Probabilidad y Procesos Estocásticos. / Actividades del Seminario de Probabilidad y Procesos Estocásticos / Generalized principal eigenvalues and global survival of branching Markov processes

Generalized principal eigenvalues and global survival of branching Markov processes

Ponente: Pascal Maillard
Institución: Institut de Mathématiques de Toulouse
Tipo de Evento: Investigación, Formación de Recursos Humanos

Cuándo 11/06/2025
de 17:00 a 18:00
Dónde Instituto de Matemáticas (Auditorio Alfonso Nápoles Gándara)
Agregar evento al calendario vCal
iCal

Título: Generalized principal eigenvalues and global survival of branching Markov processes

Resumen: This talk is based on an article written with Oliver Tough. We study necessary and sufficient criteria for global survival of discrete- or continuous-time branching Markov processes.

We relate these to several definitions of generalized principle eigenvalues for elliptic operators due to Berestycki and Rossi. In doing so, we extend these notions to fairly general semigroups of linear positive operators. We use this relation to prove new results about the generalized principle eigenvalues, as well as about uniqueness and non-uniqueness of stationary solutions of a generalized FKPP equation. The probabilistic approach through branching processes gives rise to relatively simple and transparent proofs under much more general assumptions, as well as constructions of (counter-)examples to certain conjectures.