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• In the proof of Theorem 1.4 (ii) there is a gap in the case when Ω has more than one connected
component. Here we give a full proof filling this gap, which actually is shorter than the original.

We thank Cristian Morales for this remark.

Quotes to previous results and references are with respect to the published version of the paper.

Theorem 0.1. (ii) Let N ≥ 2 and let Ω be a radially symmetric open bounded subset of RN with smooth
boundary. Then, any least energy solution and any least energy nodal solution of

−∆w = Q(x)|w|p−2w, w ∈ E, (0.1)

is foliated Schwarz symmetric in RN .

Proof. First, we adapt the strategy from [1,Lemma 2.5] to our setting. Let Ω be radially symmetric and let u
be a least energy (positive or nodal) solution of the limit problem (0.1). Let e ∈ SN−1 and set H := H(e). By
Lemma 6.2, uH is a least energy (positive or nodal) solution of (0.1). Observe that |u− ue| = 2uH−(u+ ue)
in H and − |u− ue| = 2uH − (u+ ue) in RN ∖H. By Lemma 3.3,

u, uH ∈ W 2,s
loc (R

N ) ∩ C1,α
loc (R

N ) for all s ∈ [1,∞) and α ∈ (0, 1). (0.2)

Then |u− ue| ∈ W 2,N
loc (RN ) and

−∆|u− ue| = 2Q(x)|uH |p−2uH −
[
Q(x)|u|p−2u+Q(x)|ue|p−2ue

]
= Q(x)

(
[|uH |p−2uH − |u|p−2u] + [|uH |p−2uH − |ue|p−2ue]

)
in H.

By (0.2), we have that −∆|u− ue| ∈ Ls
loc(RN ) for all s ≥ 1. By elliptic interior regularity,

we := |u− ue| ∈ W 2,s
loc (H) ∩ C1,α

loc (R
N ) for all s ≥ 1, α ∈ (0, 1). (0.3)

Moreover, we ≥ 0 in H,

−∆we ≤ 0 in H ∩ (RN ∖ Ω), and −∆we ≥ 0 in H ∩ Ω for every e ∈ SN−1. (0.4)

By the maximum principle for strong solutions [8,Theorem 9.6], either we ≡ 0 or we > 0 in each connected
component of H ∩ Ω. We claim that, if we > 0 in some connected component A ⊂ Ω, then we > 0 in H.
Indeed, let B be the connected component of the positive nodal set {x ∈ Rn : we > 0} which contains A
and assume, by contradiction, that there is x0 ∈ H such that we(x0) = 0. Then there is y0 ∈ ∂B and a small
open ball U with y0 ∈ ∂U which is contained either in B ∩Ω∩H or in B ∩ (RN\Ω)∩H. If U ⊂ B ∩Ω∩H,
then

−∆we ≥ 0 in U, we > 0 in U, we(y0) = 0,

and, by Hopf Lemma, ∇we(y0) ̸= 0. However, by (0.3) and a Taylor expansion around y0, 0 ≤ |u− ue|(x) =
we(x) = ∇we(y0) · (x− y0) + o(|x− y0|) as |x− y0| → 0. But this implies that ∇we(y0) = 0, which yields a
contradiction.

Nos suppose that U ⊂ B ∩ (RN\Ω) ∩ H. Since we > 0 in U we have that u > ue in U . Hence
uH = max{u, ue} = u and therefore

c :=
[|uH |p−2uH − |u|p−2u] + [|uH |p−2uH − |ue|p−2ue]

u− ue
=

|u|p−2u− |ue|p−2ue

u− ue
∈ L∞(U).

Then −∆we + cwe = 0 in U , we > 0 in U , we(y0) = 0, and we can reach a contradiction as before using
Hopf Lemma. As a consequence, either u ≥ ue or u ≤ ue in H and the claim now follows from Lemma 6.3.
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