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Abstract

We give the explicit formulas for the Green function and the Martin kernel for all integer
and fractional powers of the Laplacian s > 1 in balls. As consequences, we deduce interior
and boundary regularity estimates for solutions to linear problems and positivity preserving
properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a
differential recurrence equation.
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1 Introduction

In this paper, we show that the Green function Gs and the Martin kernel Ms for any power s > 1
of the Laplacian (−∆)s in the unit ball B⊂ RN , N ∈ N, are given by

Gs(x,y) := kN,s|x− y|2s−N

ρ(x,y)∫
0

vs−1

(v+1)
N
2

dv for x,y ∈ RN , x 6= y, (1.1)

where

ρ(x,y) :=
(1−|x|2)+(1−|y|2)+

|x− y|2
, kN,s :=

Γ(N
2 )

π
N
2 4sΓ(s)2

(1.2)

and

Ms(x,θ) = lim
B3y→θ

Gs(x,y)
(1−|y|2)s =

kN,s

s
(1−|x|2)s

+

|θ − x|N
for x ∈ RN , θ ∈ ∂B. (1.3)
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Here, (−∆)s is the pseudo-differential operator associated to the symbol | · |2s. Further notation
is explained in Section 2 below, where in particular a pointwise evaluation in terms of finite dif-
ferences can be found (see (2.1)). Our main result regarding the Green function is the following.

Theorem 1.1. Let s > 1, N ∈ N, f ∈Cα(B) for some α ∈ (0,1), 2s+α 6∈ N, and

u : RN → R be given by u(x) :=
∫
B

Gs(x,y) f (y) dy, (1.4)

then u ∈C2s+α(B)∩Cs
0(B) is the unique pointwise solution (in H s

0 (B)) of

(−∆)su = f in B, u≡ 0 on RN\B, (1.5)

and there is C > 0 such that

‖dist(·,∂B)−su‖L∞(B) <C‖ f‖L∞(B). (1.6)

For the relevance and applications of the higher-order fractional Laplacian we refer to [4,21].
The function Gs is known as Boggio’s formula, see [7, 8, 10, 14]. Since Gs is a positive function,
Theorem 1.1 shows that problems on balls enjoy a positivity preserving property. This is not the
case for general domains, see [4]. The proof of Theorem 1.1 is based on a differential recurrence
formula for Gs in terms of Gs−1 and an explicit function Ps−1 which is (s− 1)-harmonic in the
ball, see Lemma 3.1 below. Since the validity of Boggio’s formula is known for s ∈ (0,1], this
allows us to implement an induction argument to extend this result to all s > 1. We remark that
our approach also provides an alternative proof for s ∈ N. Two key elements in the proof are
an elementary pointwise calculation of −∆xGs(x,y) for y 6= x and s > 1 (see Lemma 3.1) and
the introduction of higher-order Martin kernels (1.3), which we use to characterize a large class
of s-harmonic functions, see Proposition 1.2 below. Martin kernels were introduced in [19] for
s = 1 to provide an analogue of Poisson kernels in nonsmooth domains and in [6] for s ∈ (0,1)
to give representation formulas for s-harmonic functions which are singular at the boundary of
the domain (a purely nonlocal phenomenon). Our construction is similar to the one presented
in [1] and we generalize it to s > 1.

Note that the regularity of solutions —in particular, integrability, which is used to show
uniqueness —is more involved for higher-order fractional powers of the Laplacian. For instance,
consider the function u(x) = (1−|x|2)s

+ for s > 0, which is a pointwise solution of (−∆)su =C
in B for some constant C > 0 (see e.g. [11, 21]). Clearly u belongs to H2s(B) if s is an integer,
since in this case u is a polynomial. For general s, however, u may have derivatives which blow-
up at the boundary, for example terms involving (1−|x|2)s−2

+ are not in L2(B) if s ∈ (1, 3
2). To

circumvent this difficulty and show that u ∈H s
0 (B), we use standard interpolation theory as

in [18, 24].
In [10] the authors show independently the validity of Boggio’s formula for all s > 0 con-

sidering only smooth functions with compact support as right-hand sides. The proofs in [10] are
very different from ours and rely on covariance under Möbius transformations and computations
using Hypergeometric functions.

Our main result regarding Martin kernels is the following.
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Proposition 1.2. Let s > 0 and µ be a finite Radon measure on ∂B. The function

u(x) =
∫

∂B

Ms(x,z) dµ(z) for x ∈ RN

is s-harmonic in B, that is, (−∆)su(x) = 0 for every x ∈ B.

Proposition 1.2 was known for s ∈ (0,1), see [1, 6]. See also Remark 4.6 for more on s-
harmonic functions.

To close this introduction, we remark that the explicit formulas for the Green function and the
Martin kernel are the first step towards developing a comprehensive theory for linear and nonlin-
ear problems in general domains involving the higher-order fractional Laplacians. In particular,
the transition between the Laplacian and the bilaplacian ∆2 —whose solutions exhibit very dif-
ferent qualitative properties—can be studied in detail. In this regard, we refer to [3], where
Theorem 1.1 and Proposition 1.2 are complemented with other kernels and suitable boundary
traces to fully characterize solutions of nonhomogeneous Dirichlet boundary value problems.
For example, solutions of (1.5) which do not satisfy (1.6) are constructed in the following corol-
lary. In particular, the failure of (1.6) implies that the Green representation in (1.4) does not
hold.

Corollary 1.3. Let s> 1, j ∈ (0,s)∩N, and µ be a finite Radon measure on B. Then the function
u j : RN → R, given by u j(x) =

∫
B Gs− j(x,y)

∫
B G j(y,z) dµ(z)dy is a distributional solution of

(−∆)su j = µ . In particular, if dµ(z) = f (z)dz for some f ∈Cα(B) then u j ∈Cs− j
0 (B).

The organization of the paper is the following. The notation is introduced in Section 2
and the proofs of Theorem 1.1 and Corollary 1.3 are written in Section 3 together with some
remarks on s-harmonic functions. In the Appendix, we prove the differential recurrence equation
involving Boggio’s formula and we present results regarding the interchange of derivatives.

Acknowledgements

We are thankful to Hans Triebel for valuable discussions.

2 Notation

Let N ∈ N and U,D ⊂ RN be nonempty measurable sets. We denote by 1U : RN → R the
characteristic function and |U | the Lebesgue measure. The notation D ⊂⊂U means that D is
compact and contained in the interior of U . For x ∈ RN and r > 0 let Br(x) denote the open ball
centered at x with radius r, moreover we fix B := B1(0).

For any s ∈ R, we define Hs(RN) :=
{

u ∈ L2(RN) : (1+ |ξ |2) s
2 û ∈ L2(RN)

}
, where û de-

notes the Fourier transform of u. Moreover, if U is open and s > 0, we define

H s
0 (U) := {u ∈ Hs(RN) : u = 0 on RN \U}

and, if U is smooth, we put Hs(U) := {u1U : u ∈ Hs(RN)}.
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For m ∈ N0, σ ∈ (0,1], s = m+σ , and U open, we write Cs(U) (resp. Cs(U)) to denote
the space of m-times continuously differentiable functions in U (resp. U) whose derivatives of
order m are locally σ -Hölder continuous in U (or Lipschitz continuous if σ = 1). Moreover, for
s∈ [0,∞], Cs

c(U) := {u∈Cs(RN) : supp u⊂⊂U} and Cs
0(U) := {u∈Cs(RN) : u≡ 0 on RN \U},

where supp u := {x ∈U : u(x) 6= 0} is the support of u. Observe that, under this definition,
C1(B) is not the set C 1(U) of continuously differentiable functions in U , but the set of locally
Lipschitz functions.

Let u : U→R be a function. We use u+ := u+ :=max{u,0} and u− :=−min{u,0} to denote
the positive and negative part of u respectively and if f : U ×D→ R we write (−∆x)

s f (x,y) to
denote derivatives with respect to x, whenever they exist in some appropriate sense.

For m ∈ N0, σ ∈ (0,1), and s = m+σ , the operator (−∆)s can be defined via finite differ-
ences (see [2, equation (1)]), namely, for u ∈C2s+α(U)∩L∞(RN)

(−∆)su(x) :=
cN,s

2

∫
RN

δm+1u(x,y)
|y|N+2s dy, x ∈ RN ,

where δm+1u(x,y) :=
m+1

∑
k=−m−1

(−1)k
(

2(m+1)
m+1− k

)
u(x+ ky) for x,y ∈ RN

(2.1)

is a finite difference of order 2(m+1), and cN,s is a positive normalization constant (for the pre-
cise value, see [2, equation (2)]). The Fourier symbol of (−∆)s as given in (2.1) is |ξ |2s (see [22,
Lemma 25.3] or [2, Theorem 1.9]); moreover, if u ∈ C2s+α(U)∩ L∞(RN) then (−∆)su(x) =
(−∆)m(−∆)σ u(x) for every x ∈U (see [2, Corollary 1.3]), but in general the fractional Lapla-
cian (−∆)σ cannot be interchanged freely with the Laplacian (−∆), this would require extra
regularity assumptions on u, particularly across the boundary ∂U (see [2]). For instance, for
u ∈C∞

c (RN) we have

(−∆)su = (−∆)σ (−∆)mu = (−∆)m(−∆)σ u in RN .

We use D ′ to denote the space of distributions in RN , i.e. D ′ := (C∞
c (RN))′, and denote

〈 · , · 〉 : D ′×C∞
c (U)→ R as the dual pairing of D ′ and C∞

c (U) in U . As usual, for suitable
u : U → R we identify u with its associated distribution Tu : C∞

c (U)→ RN given by 〈Tu , f 〉 =∫
RN u(x) f (x) dx for all f ∈C∞

c (U).
For Ω⊂ RN open and bounded and f ∈D ′ a function u ∈ L1(RN) is called a distributional

solution of (−∆)su = f if u≡ 0 on RN \Ω and

〈(−∆)su,ϕ〉= 〈 f ,ϕ〉 for all ϕ ∈C∞
c (Ω). (2.2)

Moreover, if f = 0, then u is called distributionally s-harmonic in Ω.

3 Representation of solutions in the ball

Let m ∈ N0, σ ∈ (0,1], s = m+σ , N ∈ N, and d(x) := miny∈RN\B |x− y| for x ∈ RN be the
distance of x to the complement of B. In this section provide a representation formula for
solutions in a ball in terms of a kernel Gs given by Boggio’s formula (1.1). We show that
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u(x) =
∫

B Gs(x,y) f (y) dy for x ∈ RN if and only if u is a solution (in a suitable sense) of
(−∆)su(x) = f in B and u≡ 0 on RN \B.

A key ingredient in our proofs is the following iteration formula.

Lemma 3.1. If s > 1 then −∆x Gs(x,y) = Gs−1(x,y)− kN,s4(s− 1)Ps−1(x,y) for all x,y ∈ B,
x 6= y, where

Ps−1(x,y) :=
(1−|x|2)s−2

+ (1−|y|2)s−1
+ (1−|x|2|y|2)

[x,y]N
(3.1)

for x,y ∈ RN , x 6= y, and [x,y] :=
√
|x|2|y|2−2x · y+1 .

The proof of Lemma 3.1 is done by an elementary—but lengthy—direct computation and
for the reader’s convenience we give a proof in Appendix A.

Remark 3.2.

1. For σ = 1
2 , N = 1, the substitution t =

√
v yields G1, 1

2
(x,y) = 1

π
ln
(

1−xy+
√

(1−x2)(1−y2)

|x−y|

)
,

which agrees with [8, Theorem 3.1, formula (3.2)] and for s ∈ N, the change of variables
ṽ =
√

v+1 yields Gs(x,y) = 2kN,s|x− y|2s−N ∫ p(x,y)
1 (v2 − 1)s−1v1−N dv, with p(x,y) =

[x,y]|x− y|−1, which is another known expression for Boggio’s formula, see [14].

2. By rescaling we have that Theorem 1.1 holds in balls of radius r > 0 using ρr(x,y) =
(r2−|x|2)(r2−|y|2)r−2|x− y|−2 in place of ρ in (1.1).

The following is a useful auxiliary Lemma.

Lemma 3.3. Let N ∈ N, R,s,r > 0, and ε ∈ (0,min{N,s}). Then

R2s−N

r
R2∫

0

ts−1

(t +1)
N
2

dt ≤ 2
s

Rε−Nrs− ε

2 .

Proof. Let δ ∈ (0,1) such that ε := Nδ

2 ∈ (0,min{N,s}). By a change of variables we have that

R2s−N

r
R2∫

0

ts−1

(t +1)
N
2

dt = R−N
r∫

0

ts−1

(tR−2 +1)
N
2

Rε

Rε
dt = Rε−N

r∫
0

ts−1

(tRδ−2 +Rδ )
N
2

dt.

Note that the function R 7→ tRδ−2 + Rδ has a unique minimum in (0,∞) at R0 = k
√

t with

k =
√

2−δ

δ
. Therefore

Rε−N
r∫

0

ts−1

(tRδ−2 +Rδ )
N
2

dt ≤ Rε−N
r∫

0

ts−1

(tRδ−2
0 +Rδ

0 )
N
2

dt = Rε−N
r∫

0

ts−1

(t
δ

2 (kδ−2 + kδ ))
N
2

dt

≤ Rε−N
r∫

0

ts−1− ε

2

kε
dt =

k−ε

s− ε

2
Rε−Nrs− ε

2 ≤ 2
s

Rε−Nrs− ε

2 ,

since ε < s and k−ε = δ
ε
2

(2−δ )
ε
2
≤ δ

ε

2 ≤ δ
Nδ

4 ≤ 1, because δ ∈ (0,1).
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3.1 Interior and boundary regularity

Lemma 3.4. Let s > 1, 1 < p≤∞, f ∈ Lp(B), and v(x) :=
∫

B Ps−1(x,y) f (y) dy, x ∈ B. If p > N
s ,

then v ∈C∞(B) and for all α ∈ NN
0 there is C =C(N,s,α)> 0

‖d2−s+|α|
∂

αv‖L∞(B) ≤C‖ f‖Lp(B). (3.2)

Proof. In the following let Ci =Ci(N,s, p)> 0, i = 1,2, . . . be constants. Let x,y ∈ B, then

[x,y] =
√
|x|2|y|2−2x · y+1 ≥ 1−|x||y| ≥ 1−|y| ≥ 1

2
(1−|y|2), (3.3)

and therefore Ps−1(x,y)≤ (1−|x|2)s−2C1[x,y]s−N for s > 1. Moreover,

[x,y]≥C2

∣∣∣y− x
|x|

∣∣∣ for all x ∈ B\B 3
4
(0). (3.4)

Indeed, denote |x|= r, θ = x
|x| and note that [rθ ,y] = |ry−θ | and, for r > 3/4,

|ry−θ |2 = |(r−1)y+ y−θ |2 = (1− r)2|y|2−2(1− r)〈y,y−θ〉+ |y−θ |2

≥−2(1− r)〈θ ,y−θ〉−2(1− r)|y−θ |2 + |y−θ |2

≥−2(1− r)|y|+2(1− r)−2(1− r)|y−θ |2 + |y−θ |2

≥−2(1− r)|y−θ |2 + |y−θ |2 = |y−θ |2

2
,

which implies (3.4). Note that (3.4) gives that there is C3 > 0 such that

sup
x∈B

∫
B

[x,y]s−N dy≤C3. (3.5)

Next, let f ∈ Lp(B), p∈ (1,∞], s > N
p , and define v(x) =

∫
B Ps−1(x,y) f (y) dy for x∈ B. Note that

for every α ∈ NN
0 there is C = C(α) > 0 such that |∂ αv(x)| ≤C(α)‖ f‖Lp(B) for all x ∈ B 3

4
(0).

Moreover, for |x|> 3
4 we have with q = p

p−1 for p < ∞ and q = 1 for p = ∞

|v(x)| ≤ (1−|x|2)s−2‖ f‖Lp(B)

(∫
B

(1−|y|2)(s−1)q(1−|x|2|y|2)q[x,y]−Nq dy

) 1
q

≤ 2s(1−|x|2)s−2‖ f‖Lp(B)

(∫
B

[x,y](s−N)q dy

) 1
q

≤C4(1−|x|2)s−2‖ f‖Lp(B),

since (s−N)+ N
q = s− N

p > 0 and using (3.3) and (3.5). Arguing similarly one can obtain (3.2)
for derivatives of order k, since terms of the form (1− |x|2)s−2[x,y]−N−k can be bounded by
(1− |x|2)s−2−k[x,y]−N . Thus, proceeding as above, |∂ αv(x)| ≤ C5‖ f‖Lp(B)(1− |x|2)s−2−|α| for
all i ∈ {1, . . . ,N}, and the Lemma follows.



7

Proposition 3.5. Let 1 ≤ p ≤ ∞, k ∈ R, s > 0, f : B→ R such that dk f ∈ Lp(B), and u as in
(1.4). If s > k, then there is C =C(N,s,k, p)> 0 such that ‖d−su‖Lp(B) ≤C‖dk f‖Lp(B).

Proof. First, note that given ε > 0 there is C =C(ε)> 0 such that
∫

B |x− y|ε−Nd(x)−p ε

2 dx≤C
for all y∈ B and p < 2

ε
. In the following let Ci =Ci(N,s, p,k)> 0, i = 1,2, . . . be constants. First

let 1≤ p < ∞ and fix 0 < ε < min{1,s− k, 1
p}. Then, by Lemma 3.3 and Hölder’s inequality,

‖d−su‖p
Lp(B) ≤C1

∫
B

(∫
B

|x− y|ε−Nd(x)−
ε

2 ds−k− ε

2 (y)dk(y)| f (y)| dy

)p

dx

≤C2

∫
B

(∫
B

|x− y|ε−Nd(x)−
ε

2 dk(y)| f (y)| dy

)p

dx

≤C3

∫
B

(∫
B

|x− y|ε−N dy

)p−1(∫
B

d(x)−
pε

2 |x− y|ε−Ndkp(y)| f (y)|p dy

)
dx

≤C4

∫
B

∫
B

d(x)−p ε

2 |x− y|ε−Ndkp(y)| f (y)|p dy dx

=C5

∫
B

dkp(y)| f (y)|p
∫
B

d(x)−p ε

2 |x− y|ε−N dx dy≤C6‖dk f‖Lp(B).

Next let p = ∞, x ∈ RN\{0}. Then

|d−s(x)u(x)| ≤ kN,s‖dk f‖L∞(B)d
−s(x)

∫
B

|x− y|2s−Nd−k(y)

(1−|x|2)(1−|y|2)
|x−y|2∫
0

ts−1

(t +1)
N
2

dtdy

≤ 2skN,s‖dk f‖L∞(B)

∫
B

|x− y|2s−Nds−k(y)

|x−y|−2∫
0

ts−1

((1−|y|2)(1−|x|2)t +1)
N
2

dtdy

≤ 2skN,s‖dk f‖L∞(B)

∫
B

|x− y|2s−N

|x−y|−2∫
0

ds−k(y)
ts−1

((1−|y|2)t +1)
N
2

dtdy.

Furthermore,

∫
B

|x− y|2s−N

|x−y|−2∫
0

ds−k(y)
ts−1

((1−|y|2)t +1)
N
2

dtdy

≤
∫
B

|x− y|2s−N dy+
∫
B

|x− y|2s−Nds−k(y)

max{|x−y|−2,1}∫
1

ts−1

((1−|y|2)t +1)
N
2

dt dy
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≤C7 +
∫
B

1∫
min{1,|x−y|2}

ds−k(y)
ts−1

((1−|y|2)t + |x− y|2)N
2

dt dy

≤C7 +
∫
B

ds−k(y)
1∫

0

1

((1−|y|2)t + |x− y|2)N
2

dt dy

≤C8 +C8

∫
B

ds−k−1(y)

∣∣∣∣∣((1−|y|2)t + |x− y|2)1−N
2

∣∣∣∣∣
1

0

∣∣∣∣∣ dy

≤C9 +C9

∫
B

ds−k−1(y)|x− y|2−N dy < ∞.

Hence the statement also holds for p = ∞.

The following remarks are used in the proof of Theorem 3.7 below.

Remark 3.6. For s ∈ R let Hs(B) and H s
0 (B) as in Section 2.

1. For every s≥ 0 and u : RN → R with u≡ 0 in RN\B, there is k > 0 such that

k‖u‖2
H s

0 (B)
≤ ‖u‖2

Hs(B)+‖d
−su‖2

L2(B) ≤
1
k
‖u‖2

H s
0 (B)

, (3.6)

see [24, Section 4.3.2, eq. (7)].

2. By [24, Section 5.7.1 page 402], the Laplacian with Dirichlet boundary conditions gives an
isomorphic mapping from H2+s(B) onto Hs(B) for all−1 < s < ∞, s 6=−1

2 , and therefore,

(−∆)−1 : Hs(B)→ Hs+2(B) for all s >−1, s 6=−1
2
. (3.7)

The inverse Laplacian (−∆)−1 is represented by the Green function G1 whenever the cor-
responding integral is finite.

3. Let (H s
0 (B))

′ denote the dual space of H s
0 (B). Then, by [24, Theorem 2.10.5/1] (see

also [20]),

(H s
0 (B))

′ = H−s(B) for s ∈ R. (3.8)

Theorem 3.7. Let s > 0, f ∈Cα(B) for some α ∈ (0,1), 2s+α 6∈ N, and u as in (1.4). Then

u ∈C2s+α(B)∩Cs
0(B)∩H s

0 (B).

Proof. For s ∈ N∪ (0,1) the result is known, see [14, Section 4.2.1] and [1, 8, 15, 17, 23]. We
argue by induction on s. Let s > 1, s 6∈N, and consider the case 2σ +α ∈ (0,1) (the other cases
can be proved similarly). By the induction hypothesis, we have that Gs−1(·,y),Ps−1(·,y)∈ L1(B)
and, by Lemma 3.1,

Gs(x,y) =
∫
B

G1(x,z)Gs−1(z,y) dz−C
∫
B

G1(x,z)Ps−1(z,y) dz for x,y ∈ B (3.9)
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with C = 4kN,s(s−1). If u is given by (1.4), then (3.9) implies that u = u1−Cu2, where

u1(x) :=
∫
B

G1(x,z)v1(z) dz, v1(z) :=
∫
B

Gs−1(z,y) f (y) dy,

u2(x) :=
∫
B

G1(x,z)v2(z) dz, v2(z) :=
∫
B

Ps−1(z,y) f (y) dy.

Then v1 ∈ C2s−2+α(B), by the induction hypothesis, and then u1 ∈ C2s+α(B), by classical
elliptic regularity. Furthermore, v2 ∈ C∞(B), by Lemma 3.4, and thus u2 ∈ C∞(B). Therefore
u ∈C2s+α(B) and u ∈Cs

0(B), by Proposition 3.5.
It remains to show that u ∈H s

0 (B). By (3.6) and Proposition 3.5, it suffices to show that
u ∈ Hs(B). Since v1 ∈H s−1

0 (B) ⊂ Hs−1(B), by the induction hypothesis, we obtain that u1 ∈
Hs+1(B)⊂ Hs(B).

We now show that u2 ∈ Hs(B) arguing differently according to the value of s.
Assume first that 1 < s < 3

2 . Then there is C > 0 such that∫
B

v2(x)ϕ(x)dx≤C
∫
B

(1−|x|2)s−2
ϕ(x)dx≤C‖d−(2−s)

ϕ‖L2(B) ≤C‖ϕ‖H 2−s
0 (B) (3.10)

for ϕ ∈ H 2−s
0 (B), by (3.6). Then the functional H 2−s

0 (B) 3 ϕ 7→
∫

B v2ϕ dx is linear and
bounded. Therefore, v2 ∈ (H 2−s

0 (B))′ = Hs−2(B), by (3.8), and thus u2 ∈ Hs(B), by (3.7)
(note that

∫
B G1(x,y)δ (y)s−2 dy is finite for every x ∈ B because s > 1).

Now, let s = 3
2 and fix p ∈ ( 2N

N+1 ,2). Then v2 ∈ Lp(B) and thus u2 ∈W 2,p(B) ⊂ Hs(B), by
Sobolev embeddings (see e.g. [24, Section 4.6.1]) and (3.7).

Furthermore, if 2 > s > 3
2 , then Lemma 3.4 implies that v2 ∈ L2(RN) and then u2 ∈H2(B)⊂

Hs(B), by (3.7) and Sobolev embeddings.
For s = m+σ > 2 with σ ≤ 1

2 , fix

q := (1− σ

2
)−1 and p :=

2−2σ

1−σ(2−σ)
. (3.11)

Then, by Lemma 3.4 and complex interpolation (see [18, Proposition 2.4]),

v2 ∈W m−2,p(B)∩W m−1,q(B)⊂ [W m−2,p(B) ,W m−1,q(B)]σ = Hs−2(B).

Therefore v2 ∈ Hs−2(B), which yields u2 ∈ Hs(B), by (3.7).
Finally, if s = m+σ > 2 and σ > 1

2 , then v2 ∈ Hm−1(B) ⊂ Hs−2(B), by Lemma 3.4. But
then u2 ∈ Hs(B), by (3.7), also in this case and the proof is finished.

Remark 3.8.

1. If us :=
∫

B Gs(·,y) f (y) dy ∈ Hs(B), whenever f ∈ Lp(B), p > N
s , and s ∈ (0,1), then

Theorem 3.7 would also hold for f ∈ Lp(B) with p > N
s with a very similar proof.

2. Arguing as in the proof of Theorem 3.7 one can show that us(x) := (1−|x|2)s
+, x ∈ RN ,

belongs to H s
0 (B). Indeed, for m ∈ N0, σ ∈ (0,1], and s = m+σ , we have that us ∈

Hm+1(B) ⊂ Hs(B) if σ > 1
2 and us ∈W m,p(B)∩W m+1,q(B) ⊂ Hs(B) if σ ≤ 1

2 , where p
and q are as in (3.11). But then us ∈H s

0 (B), by (3.6).
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4 The Martin kernel and s-harmonic functions

For s > 0 we define Ms the s-Martin kernel for the ball by (see for example [1, 6])

Ms(x,θ) := lim
z→θ ,z∈B

Gs(x,z)
(1−|z|2)s for x ∈ B, θ ∈ ∂B.

The next Lemma provides an explicit formula for Ms.

Lemma 4.1. Let s > 0 and N ≥ 1. Then

Ms(x,θ) =
kN,s

s
(1−|x|2)s

+

|θ − x|N
for x ∈ B, θ ∈ ∂B,

where kN,s is as in (1.2).

Proof. For x,z ∈RN with x 6= z and ρ(x,z) = (1−|x|2)+(1−|z|2)+|x− z|−2 let t = ρ(x,z), then

Gs(x,z) = kN,s(1−|x|2)s
+(1−|z|2)s

+

1∫
0

ts−1

((1−|x|2)+(1−|z|2)+t + |x− z|2)N
2

dt.

Hence, for θ ∈ ∂B and x ∈ B, it follows that

Ms(x,θ) = kN,s(1−|x|2)s lim
z→θ ,z∈B

1∫
0

ts−1

((1−|x|2)+(1−|z|2)+t + |x− z|2)N
2

dt

= kN,s
(1−|x|2)s

|x−θ |N

1∫
0

ts−1 dt =
kN,s

s
(1−|x|2)s

|x−θ |N

Martin kernels provide a useful characterization of some s-harmonic functions.

Lemma 4.2. Let s > 0 and assume∫
B

Gs(x,y)(−∆)s
ψ(y) dy = ψ(x) for all x ∈ B and ψ ∈C∞

c (B). (4.1)

If µ ∈M (∂B) is a finite Radon measure, then the function RN 3 x 7→ u(x) :=
∫

∂B Ms(x,z) dµ(z)
is s-harmonic in B.

Proof. We first show that u ∈ L1(B). Indeed,∫
B

|u(x)| dx≤
∫

∂B

∫
B

Ms(x,z) dx d|µ|(z)≤ 2skN,s

∫
∂B

∫
B

|x− z|s−N dxd|µ|(z)<+∞.
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Since u = 0 in RN \B, then u ∈ L1(B). Let ψ ∈C∞
c (B) and note that u ∈C∞(B). Then (−∆)su(x)

exists for all x ∈ B and, by 4.1,

〈(−∆)su,ψ〉=
∫
B

u(x)(−∆)s
ψ(x) dx =

∫
B

∫
∂B

Ms(x,θ) dµ(θ)(−∆)s
ψ(x) dx

=
∫
B

∫
∂B

lim
z→θ ,z∈B

Gs(x,z)
(1−|z|2)s dµ(θ)(−∆)s

ψ(x) dx

=
∫

∂B

lim
z→θ ,z∈B

1
(1−|z|2)s

∫
B

Gs(x,z)(−∆)s
ψ(x) dx dµ(θ)

=
∫

∂B

lim
z→θ ,z∈B

ψ(z)
(1−|z|2)s dµ(θ) = 0,

since ψ has compact support in B. Therefore u is s-harmonic in the sense of distributions and,
since u is clearly in C∞(B)∩L1(B), we have, by [2, Lemma 1.5], that u is pointwisely s-harmonic
in B.

Remark 4.3. We assume (4.1) as part of our iteration argument, but once Theorem 1.1 is proved
then (4.1) holds for all s > 0.

We now show the relationship between Ps−1 from Lemma 3.1 and Ms.

Lemma 4.4. Let s > 1 and y ∈ B. Then

Ps−1(x,y) =
2kN,1(s−1)s

kN,s−1kN,s

∫
∂B

Ms−1(x,θ)Ms(y,θ) dθ for x ∈ B.

Proof. Fix y ∈ B and let v(x) := (1−|x|2|y|2)
(1−|y|2)[x,y]N for x ∈ B. Note that −∆v = 0 in B and v(θ) =

|θ − y|−N for θ ∈ ∂B. Indeed, if y = 0 then v ≡ 1 and if y ∈ B\{0} then v(x) = |η |N
|η |2−1

|η |2−|x|2
|x−η |N

with η := y
|y|2 , and −∆v = 0 follows by a simple calculation. Then, by uniqueness and using the

Poisson kernel for the Laplacian,

(1−|x|2|y|2)
(1−|y|2)[x,y]N

= v(x) = 2kN,1

∫
∂B

1−|x|2

|x−θ |N [θ ,y]N
dθ .

Therefore,

Ps−1(x,y) = (1−|x|2)s−2(1−|y|2)s (1−|x|2|y|2)
(1−|y|2)[x,y]N

= 2kN,1(1−|x|2)s−2(1−|y|2)s
∫

∂B

1−|x|2

|x−θ |N [θ ,y]N
dθ = 2kN,1

∫
∂B

(1−|x|2)s−1

|x−θ |N
(1−|y|2)s

|θ − y|N
dθ

=
2kN,1(s−1)s

kN,s−1kN,s

∫
∂B

Ms−1(x,θ)Ms(y,θ) dθ ,

by Lemma 4.1, as claimed.
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Corollary 4.5. Let y ∈ B and s > 1. If (4.1) holds, then Ps−1(·,y) is (s−1)-harmonic in B.

Proof. Combine Lemma 4.4 and Lemma 4.2.

Remark 4.6.

1. As mentioned before, the Martin kernel Ms provides a useful characterization of some
s-harmonic functions. This characterization is new for s > 1 and may be of independent
interest. Namely, if s > 0 and g ∈C(∂B), then v(x) :=

∫
∂B Ms(x,θ)g(θ) dθ for x ∈ B, is

s-harmonic.

2. Arguing as in [1], it is possible to prove that if g ∈C(∂B), then

lim
z→θ̃ ,z∈B

∫
∂B Ms(z,θ)g(θ) dθ

(1−|z|2)s−1 =
kN,s

2kN,1s
g(θ̃) for θ̃ ∈ ∂B.

Therefore, if v =
∫

∂B Ms(·,θ)g(θ) dθ , then g(θ) = 2kN,1k−1
N,ss lim

z→θ , z∈B
v(z)(1−|z|2)1−s.

3. If ϕ ∈ C2(B)∩C(B) is harmonic, i.e. −∆ϕ = 0 in B, then u(x) := (1− |x|2)s−1
+ ϕ(x),

x ∈ RN is s-harmonic in B. Indeed, using the Poisson kernel representation and Lemma
4.1 we have that

u(x) = 2kN,1(1−|x|2)s−1
∫

∂B

1−|x|2

|x−θ |N
ϕ(θ) dθ =

2kN,1s
kN,s

∫
∂B

Ms(x,θ)ϕ(θ) dθ ,

and then (−∆)su = 0 in B, by the first Remark.

4. If a function u is s-harmonic in B, then u is (s+1)-harmonic. Indeed,
∫
RN u(−∆)s+1

ϕ dx=∫
RN u(−∆)s[−∆ϕ] dx = 0 for any ϕ ∈C∞

c (B). Thus, for j ∈ (0,s)∩N functions of the type∫
∂B Ms− j(x,θ)g(θ) dθ are also s-harmonic.

4.1 Proof of Theorem 1.1 and consequences

Proof of Theorem 1.1. Let f ∈Cα(B) for some α ∈ (0,1) and u as in (1.4). The claim is known
for s ∈ (0,1], see [5, 8, 14]. Let s > 1 and assume that the statement holds for s− 1. Then
u ∈C2s+α(B)∩Cs

0(B)∩H s
0 (B), by Theorem 3.7. Furthermore, by Lemmas 3.1, 4.5, B.4, and

the induction hypothesis,

〈(−∆)su , ϕ 〉=
∫
B

u(−∆)s
ϕ dx =

∫
B

−∆u(−∆)s−1
ϕ dx

= 〈
∫
B

Gs−1(·,y) f (y) dy , (−∆)s−1
ϕ 〉−4kN,s(s−1)

∫
B

f (y)〈Ps−1(·,y) , (−∆)s−1
ϕ 〉 dy = 〈 f , ϕ 〉

for all ϕ ∈C∞
c (B), in particular,∫

B

∫
B

Gs(x,y)(−∆)s
ϕ(y) dy f (x) dx =

∫
B

u(x)(−∆)s
ϕ(x) dx =

∫
B

f (x)ϕ(x) dx.
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for any ϕ ∈C∞
c (B). Since f ∈Cα(B) is arbitrary, we obtain that

∫
B Gs(x,y)(−∆)sϕ(y) dy = ϕ(x)

for every x ∈ B and thus Gs(·,y) is a distributional solution of (−∆)sv = δy. Note that u ∈
H s

0 (B) is a distributional solution of (−∆)su = f with f ∈ L2(B), thus u is also a weak solution
(see [4] and Lemma B.4), since C∞

c (B) is dense in H s
0 (B) (see e.g. [16, Theorem 1.4.2.2]). In

particular, u solves (−∆)su= f uniquely in H s
0 (B) (see [4, Corollary 3.6]). Moreover, u satisfies

(−∆)m(−∆)σ u(x) = f (x) pointwise for every x ∈ B, by Lemmas B.4 and [4, Corollary 3.6] and
the decay (1.6) follows from Proposition 3.5.

Proof of Proposition 1.2. The Proposition follows from Theorem 1.1 and Lemma 4.2.

Proof of Corollary 1.3. Let j ∈ N and s > j. For any ϕ ∈C∞
c (B) we have that (−∆) jϕ ∈C∞

c (B)
and thus, for x ∈ B,∫

B

Gs− j(x,y)(−∆)s
ϕ(y) dy =

∫
B

Gs− j(x,y)(−∆)s− j(−∆) j
ϕ(y) dy = (−∆) j

ϕ(x),

by Proposition B.2 and Theorem 1.1, using that (−∆)s− jv = (−∆) jϕ in B has a unique solution
in H s− j

0 (B), by [4, Corollary 3.6]. Let µ be a finite Radon measure and

u j(x) =
∫
B

Gs− j(x,y)
∫
B

G j(y,z) dµ(z)dy for x ∈ RN ,

then ∫
B

u j(−∆)s
ϕ dx =

∫
B

∫
B

Gs− j(x,y)
∫
B

G j(y,z) dµ(z) dy (−∆)s
ϕ(x) dx

=
∫
B

∫
B

G j(y,z)
∫
B

Gs− j(x,y)(−∆)s
ϕ(x) dx dy dµ(z)

=
∫
B

∫
B

G j(y,z)(−∆) j
ϕ(y) dy dµ(z) =

∫
B

ϕ(z) dµ(z).

In particular, if dµ(z) = f (z) dz for some f ∈Cα(B), then, by Theorem 3.7,

y 7→
∫
B

G j(y,z) f (z) dz ∈Cα(B) and x 7→
∫
B

Gs− j(x,y)
∫
B

G j(y,z) f (z) dzdy ∈Cs− j
0 (B).

A Differential recurrence equation

Proof of Lemma 3.1. Let s > 1, y ∈ B, x ∈ RN , and x 6= y, and ρ as in 1.2. In the following,
differentiation is always w.r.t. x. To simplify notation we write Fs := |x− y|2s−N and Vs(v) :=
vs−1(v+1)−

N
2 .
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We consider first the case 2s 6= N. Note that

∇Fs = (2s−N)Fs−1(x− y) = (2s−N)Fs
x− y
|x− y|2

and −∆ Fs = (N−2s)2(s−1)Fs−1,

hence

−∆Gs(x,y) =−kN,s(∆Fs

ρ∫
0

Vs(v) dv+2Vs(ρ)∇Fs ·∇ρ +V ′s (ρ)Fs|∇ρ|2 +FsVs(ρ)∆ρ). (A.1)

Note that, for a≥ 0,

a∫
0

Vs(v) dv =
2

2s−N
as−1

(a+1)
N
2 −1
− 2(s−1)

2s−N

a∫
0

Vs−1(v) dv. (A.2)

Thus, using (A.2), we obtain

− kN,s∆Fs

ρ∫
0

Vs(v) dv = Gs−1(x,y)− kN,s4(s−1)
Fs

|x− y|2
ρs−1

(ρ +1)
N
2 −1

.

Then, −∆ Gs = Gs−1− kN,s4(s−1)P, where

P :=
Fs

|x− y|2
ρs−1

(ρ +1)
N
2 −1

+
2Vs(ρ)∇Fs ·∇ρ +FsV ′s (ρ)|∇ρ|2 +FsVs(ρ)∆ρ

4(s−1)
.

It suffices to show that P = Ps−1, with Ps−1 given by (3.1). Note that

4(s−1)P = 4(s−1)
Fs

|x− y|2
ρs−1

(ρ +1)
N
2 −1

+2Vs(ρ)∇Fs ·∇ρ +FsV ′s (ρ)|∇ρ|2 +FsVs(ρ)∆ρ

= Fs

[Vs(ρ)(4(s−1)(ρ +1)+2(2s−N)(x− y) ·∇ρ + |x− y|2∆ρ)

|x− y|2
+V ′s (ρ)|∇ρ|2

]
. (A.3)

To simplify this expression we use

V ′s (v) = (s−1)
vs−2

(v+1)
N
2
− N

2
vs−1

(v+1)
N
2 +1

=Vs(v)
(s−1)(v+1)− N

2 v
v(v+1)

so that

4(s−1)P = FsVs(ρ)
[4(s−1)(ρ +1)+2(2s−N)(x− y) ·∇ρ + |x− y|2∆ρ

|x− y|2

+
(s−1)(ρ +1)− N

2 ρ

ρ(ρ +1)
|∇ρ|2

]
= Fs−1Vs(ρ)

[4(s−1)((1−|x|2)(1−|y|2)+ |x− y|2)
|x− y|2

+2(2s−N)(x− y) ·∇ρ + |x− y|2∆ρ
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+
(s−1− N

2 )(1−|x|
2)(1−|y|2)+(s−1)|x− y|2

(1−|x|2)2(1−|y|2)2 +(1−|x|2)(1−|y|2)|x− y|2)
|x− y|4|∇ρ|2

]
. (A.4)

Direct calculations yield that

∆ρ =
2(1−|y|2)
|x− y|4

(
−N(|y|2−2x · y+1)+4(1− x · y)

)
,

(x− y) ·∇ρ =−2
1−|y|2

|x− y|2
(|x|2− x · y+1−|x|2) =−2

(1−|y|2)(1− x · y)
|x− y|2

.

Hence, the first three terms in (A.4) reduces to

4
|x− y|2

[(s−1)(1−2x · y+ |x|2|y|2)− (1−|y|2)(N
2
(|y|2−2x · y+1)+(2s−2−N)(1− x · y))]

(A.5)

and the last term in (A.4) reduces to

4(1−|y|2)
(s−1− N

2 )(1−|x|
2)(1−|y|2)+(s−1)|x− y|2

(1−|x|2)|x− y|2
. (A.6)

Combining (A.5), (A.6) with (A.4) we find

4(s−1)P =
4Fs−1Vs(ρ)

(1−|x|2)|x− y|2
[
(s−1)(1−2x · y+ |x|2|y|2)(1−|x|2)

+(1−|y|2)
(
− N

2
(|y|2−2x · y+1)(1−|x|2)+(s−1)|x− y|2

− (2s−2−N)(1− x · y)(1−|x|2)+(s−1− N
2
)(1−|y|2)(1−|x|2)

)]
. (A.7)

Note that the bracket in (A.7) reduces to

(s−1)(|x− y|2−|x|2|y|2(|x|2−2x · y+ |y|2)) = (s−1)|x− y|2(1−|x|2|y|2). (A.8)

We conclude that

P =
Vs(ρ)

(1−|x|2)
1−|x|2|y|2

|x− y|2+N−2s =
(1−|x|2)s−2(1−|y|2)s−1(1−|x|2|y|2)∣∣∣x|y|− y

|y|

∣∣∣N = Ps−1(x,y), (A.9)

as claimed.

We now consider the case 2s = N. Since s > 1 then N ≥ 3. Note that kN,s−1 = 4(s−1)2kN,s

and

Gs−1(x,y) = kN,s−1|x− y|−2

ρ∫
0

v
N
2 −2

(v+1)
N
2

dv = 4(s−1)kN,s
ρs−1

(ρ +1)s−1|x− y|2
.
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On the other hand,

(−∆)Gs(x,y) =−kN,s∆

 ρ∫
0

v
N−2

2

(v+1)
N
2

dv


= 4(s−1)kN,s

ρs−1(1−|y|2)
(ρ +1)s|x− y|4

[
|y|2−2x · y+1− |x− y|2

1−|x|2

]
.

Hence,

(−∆)GN
2
(x,y) = GN−2

2
(x,y)

+4(s−1)kN,s
ρs−1

(ρ +1)s|x− y|4

[
(1−|y|2)

[
|y|2−2x · y+1− (1−|y|2)

ρ

]
− (ρ +1)|x− y|2

]
,

where,

(1−|y|2)
[
|y|2−2x · y+1− (1−|y|2)

ρ

]
− (ρ +1)|x− y|2

=−|y|(|y|2−2x · y+ |x|2)− 1−|y|2

1−|x|2
|x− y|2 =−|x− y|2

(
|y|2 + 1−|y|2

1−|x|2
)
.

Since ρ +1 = [x,y]2|x−y|−2 we obtain that −∆ Gs = Gs−1−kN,s4(s−1)Ps−1 with Ps−1 as given
by (3.1) and the proof is finished.

B Interchange of derivatives

The next proposition provides conditions to allow the interchange between derivatives and frac-
tional Laplacians. The main difficulty in the proof relies on the fact that u is allowed to have
unbounded or discontinuous derivatives outside a domain Ω. For this we use the following space
given for s > 0 (see e.g. [13, 23] for s ∈ (0,1)) by

L 1
s :=

{
u ∈ L1

loc(RN) : ‖u‖L 1
s
< ∞

}
, ‖u‖L 1

s
:=
∫
RN

|u(x)|
1+ |x|N+2s dx.

We start with the following estimate, where Hu denotes the Hessian of u.

Lemma B.1. Let V ⊂ RN open, u : V → RN such that ‖u‖C2(V ) < ∞, and w : V ×RN → R,
w(x,y) := 2u(x)−u(x+ y)−u(x− y). Then

w(x,y) =−

 1∫
0

1∫
0

Hu(x+(τ− t)y) dτdt

y · y for all x ∈V, y ∈ RN , x± y ∈V.

In particular, |w(x,y)| ≤ ‖u‖C2(V )|y|2 for all x ∈V and y ∈ RN such that x± y ∈V.
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Proof. Since w(x,y) = u(x)−u(x+y)− (u(x)−u(x−y)) we have by the Mean Value Theorem
that w(x,y) =

∫ 1
0 [∇u(x+y− ty)−∇u(x− ty)] dt · (−y). A second application of the Mean Value

Theorem yields the result.

Proposition B.2. Let Ω ⊂ RN open, σ ∈ (0,1), and u ∈ C3(Ω)∩L 1
σ ∩W 1,1

loc (R
N). If ∂1u ∈

L 1
σ , then ∂1(−∆)σ u(x) = (−∆)σ ∂1u(x) pointwise for all x ∈ Ω. In particular, if m ∈ N0, u ∈

C2m+2(Ω)∩L 1
σ ∩W 2m,1

loc (RN), and ∂ αu ∈L 1
σ for all |α| ≤ 2m, then

(−∆)m+σ u(x) = (−∆)σ [ (−∆)mu(x) ] = (−∆)m [ (−∆)σ u(x) ] for all x ∈Ω.

Proof. Let u ∈C3(Ω)∩L 1
σ ∩W 1,1

loc (R
N) and ∂1u ∈C2(Ω)∩L 1

σ . In the following all derivatives
∂1 are taken with respect to x. By [12, Lemma 2.1] we have that

(−∆)σ u(x) = cN,σ P.V.
∫
RN

u(x)−u(y)
|x− y|N+2σ

dxdy = cN,σ

∫
RN

2u(x)−u(x− y)−u(x+ y)
|y|N+2σ

dxdy,

where the integral on the right does not have a principal value (cf. [9, Lemma 3.2]). Let H :
Ω×RN \{0}→ R and ht : Ω×RN \{0}→ R be given by

H(x,y) :=
2u(x)−u(x+ y)−u(x− y)

|y|N+2σ
, ht(x,y) :=

H(x+ te1,y)−H(x,y)
t

, t ∈ R\{0}.

Fix x∈Ω and V an open set with V ⊂Ω and x∈V . Let T,ε ∈ (0,1) such that x+y+ te1 ∈V
for all 0 < |t|< T and |y|< ε. Set U := Bε(0). We show separately that

lim
t→0

∫
U

ht(x,y) dy =
∫
U

∂1H(x,y) dy and (B.1)

lim
t→0

∫
RN\U

ht(x,y) dy =
∫

RN\U

∂1H(x,y) dy. (B.2)

By the Mean Value Theorem, for every 0 < |t| < T there is |t0| < t and ξ := x+ t0e1 ∈
V such that ht(x,y) = ∂1H(ξ ,y) for y ∈ U . Then, by the mean value theorem Lemma B.1,
|∂1H(ξ ,y)| ≤ ‖u‖C3(V )|y|−2σ−N+2 ∈ L1(U). Thus, by the Dominated Convergence Theorem,
∂1H(x, ·) ∈ L1(U) and (B.1) holds.

Moreover, if A := {|y− ste1− x| ≥ ε}, then∣∣∣∣ ∂1u(y)
|y− ste1− x|N+2σ

1A(y)
∣∣∣∣≤ |∂1u(y)|

1+ |y|N+2σ

1+ |y|N+2σ

|y− ste1− x|N+2σ
1A(y)≤ K

|∂1u(y)|
1+ |y|N+2σ

=: f (y),

where K > 0 is a constant depending only on V,N,ε , and σ . Since f ∈ L1(RN) then, by the
Dominated Convergence Theorem,

lim
t→0

∫
RN

1∫
0

∂1u(y)
|y− ste1− x|N+2σ

1{|y−ste1−x|≥ε}(y) dsdy =
∫
RN

∂1u(y)
|y− x|N+2σ

1{|y−x|≥ε}(y) dy
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or equivalently,

∫
RN

∂1u(x± y)
|y|N+2σ

1{|y|≥ε} dy = lim
t→0

∫
RN

1∫
0

∂1u(ste1 + x± y)
|y|N+2σ

1{|y|≥ε} dsdy

= lim
t→0

∫
RN

u(x+ te1± y)−u(x± y)
|y|N+2σ

1{|y|≥ε} dy. (B.3)

Since it trivially holds that

lim
t→0

1
t

∫
RN\U

u(x+ te1)−u(x)
|y|N+2σ

dy =
∫

RN\U

∂1u(x)
|y|N+2σ

dy, (B.4)

then (B.2) follows from (B.4) and (B.3).

To perform the integration by parts we use the following standard regularity result.

Lemma B.3. Let Ω⊂RN open, m ∈N, σ ∈ (0,1), s = m+σ , and let u ∈C2s+α(Ω)∩Cs(RN)∩
L 1

s for some α > 0. Then (−∆)σ u ∈C2m(Ω)∩Cm−σ (RN).

The proof can be done by arguing as in the proof of [23, Propositions 2.6 and 2.7] and hence
we omit it.

Lemma B.4. Let σ ∈ (0,1), m ∈ N, and s = m+σ > 1. If u ∈W 2,1(B) satisfies u = ∇u = 0 on
∂B in the trace sense, then∫

B

u(−∆)s
ϕ dx =

∫
B

−∆u(−∆)s−1
ϕ dx for all ϕ ∈C∞

c (B). (B.5)

This is in particular the case if u ∈W 2,1(RN) with supp u⊂ B. If u ∈C2s+α(B)∩Cs
0(B) for some

α ∈ (0,1), then∫
RN

u(−∆)s
ϕ dx =

∫
RN

(−∆)m(−∆)σ uϕ dx for all ϕ ∈C∞
c (B), (B.6)

and if u ∈H s
0 (B) then

∫
RN u(−∆)sϕ dx = Es(u , ϕ) for all ϕ ∈ C∞

c (B), where Es is the scalar
product in H s

0 (B) (see [4]).

Proof. Equality (B.5) follows from two integrations by parts, since u ≡ 0 in RN\B and ∇u = 0
on ∂B. For (B.6), note that u ∈C2s+α(B)∩Cs

0(B) implies that (−∆)σ u ∈C2m(B)∩Cm−σ (RN)
by Lemma B.3, since s > 1. Moreover, since u≡ 0 in RN\B, there is C > 0 such that |∆σ u(x)| ≤
C(1+ |x|N+2σ )−1 for all x ∈ RN . In particular, (−∆)σ u ∈ L2(RN). Using Fourier transform,
integration by parts, and the fact that ϕ ∈C∞

c (B), we obtain∫
RN

u(x)(−∆)s
ϕ(x) dx =

∫
RN

(−∆)σ u(x)(−∆)m
ϕ(x) dx =

∫
RN

(−∆)m(−∆)σ u(x)ϕ(x) dx.

The last claim follows from [4, Lemma 4.2].
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For s > 0 and k ∈ N denote (cf. [12, Section 2])

Sk
s := {ϕ ∈Ck(RN) : sup

x∈RN
(1+ |x|N+2s) ∑

|α|≤k
|∂ α

ϕ(x)|< ∞} (B.7)

endowed with the norm ‖ϕ‖k,s := sup
x∈RN

(1+ |x|N+2s) ∑
|α|≤k
|∂ αϕ(x)|.

Lemma B.5. Let σ ∈ (0,1], m ∈ N0, and s = m+σ . There is C =C(N,m,σ)> 0 such that

|(−∆)s f (x)| ≤C
‖ f‖2m+2,s

1+ |x|N+2s for every f ∈ S2m+2
s and for all x ∈ RN . (B.8)

Proof. If σ = 1, then (B.8) follows by definition with C = 1. For the rest of the proof, we
denote by C > 0 possibly different constants depending only on N, m, and σ . Let σ ∈ (0,1) and
note that (−∆)m+σ f = (−∆)σ (−∆)m f . To simplify the notation let ϕ := (−∆)m f and recall that
B := B1(0). For x ∈ RN we have, by the Mean Value Theorem (see Lemma B.1),

|(−∆)σ+m f (x)|= cN,σ

2

∣∣∣∣∣
∫
RN

2ϕ(x)−ϕ(x+ y)−ϕ(x− y)
|y|N+2σ

dy

∣∣∣∣∣
≤C

∫
B

1∫
0

1∫
0

|Hϕ(x+(t− τ)y)|
|y|N+2σ−2 dτdtdy+

∣∣∣∣∣
∫

RN\B

2ϕ(x)−ϕ(x+ y)−ϕ(x− y)
|y|N+2σ

dy

∣∣∣∣∣=: f1 + f2.

(B.9)

Note that

f1 ≤C‖ f‖2m+2,s

∫
B

1∫
0

1∫
0

|y|−N−2σ+2

1+ |x+(t− τ)y|N+2s dτdtdy≤C
‖ f‖2m+2,s

1+ |x|N+2s , (B.10)

f2 ≤ 2
∫

RN\B

|ϕ(x)|
|y|N+2σ

dy+2

∣∣∣∣∣
∫

RN\B

ϕ(x+ y)
|y|N+2σ

dy

∣∣∣∣∣≤C
‖ f‖2m+2,s

1+ |x|N+2s +2

∣∣∣∣∣
∫

RN\B

ϕ(x+ y)
|y|N+2σ

dy

∣∣∣∣∣. (B.11)

Using integration by parts m−times we obtain∣∣∣∣∣
∫

RN\B

ϕ(x+ y)
|y|N+2σ

dy

∣∣∣∣∣=
∣∣∣∣∣
∫

RN\B

(−∆)m f (x+ y)
|y|N+2σ

dy

∣∣∣∣∣≤C
‖ f‖2m+2,s

1+ |x|N+2s +C
∫

RN\B

| f (x+ y)|
|y|N+2σ+2m dy.

(B.12)

Moreover, ∫
RN\B

| f (x+ y)|
|y|N+2σ+2m dy≤ ‖ f‖2m+2,s

1+ |x|N+2s

∫
RN\B

1+ |x|N+2s

(1+ |x+ y|N+2s)|y|N+2s dy (B.13)
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By (B.9)-(B.13) it suffices to show that there is C > 0 depending only on N, m, and σ such
that ∫

RN\B

1+ |x|N+2s

(1+ |x+ y|N+2s)|y|N+2s dy <C (B.14)

for all x ∈ RN . If |x| < 2 then (B.14) follows by taking the maximum over x ∈ 2B. We now
argue as in [12, Lemma 2.1]. Fix |x| ≥ 2 and let U := {y ∈ RN\B : |x+ y| ≥ |x|2 }. If y ∈U then
1+ |x|N+2s ≤C(1+ |x+ y|N+2s) and if y ∈ RN\U then |y|> |x|

2 . Thus,

∫
U

1+ |x|N+2s

(1+ |x+ y|N+2s)|y|N+2s dy≤C
∫

RN\B

|y|−N−2s dy <C,

∫
RN\U

1+ |x|N+2s

(1+ |x+ y|N+2s)|y|N+2s dy≤C
1+ |x|N+2s

|x|N+2s

∫
RN

(1+ |x+ y|N+2s)−1 dy <C.

This implies (B.14) and finishes the proof.

Lemma B.6. Let s > 1 and u ∈ H2
loc(RN) such that ∆u ∈L 1

s−1. Then,∫
RN

u(−∆)s
ϕ dx =

∫
RN

−∆u(−∆)s−1
ϕ dx for all ϕ ∈C∞

c (RN). (B.15)

Proof. Fix ψ := (−∆)s−1ϕ . Then ψ ∈C∞(RN) (see by [23, Proposition 2.7]) and, by Lemma
B.5 and Proposition B.2, there is K = K(ϕ,N,s)> 0 such that

|ψ(x)|+ |∇ψ(x)| ≤ K
1+ |x|N+2(s−1) for all x ∈ RN . (B.16)

Let (ηn)n∈N ⊂C∞(RN) satisfy

0≤ ηn ≤ 1, ηn ≡ 1 in Bn(0), ηn ≡ 0 in RN\Bn+1(0), ‖ηn‖C2(RN) <C (B.17)

for some C > 0 independent of n, and set ψn := ηnψ ∈ C∞
c (RN). Then ψn → ψ in L2(RN)

and −∆ψn =−∆ψηn−∇ηn∇ψn−ψ∆ηn→−∆ψ = (−∆)sϕ in L2(RN), by (B.17), (B.16), and
Proposition B.2. Therefore,∫

RN

u(−∆)s
ϕ dx = lim

n→∞

∫
RN

u(−∆)ψn dx = lim
n→∞

∫
RN

−∆uψn dx =
∫
RN

−∆u(−∆)s−1
ϕ dx,

as claimed.
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