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“Natur!

aus dem simpelsten Stoff zu

den größten Kontrasten; ohne

Schein der Anstrengung zu der

größten Vollendung - zur genausten

Bestimmtheit, immer mit etwas

Weichem überzogen. Jedes ihrer

Werke hat ein eigenes Wesen,

jede ihrer Erscheinungen den

isoliertesten Begriff, und doch

macht alles eins aus.”

aus: J.W.v. Goethe, Werke, Ham-

burger Ausgabe in 14 Bänden, dtv,

1998, Band 13, Naturwissenschaftliche

Schriften I, S. 45ff.

““Everything should be as simple as

it can be, but not simpler””

Albert Einstein.
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Introduction

Symmetry is one of nature’s greatest mysteries. It appears in a wide variety

of forms and circumstances, where usually the optimization of some variable

or factor is being carried out. A typical example is the spherical shape of

a soap bubble, which minimizes surface tension. In most cases, however,

the identification of what is being optimized and how, is a hard task and

requires a deep understanding of the mechanisms behind each phenomenon.

One way to improve our understanding of symmetry is through the study

of the mathematical models that describe natural phenomena. Many of these

models are formulated with the aid of partial differential equations (PDE’s),

which capture the essence of change, either physical, chemical, biological, so-

cial, or anything else. In this manner, we can find models for bubbles (min-

imal surfaces, Young-Laplace equation [24]), crystals (curvature elasticity

theory [59]), population dynamics (diffusive Lotka-Volterra models [11,34]),

elementary particles (Gross-Pitaevskii equation [53]), galaxy formation (col-

lisionless Boltzmann equation [5]), cell motility (Chemotaxis models [62]),

wound healing (Chemical species model [15]), crime dynamics (crime hotspot

model [7]), black holes (Einstein field equations, Kerr metric [31]), etc. The

literature is very vast, and these references are only intended as a glimpse

of the huge universe of mathematical models that are available in the PDE

setting. The symmetry that these phenomena may have, should also be

present —to some extent— in the mathematical models.

In this regard, the present thesis is devoted to the investigation of symme-

try properties of solutions to boundary value problems for nonlinear partial

differential equations. The study of the symmetries of a solution to a PDE

became an important issue with the development of the rigorous theories of

solvability starting in the last decades of the 19th century. Before 1870, the

study of PDE’s was centered mainly in heuristic methods for finding explicit

solutions, but this could only be applied to a very restricted set of problems.

It was until the rigorization program for analysis led by Weierstraß that a

new horizon was opened and —with further contributions from Fredholm,
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2 INTRODUCTION

Hilbert, C.G. Neumann, Poincaré, Riemann, K.H.A. Schwarz, and many

others— the foundations of the modern study of PDE’s were established.

For an excellent recapitulation of the history of PDE’s we refer the reader

to the survey paper [9] and the references therein.

Since only few relevant problems in PDE admit explicit solutions, the

study of qualitative properties is essential, and it is closely related to ex-

istence results (finding a solution is easier when we restrict the search to

the set of symmetric functions), nonexistence results (e.g. [30]), and a wide

variety of other aspects as, e.g., asymptotic convergence (see [48]).

This thesis focuses on boundary value problems in a radial bounded

domain B ⊂ RN with radial symmetric data. We are particularly interested

in the following question:

Under which assumptions and to what extent is the symmetry of the data

inherited to a solution?

For linear PDE’s a fairly good understanding of this question has been

achieved, principally due to a robust existence and uniqueness theory. Non-

linear problems, however, pose a major challenge, since even the simplest

nonlinear equations have a wide variety of “symmetry breaking” phenomena,

which are not present in the linear case (see the survey [42] for references in

this regard). Notice that even solutions of linear boundary value problems

in B can already have a very complicated shape. An easy example is given

by the Dirichlet eigenvalue problem{
−∆u = λu in B,

u = 0 on ∂B.

While the (up to a constant factor unique) eigenfunctions corresponding

to the first eigenvalue λ1 are radially symmetric, the eigenfunctions corre-

sponding to the second eigenvalue λ2 are sign changing nonradial functions

of the form u(x) = j(|x|) x
|x| ·p for some p ∈ SN−1 with some positive function

j, where SN−1 denotes the unit sphere in RN . Moreover, the shape of the

eigenfunctions continues to get more and more complex as the eigenvalue

increases.

This reveals two things: first, that radial symmetry can not always be

expected in this generality; and second, that extra assumptions are needed

in order to obtain particular symmetry properties of a solution. Usually,

extra assumptions are imposed on the solution itself. For example, we can

find in the literature hypothesis on positivity [3, 26, 27, 48, 49], on stability

properties [21,44], or on being a critical point of some functional with vari-



3

ational structure [4, 58, 60, 61]. See also [36] for a comprehensible collection

of symmetry and symmetry breaking results using different approaches.

Here we present a new kind of assumption: a simple geometric condition

in terms of a reflectional inequality. With this hypothesis we characterize

the symmetry of any solution of a variety of problems of the elliptic and

parabolic type. Particularly, we consider scalar equations and systems of

equations with two different boundary conditions. In general, the solutions

to these problems exhibit drastically different qualitative properties (see the

survey [42] for an overview in this regard) and this is reflected in the variety

of techniques that we use in our proofs.

We focus our attention in a partial symmetry known as foliated Schwarz

symmetry. A continuous function u : B → R is called foliated Schwarz

symmetric with respect to some unit vector p ∈ SN−1 if u is axially sym-

metric with respect to the axis Rp and nonincreasing in the polar angle

θ := arccos( x
|x| · p) ∈ [0, π]. The name originated in [57] to describe the

symmetry of some elliptic variational problems.

We now illustrate our results with a paradigmatic example. Let us con-

sider a classical solution (u1, u2) of the following well-known system arising

from a model in population dynamics: the (nonautonomous) Lotka-Volterra

system for the competition of two species. This system has the form

(u1)t − µ1∆u1 = a1(t)u1 − b1(t)u2
1 − α1(t)u1u2 in B × (0,∞),

(u2)t − µ2∆u2 = a2(t)u2 − b2(t)u2
2 − α2(t)u1u2 in B × (0,∞),

∂ui
∂ν

= 0 on ∂B × (0,∞),

ui(x, 0) = u0,i(x) ≥ 0 for x ∈ B,

(1)

where B is a ball or an annulus in RN , ν denotes the outward pointing

normal vector, u0,1, u0,2 ∈ C(B), µ1 and µ2 are positive constants, and

ai, bi, αi ∈ L∞((0,∞)) satisfy that

ai(t), bi(t) ≥ 0 for t > 0 and inf
t>0

αi(t) > 0 for i = 1, 2.
(2)

This system is commonly used to model the competition between two

different species. The coefficients µi, ai, bi, and αi represent diffusion, birth,

saturation, and competition rates respectively (see [11, 34]); and the func-

tions u1 and u2 represent the population density of each species. In the

literature, the system is mostly considered with constant coefficients for

matters of simplicity, whereas it is more natural to assume time-dependence

as in [11,37,41] in order to model the effect of different time periods (e.g. sea-

sons) on the birth rates, the movement, or the aggressiveness of the species.
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The requirement ∂νui = 0 on ∂B × (0,∞) is called Neumann boundary

conditions, and this is a no flux assumption. In the model, this can be in-

terpreted as if the species were in a closed compound, without the possibility

of getting out or others coming in.

In order to explain our main symmetry result for (1) we need to intro-

duce, for e ∈ SN−1, the half domain B(e) := {x ∈ B : x · e > 0} and the

reflection σe(x) := x−2(x ·e)e with respect to the hyperplane perpendicular

to e.

In Theorem 4.1 in Chapter 4 we show that the following simple reflection

inequality on the initial profiles already results in asymptotic symmetry

properties of the solutions:

There is e ∈ SN−1 such that u0,1 6≡ u0,1 ◦ σe, u0,2 6≡ u0,2 ◦ σe and

u0,1 ≥ u0,1 ◦ σe, u0,2 ≤ u0,2 ◦ σe in B(e).
(3)

The first part of this assumption states that the hyperplane perpendicular

to e is not a symmetry hyperplane for the initial profiles u0,1 or u0,2, and

the second part assumes, in a weak sense, that the competing species are

“slightly separated ” from each other at time zero. Loosely speaking, we then

observe the following asymptotic symmetry properties: if (3) holds, then,

as time advances, the population densities of the species become increasingly

symmetric; in particular, they tend to be foliated Schwarz symmetric func-

tions with a common symmetry axis but with respect to antipodal points on

SN−1 as the time variable goes to infinity.

This asymptotic symmetry is made precise using the concept of the

omega limit set ω(u1, u2) of a solution (u1, u2) of (1), which is given by

ω(u1, u2) :={(z1, z2) ∈ C(B)× C(B) : there is tn →∞ such that

‖u1(·, tn)− z1‖L∞(B) + ‖u2(·, tn)− z2‖L∞(B) → 0}.

For global solutions which are uniformly bounded and have equicontinuous

semiorbits {ui(·, t) : t ≥ 1}, the set ω(u1, u2) is nonempty, compact and

connected. The equicontinuity can be obtained under mild boundedness

and regularity assumptions on the equation and using boundary and interior

Hölder estimates (see Remark 4.9 in Chapter 4). Our main symmetry result

for (1) (see Theorem 4.1 in Chapter 4) then states that, if (3) holds, then all

limit profiles (z1, z2) ∈ ω(u1, u2) are foliated Schwarz symmetric with respect

to a common symmetry axis and antipodal points.

As far as we know, this is the first symmetry result regarding the Lotka-

Volterra problem with competition, even in the stationary case with constant

coefficients, i.e., the elliptic version of problem (1). We remark that the
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dynamics of this system have a very rich structure and depend strongly on

the relationships between the coefficients, see for example [11, 14, 18, 19, 37,

40, 41]. In particular, the omega limit set of a solution could have a rather

complicated structure due to the time dependence of the coefficients.

For a related class of Dirichlet problems for elliptic competing systems

with a variational structure, Tavares and Weth proved in [60] that the ground

state solutions are foliated Schwarz symmetric with respect to antipodal

points. We will not assume for any of our results any variational structure

that could lead to symmetry information.

More is known in the case of Dirichlet problems for cooperative systems.

For a class of parabolic cooperative systems, Földes and Poláčik [50] proved

in particular that, if the underlying domain is a ball, then all positive so-

lutions are asymptotically radially symmetric and radially nonincreasing.

On the other hand, for elliptic cooperative systems with variational struc-

ture and under some convexity assumptions on the data, Damascelli and

Pacella [16] proved foliated Schwarz symmetry of solutions having Morse

index less or equal to the dimension of the domain.

Although hypothesis (3) does not seem very strong, it is a key element

in order to obtain the symmetry result. In fact, for general positive ini-

tial data, foliated Schwarz symmetry cannot be expected, as one may see

already by looking at equilibria (i.e., stationary solutions) in special cases

(see Theorem 4.3 in Chapter 4).

To prove our symmetry results, we develop, inspired by the techniques

in [43,49], a “parabolic rotating plane method”. In the following, we briefly

outline this method by focusing on the nonlinear boundary value problem

ut −∆u = f(t, |x|, u) in B × (0,∞),

u = 0 on ∂B × (0,∞),

u(x, 0) = u0(x) for x ∈ B.
(4)

Here, as before, B is a ball or an annulus in RN , the initial condition u0

is a continuous function and f satisfies some regularity assumptions. The

method then consists of three steps:

1. Linearization and initialization of the method.

2. Perturbation.

3. Limit process and symmetry characterization.

In the first step we consider, for given e ∈ SN−1, the difference function

ue : B(e)× [0,∞)→ R, ue(x, t) := u(x, t)− u(σe(x), t).
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This function satisfies an associated linearized boundary value problem with

e-dependent coefficients. To start the method we need to guarantee the ex-

istence of a direction e ∈ SN−1 such that ue is positive in B(e)× [0,∞). This

will be guaranteed by the parabolic maximum principle and the following

extra assumption:

there is e ∈ SN−1 such that u0 ≥ u0 ◦ σe and u0 6≡ u0 ◦ σe in B(e).

For the elliptic counterpart of (4) we assume that the reflectional in-

equality is directly satisfied by the solution (see Corollary 2.2). In the case

of systems (for example (1)), we make a similar assumption on each of the

initial profiles u0,i; however, in this case, the reflectional inequality changes

depending on the nature of the system. If it is competitive, as in (1), then

(3) is assumed, whereas a different inequality assumption is required for co-

operative systems (see hypothesis (h5)’ in Theorem 4.5). The definition of

the difference functions also changes for each case.

The second step, i.e., the perturbation, is actually the heart of the

method and the most difficult to perform. The goal of this step is to show

that the asymptotic nonnegativity of the difference function in B(e) remains

stable under small rotations of e ∈ SN−1. This is usually achieved through

several lemmas and estimates for linear equations, but the statements and

the proofs are completely different for each problem. Let us comment briefly

on some of the elements involved in each of the cases we study.

If the equation satisfies Dirichlet boundary conditions, then the lin-

earized problem also satisfies Dirichlet boundary conditions and the use

of maximum principles for small domains is a key ingredient in the proofs,

since they allow to control negative values close to the boundary. For ellip-

tic equations, the standard maximum principle for small domains (see [6])

suffices. For the parabolic problem, more involved estimates due to Poláčik

play a prominent rôle (see Theorem 2.6); loosely speaking, they guarantee

that if a (possibly sign changing) solution of a linear parabolic problem is

positive in a big enough subcylinder and the supremum norm of the negative

part is (relatively) small, then the solution is asymptotically nonnegative.

If the problem satisfies Neumann boundary conditions, then the lin-

earized problem has mixed boundary conditions and this prevents the use

of standard maximum principles for small domains. For this case we use a

different strategy: we developed a new tool which can be seen as a gener-

alization of the Harnack inequality and the Hopf lemma. This result gives

quantitative information on lower bounds for the gradient of the solution

(see Theorem 3.4), and we use this to achieve the perturbation result.
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In the study of systems a new factor comes into play: the interaction be-

tween the components of the solution. Here it is crucial to understand how

the symmetry of the components is entangled by a “synchronization of sym-

metry” mechanism. The arguments and estimates of the scalar counterparts

are relevant and can be extended in some sense, but they are insufficient to

complete the perturbation argument. The main complications are related

to the appearance of the so-called “semi-trivial limit profiles”, that is, to

elements of the omega limit set where one of the components vanishes. This

makes the linearized system asymptotically very sensitive with respect to

small changes in the direction e. To circumvent this problem we devise a new

normalization argument which, together with the other estimates, yields the

perturbation result also in this case. We emphasize that the normalization

argument varies for the Dirichlet and for the Neumann case.

Lastly, in the third step we rotate the direction e as much as possi-

ble and as long as the asymptotic positivity of the difference function ue is

maintained. This implies local monotonicity with respect to every (cylindri-

cal) angle. Then, using a symmetry characterization, we translate this local

monotonicity into foliated Schwarz symmetry (see Chapter 1).

In contrast to the usual moving plane method on bounded domains in

the form developed in [26], for elliptic problems, and in [49], for parabolic

problems, in the rotating plane method the symmetry axis is not fixed a

priori by our assumption on the initial profile. Nonetheless, our results

imply that all the limit profiles share the same axis. In Chapter 3 Section

3.4 we discuss briefly a problem with “altered symmetry”which gives rise to

a varying axis of asymptotic symmetry.

The parabolic rotating plane method described above is a variant of the

well-known moving plane method. This technique has been successfully used

to investigate the symmetry properties in solutions of nonlinear problems.

The method has its roots in the work of Alexandrov [2], who studied minimal

surfaces with constant mean curvature; then Serrin [56] elaborated it in

order to analyze overdetermined boundary value problems associated with

elliptic PDE’s. In a seminal paper [26] from 1979, Gidas, Ni, and Nirenberg

developed a powerful variant to derive, in particular, radial symmetry of

positive solutions to some elliptic problems in balls. Since then, the method

has widely been used and generalized in the elliptic setting; we refer the

reader to the articles [6, 8] for a survey.

The use of moving plane arguments to analyze the asymptotic symmetry

of solutions to parabolic problems is more recent. Consider e.g. the initial

value problem (4) with B being a ball, u0 a positive continuous function,

and the nonlinearity f satisfying some mild regularity assumptions. We note
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that, in general, the solution u will not be radially symmetric for any finite

time unless the initial profile u0 is radially symmetric. This follows from the

backwards-in-time uniqueness of solutions (see for example [1, Lemma A.16]

or [23, Theorem 11 Section 2.3]). Nevertheless, under a suitable monotoni-

city assumption on the nonlinearity, u is asymptotically radially symmetric

by a result of Poláčik [49, Corollary 2.6], i.e., all elements of the correspond-

ing omega limit set are radial functions. The result relies on a parabolic

version of the moving plane method related to positive solutions, and it ex-

tends to a general setting of fully nonlinear parabolic equations (see [49]).

Earlier variants of moving plane techniques for parabolic problems were de-

veloped by Babin, Dancer, Hess, and Poláčik, see [3, 17, 33], starting with

the study of periodic solutions and semilinear autonomous equations. We

refer the reader to the survey paper [48] and the references therein for an

overview of the development of the moving plane method in the parabolic

case.

We point out that, both in the elliptic and in the parabolic setting, the

moving plane method for radial bounded domains relies strongly on the

following hypothesis:

(C) Convexity of the domain, i.e., the underlying domain is a ball.

(P ) Positivity of the solution.

(M) Monotonicity of the nonlinearity, i.e., f is nonincreasing in |x|.

If we remove any of these assumptions, we cannot expect results on radial

symmetry in general. See e.g. [13, 42, 46, 47] and the references therein for

results on the existence of nonradial solutions in the case where (C) or

(M) is violated. However, the parabolic rotating plane method explained

above does not depend on (C), (P), and/or (M). In the elliptic setting, the

rotating plane method has already been used, e.g., in [43] Pacella proves

foliated Schwarz symmetry of (possibly nodal) solutions of elliptic problems

in bounded domains under some extra stability and convexity assumptions.

This result was later extended and generalized in [30, 44]. We refer to [45]

for a survey on the rotating plane method in elliptic problems.

Let us mention that there are also techniques independent of moving

plane method arguments to study the symmetry properties of solutions to

PDE’s. For example, the use of polarizations, symmetrizations, and varia-

tional and topological methods have been very fruitful lines of research in

this regard. We refer the reader to the survey paper [61] and the references

therein for an overview.
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In this context, in Chapter 5, we study radial symmetry of semi-trivial

limit profiles of some parabolic systems using stability properties of parabolic

problems. To be precise, in Theorem 5.2, inspired by [32], we exploit the

stability of autonomous problems with convex nonlinearities; we then com-

plement this information with other recent estimates for positive solutions

to linear equations obtained in [35]. With these tools we prove that any

nonzero component of a semi-trivial limit profile must be the unique pos-

itive solution of an associated elliptic problem, and this solution is radi-

ally symmetric. Moreover, in Theorem 5.5 we consider a setting where the

zero limit profile is stable, and we combine this information with results

in [25] on scalar problems with asymptotically symmetric data to obtain the

asymptotic radial symmetry of semitrivial limit profiles. These results are

independent of rotating plane arguments and therefore they do not require

any reflectional assumption on the initial profiles.

The thesis is organized as follows. The first chapter presents the defini-

tion and characterizations of foliated Schwarz symmetric functions. The sec-

ond chapter is dedicated to the study of nonlinear equations under Dirichlet

boundary conditions. In particular, we study problem (4), but we also con-

sider a fully nonlinear version. Chapter 3 is devoted to semilinear equations

under Neumann boundary conditions. Chapters 4 and 5 handle nonlinear

systems under Neumann and Dirichlet boundary conditions respectively. In

particular, Chapter 4 contains our study of the Lotka-Volterra problem given

in (1).



10 INTRODUCTION



Notation and conventions

Sets and functions

We always consider RN with N ≥ 2. Let SN−1 := {x ∈ RN : |x| = 1} denote

the unit sphere, and Br(x) := {y ∈ RN : |x − y| < r} denote the open ball

centered at x ∈ RN with radius r > 0. Moreover N0 = N
⋃
{0}. We denote

the euclidean scalar product between two vectors p, q ∈ RN by p · q, and

ei ∈ SN−1 denotes the unit vector with the i-th coordinate equal to 1.

For two sets U, V ⊂ RN we write V ⊂⊂ U if V is compactly contained

in U , that is, V is a compact set and V ⊂ U. We put

dist(U, V ) := inf{|x− y| : x ∈ U, y ∈ V }

and, if U = {x} for some x ∈ RN , we simply write dist(x, V ) in place of

dist({x}, V ).

Let Q ⊂ RN+1. We denote the parabolic boundary of Q by

∂PQ := {(x, t) ∈ ∂Q : t < MQ},

where MQ := sup{t ∈ R : (x, t) ∈ Q for some x ∈ RN}.
Let Ω ⊂ RN . Then Ω◦ denotes the interior of Ω and

inrad(Ω) := sup{r > 0 : Br(x) ⊂ Ω for some x ∈ Ω}

denotes the inner radius of Ω. Moreover, for a real valued function v : Ω→
R, let v+ := max{v, 0} and v− := −min{v, 0} denote the positive and

negative parts of v, and let supp(v) := {v ∈ Ω : v 6= 0} denote the support

of v.

For a function u ∈ L∞(Ω × (0,∞)), we define the omega limit set of u

by

ω(u) := {z ∈ C(Ω) : ‖u(·, tn)− z‖L∞(Ω) → 0 for some tn →∞}.

11
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Analogously, if ui ∈ L∞(Ω × (0,∞)) for i = 1, . . . , n, with n ∈ N, then

the omega limit set of u = (u1, . . . , un) is defined by

ω(u) :=ω(u1, . . . , un) :=

{
(z1, . . . , zn) : zi ∈ C(Ω), i = 1, . . . , n, and

n∑
i=1

‖ui(·, tn)− zi‖L∞(Ω) → 0 for some tn →∞
}
.

Function spaces

Let |x| stand for the euclidean norm of x ∈ RN and let |E| be the Lebesgue

measure of a measurable set E ⊂ RN . For a bounded measurable set Q ⊂
RN+1, a bounded continuous function Q → R; (x, t) 7→ v(x, t), and p ∈
(0,∞], we define the norms

[v]p,Q :=

(
1

|Q|

∫
Q
|v(x, t)|p d(x, t)

) 1
p

for p ∈ (0,∞),

[v]∞,Q := ‖v‖L∞(Q) = sup
Q
|v|.

The gradient of v is always considered with respect to the space variable

x ∈ RN , that is, ∇v = (∂x1v, . . . , ∂xN v).

Let α ∈ (0, 1] and Ω ⊂ RN be a domain. Put QT := Ω × (τ, T ) for

0 ≤ τ < T. We define the parabolic Hölder spaces of bounded uniformly

continuous functions

Cα,α/2(QT ) := {u ∈ C(QT ) : ‖u‖Cα,α/2(QT ) <∞},

C1+α,(1+α)/2(QT ) := {u ∈ C(QT ) : ‖u‖C1+α,(1+α)/2(QT ) <∞},

C2+α,2+α/2(QT ) := {u ∈ C(QT ) : ‖u‖C2+α,1+α/2(QT ) <∞},

(5)

where

|v|α;QT := sup

{
|v(x, t)− v(y, s)|
|x− y|α + |t− s|

α
2

: (x, t), (y, s) ∈ QT , (x, t) 6= (y, s)

}
,

‖u‖Cα,α/2(QT ) := ‖u‖L∞(QT ) + |u|α;QT ,

‖u‖C1+α,(1+α)/2(QT ) := ‖u‖Cα,α/2(QT ) + ‖∇u‖L∞(QT ) + |∇u|α;QT ,

‖u‖C2+α,1+α/2(QT ) := ‖u‖C1+α,(1+α)/2(QT ) + ‖D2u‖L∞(QT ) + |D2u|α;QT .

For p ∈ [1,∞) let

W 2,1
p (QT ) := {u ∈ Lp(Qt) : D2u , ∇u , ∂tu ∈ Lp(QT )}
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be the t-anisotropic Sobolev Space endowed with the norm

‖u‖
W 2,1
p (QT )

:=

(∫
QT

N∑
i,j=1

|∂xixju|p +

N∑
i=1

|∂xiu|p + |∂tu|p d(x, t)

) 1
p

,

Here the derivatives are understood in the usual weak sense and D2u stands

for the Hessian matrix of u with respect to the space variables, that is,

D2u = (∂xixju)Ni,j=1

The space W 2,1
p,loc(QT ) is defined analogously using the space Lploc(QT )

instead of Lp(QT ).

Moreover, W 2,∞(Ω) and H2(Ω) = W 2,2(Ω) are the usual Sobolev spaces

and H1
0 (Ω) denotes the closure of C∞c (Ω) in H1(Ω), where C∞c (Ω) is the

space of smooth functions with compact support in Ω.

Finally, C0(Ω) := {u ∈ C(Ω) : u(x) = 0 for all x ∈ ∂Ω} is endowed with

the supremum norm ‖ · ‖L∞(Ω).

Rotating plane method notation

Let e ∈ SN−1 and let B ⊂ RN be an open ball or an open annulus centered

at the origin. Then H(e) := {x ∈ RN : x · e = 0} denotes a hyperplane

perpendicular to e, σe : B → B denotes the reflection with respect to H(e),

that is, σe(x) := x − 2(x · e)e, and B(e) := {x ∈ B : x · e > 0} denotes the

open domain. Further let

Σ1(e) := {x ∈ ∂B(e) : x · e = 0} and Σ2(e) := {x ∈ ∂B(e) : x · e > 0}.



14 NOTATION AND CONVENTIONS



Chapter 1

Foliated Schwarz symmetry

and its characterizations

In this chapter we introduce the notion of partial symmetry that is used

in our symmetry results and prove some of the characterizations that will

be needed in the proofs. For this whole chapter, B denotes a radial (with

respect to the origin) subdomain of RN with N ≥ 2.

Definition 1.1. We say that a function u ∈ C(B) is foliated Schwarz

symmetric with respect to some unit vector p ∈ SN−1 if u is axially sym-

metric with respect to the axis Rp and nonincreasing in the polar angle

θ := arccos( x
|x| · p) ∈ [0, π].

For the characterizations of foliated Schwarz symmetry we need two

auxiliary lemmas. The following lemma is standard, but we include the

proof for the convenience of the reader.

Lemma 1.2. Let v ∈ C(R) be an even and 2π-periodic function, and let R
denote the points of reflectional symmetry of v. If v is not constant, then

R = {nπk : n ∈ Z} with some positive integer k.

Proof. Note that if r ∈ R then v is 2r−periodic, that is,

v(θ) = v(θ + 2mr) for all θ ∈ R, m ∈ Z. (1.1)

We show first that R ∩ [0, π] is a finite set. By contrapositive, we show

that if R∩ [0, π] is infinite, then v must be constant. Indeed, if R∩ [0, π] is

infinite, then for each m ∈ N there exist r1(m), r2(m) ∈ R∩ [0, π] such that

rm := r1(m)− r2(m) ∈ (0, 1
m). Note that rm ∈ R since

v(r1(m)− r2(m) + θ) = v(r1(m) + r2(m)− θ) = v(r1(m)− r2(m)− θ)

15
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for all θ ∈ R and m ∈ N, where we have used that r1(m) ∈ R and that v is

2r2(m)-periodic by (1.1).

Now, fix x ∈ R and let nm ∈ Z be such that x ∈ (2nmr
m , 2(nm + 1)rm].

In particular 0 ≤ x− 2nmr
m ≤ rm < 1

m . Then, by (1.1),

v(0)− v(x) = lim
m→∞

v(2nmr
m)− v(x) = 0

because v ∈ C(R). Therefore v must be constant. Since we have, by as-

sumption, that v is not constant, we get that R∩ [0, π] is a finite set.

Since v is even and 2π−periodic we have that π ∈ R. Then

r̄ := min{r ∈ (0 , π] : r ∈ R} ≤ π

and r̄ ∈ R.
Now, let r ∈ R be any reflectional symmetry point of v and let nr ∈ Z

be such that r ∈ [nrr̄, (nr + 1)r̄). Then r − nrr̄ ∈ R ∩ [0, r̄) = {0} which

implies that r = nrr̄. In particular, since π ∈ R, r̄ = π
nπ
. Clearly pr̄ ∈ R for

all p ∈ Z. Then we have that R = { pπnπ : p ∈ Z} as claimed.

Lemma 1.3. Let v ∈ C(R) be an even and 2π-periodic function, and let R
denote the points of reflectional symmetry of v. If, for some η ∈ R,

v(η + φ) ≥ v(η − φ) for all φ ∈ [0, π] and

v(η + φ0) > v(η − φ0) for some φ0 ∈ (0, π).
(1.2)

then we have R = {nπ : n ∈ Z}.

Proof. Since v is continuous, even, 2π-periodic, and not constant by (1.2),

it follows from Lemma 1.2 that R = {nπk : n ∈ Z} for some positive integer

k. We suppose by contradiction that k ≥ 2. Then v is 2π
k −periodic. Let

L ∈ Z be such that η ∈ (Lπk , (L + 1)πk ] and M be such that φ0 − Lπk ∈
(M 2π

k , (M + 1)2π
k ]. Set

η̃ := η − Lπ
k
∈
(

0 ,
π

k

]
,

φ̃0 := φ0 −M
2π

k
− Lπ

k
∈
(

0 ,
2π

k

]
.

Let w ∈ C(R) be given by w(φ) := v(φ+Lπk ). Then the following properties

are easy consequences of (1.2), the 2π
k -periodicity of w, and the fact that π

k

is a point of reflectional symmetry of w.

w(φ) = w(−φ) for all φ ∈ R,

w

(
± π

k
+ φ

)
= w

(
± π

k
− φ

)
for all φ ∈ R,

w(η̃ + φ) ≥ w(η̃ − φ) for all φ ∈ (0, π),

w(η̃ + φ̃0) > w(η̃ − φ̃0).
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Since 0 < 2π
k − φ̃0 < π, it follows that

w(η̃ + φ̃0) > w(η̃ − φ̃0) = w

(
− 2π

k
− (η̃ − φ̃0)

)
= w

(
η̃ +

2π

k
− φ̃0

)
≥ w

(
η̃ − 2π

k
+ φ̃0

)
= w

(
2π

k
− η̃ − φ̃0

)
= w(η̃ + φ̃0),

which yields a contradiction. Hence k = 1, and thus the claim follows.

We now recall some notation. Let e ∈ SN−1. Then H(e) := {x ∈ RN :

x · e = 0} denotes a hyperplane perpendicular to e, σe : B → B denotes

the reflection with respect to H(e), that is, σe(x) := x − 2(x · e)e, and

B(e) := {x ∈ B : x · e > 0} denotes the half domain.

Our first proposition generalizes a result due to Brock ( [10], Lemma 4.2)

to characterize sets of foliated Schwarz symmetric functions with respect to

a common vector.

Proposition 1.4. Let U ⊂ C(B) and define

M := {e ∈ SN−1 | u(x) ≥ u(σe(x)) for all x ∈ B(e) and u ∈ U}. (1.3)

If

SN−1 =M∪−M, (1.4)

i.e., if for all e ∈ SN−1 we have

u ≥ u◦σe in B(e) for all u ∈ U or u ≤ u◦σe in B(e) for all u ∈ U ,

then there is p ∈ SN−1 such that every u ∈ U is foliated Schwarz symmetric

with respect to p.

Proof. We start by constructing orthogonal unit vectors e1, . . . , eN−1 such

that

u ≡ u ◦ σei for i = 1, . . . , N − 1 and every u ∈ U . (1.5)

For this we first consider the set

A1 := {e ∈ SN−1 : u(x) > u(σe(x)) for some u ∈ U and some x ∈ B(e)}.

By (1.4) we have A1 ⊂ M, and A1 does not contain antipodal points.

Moreover, A1 is a relatively open subset of SN−1. If A1 is empty, then

u ≡ u◦σe for any u ∈ U and e ∈ SN−1, so any choice of orthonormal vectors

e1, . . . , eN−1 satisfies (1.5). Hence we may assume that A1 6= ∅. Then also

the relative boundary ∂A1 of A1 in SN−1 is nonempty. Let e1 ∈ ∂A1; then

any u ∈ U satisfies u ≡ u ◦ σe1 . Next we consider

A2 := {e ∈ SN−1 ∩H(e1) : u(x) > u(σe(x)) for some u ∈ U and x ∈ B(e)}.
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If A2 is empty, then we may complement e1 with any choice of orthonormal

vectors e2, . . . , eN−1 in SN−1∩H(e1) to obtain (1.5). If A2 is nonempty, then

– by the same argument as above – also the relative boundary ∂A2 of A2 in

SN−1∩H(e1) is nonempty, and every vector e2 ∈ ∂A2 satisfies u ≡ u◦σe2 for

every u ∈ U . Successively we find orthogonal vectors e1, . . . , eN−1 ∈ SN−1

such that (1.5) holds (then the process stops since SN−1 ∩H(e1) ∩H(e2) ∩
· · · ∩H(eN−1) consists merely of two antipodal points).

Without loss of generality, we may assume that the vectors e1, . . . , eN−1

satisfying (1.5) are the first N − 1 coordinate vectors. Next we show that

every hyperplane containing the xN -axis is a symmetry hyperplane for every

u ∈ U . For this let q = (q1, . . . , qN ) ∈ SN−1 be such that ReN ⊂ H(q). By

(1.4) we can assume that q ∈ M (otherwise we replace q by −q). Since

qN = 0, for x ∈ B(q) we have that [σe1 ◦ . . . ◦ σeN−1 ](x) = −σeN (x) 6∈ B(q),

and from (1.5) we deduce that

u(x) = u(−σeN (x)) ≤ u(σq(−σeN (x))) = u(−σeN (σq(x))) = u(σq(x)) ≤ u(x)

for every u ∈ U . Hence u ≡ u ◦σq for every u ∈ U , as claimed. We conclude

that every u ∈ U is axially symmetric with respect to the axis ReN .
To complete the proof of foliated Schwarz symmetry, we may now restrict

to any two-dimensional subspace of RN containing the axis ReN , hence we

may assume that N = 2 from now on. Let u ∈ U be a non radial function.

Then there are e∗ ∈ SN−1 and x ∈ B(e∗) such that e∗ · e2 > 0 and

u(x) > u(σe∗(x)) or (1.6)

u(x) < u(σe∗(x)). (1.7)

Assume (1.6) first. Writing u = u(r, φ) in (permuted) polar coordinates

with x1 = r sinφ and x2 = r cosφ, we get that u is even in φ, and that

there are r > 0 and η ∈ (−π, 0) such that (1.2) holds for the function

R → R, φ 7→ u(r, φ). Hence by Lemma 1.3 there are no other points of

reflectional symmetry of this function in (−π, 0) except the origin, and by

(1.4) this implies that for every e ∈ SN−1 with e · e2 > 0 we have u ≥ u ◦ σe
and u 6≡ u ◦ σe in B(e). Then again by (1.4) we have that

u ≥ u ◦ σe in B(e) for all u ∈ U and all e ∈ S with e · e2 ≥ 0,

and this readily implies that every u ∈ U is foliated Schwarz symmetric with

respect to the unit vector e2.

A similar argument shows that, if we assume (1.7) then every u ∈ U is

foliated Schwarz symmetric with respect to the unit vector −e2. The proof

is finished.
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The following proposition and corollary characterize foliated Schwarz

symmetry by properties related to the method of rotating planes.

Proposition 1.5. Let U ⊂ C(B),M be defined as in (1.3), and let ẽ ∈M.

If for all two dimensional subspaces P ⊆ RN containing ẽ there are two

different points p1, p2 in the same connected component of M∩P such that

u ≡ u ◦ σp1 and u ≡ u ◦ σp2 for every u ∈ U , then there is p ∈ SN−1 such

that every u ∈ U is foliated Schwarz symmetric with respect to p.

Proof. Let P be a two dimensional subspace with ẽ ∈ P . By hypothesis

there is some connected component KP ofM∩P and p1, p2 ∈ KP such that

u ≡ u ◦ σp1 and u ≡ u ◦ σp2 for every u ∈ U . We first show that

KP contains a closed halfcircle, (1.8)

i.e., {e ∈ SN−1 ∩ P : e · e′ ≥ 0} ⊆ KP for some e′ ∈ SN−1. We assume

without loss of generality that

p1 = (1, 0, . . . , 0), p2 = (cosψ, sinψ, 0, . . . , 0) for some ψ ∈ (0, 2π]

and

(cosφ, sinφ, 0, . . . , 0) =: pφ ∈M for all φ ∈ [0, ψ]

(because p1 and p2 are in the same connected component of M∩ P ). Let

u ∈ U . Using polar coordinates, we define

ṽ(r, φ, x′) := u(r cosφ, r sinφ, x′) = u(x)

with x ∈ B, x′ = (x3, . . . , xN ) ∈ RN−2, φ ∈ R, and r = |x|. If, indepen-

dently of the choice of u ∈ U , ṽ does not depend on φ, thenM∩P = SN−1∩P
and so (1.8) holds trivially. So, we may suppose that u ∈ U was chosen such

that the function

v : R→ R, v(φ) := ṽ(r,φ, x
′)

is non-constant for some fixed r > 0 and x′ ∈ RN−2. By assumption, we

then have

v(φ) = v(−φ), φ ∈ R,
v(ψ + φ) = v(ψ − φ), φ ∈ R,
v(η + φ) ≥ v(η − φ), η ∈ (0, ψ), φ ∈ (0, π), (1.9)

i.e., v has two points of reflectional symmetry, one at zero, and one at ψ, and

the points in between satisfy the defining property ofM. Since the function
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is non-constant, the inequality in (1.9) must be strict for some η ∈ (0, ψ)

and φ ∈ (0, π). Then, by Lemma 1.3, we get that u 6≡ u ◦ σpφ for φ ∈ (0, π).

By assumption, we then conclude that p2 6= pφ for φ ∈ (0, π), and therefore

ψ ≥ π. Hence (1.8) holds, as claimed.

Now since (1.8) holds independently of P , we conclude that, for all e ∈
SN−1 we have e ∈ M or −e ∈ M, so that (1.4) holds. Hence, the assertion

follows from Proposition 1.4.

Corollary 1.6. Let U ⊂ C(B) and suppose that the set M defined in (1.3)

contains a nonempty subset N with the following properties

(i) N is relatively open in SN−1;

(ii) for every e ∈ ∂N and u ∈ U we have u ≤ u ◦ σe in B(e). Here ∂N
denotes the relative boundary of N in SN−1.

Then there is p ∈ SN−1 such that every u ∈ U is foliated Schwarz symmetric

with respect to p.

Proof. By assumption, there exists ẽ ∈ N ⊂ M . Let P ⊆ RN be a two-

dimensional subspace containing ẽ, and let LP denote the connected com-

ponent of N ∩ P containing ẽ. Since M is closed, LP is a subset of the

connected component ofM∩P containing ẽ. By Proposition 1.5, it suffices

to show that there are different points p1, p2 ∈ LP such that u ≡ u◦σp1 and

u ≡ u ◦ σp2 for every u ∈ U .

We distinguish two cases. If LP = SN−1 ∩P , then we have u ≡ u ◦ σp in

B for every p ∈ LP , u ∈ U by the definition of M and since LP ⊂M.

If LP 6= SN−1 ∩ P , then there exists two different points p1, p2 in the

relative boundary of LP in SN−1 ∩ P . Since N is relatively open in SN−1,

these points are contained in ∂N ⊂M. Then, by assumption and the defi-

nition of M, we have u ≡ u ◦ σp1 and u ≡ u ◦ σp2 in B for every u ∈ U , as

required.



Chapter 2

Parabolic and elliptic

equations with Dirichlet

boundary conditions

Some of the results in this chapter were published in [54]. For the remainder

of the thesis, B always denotes a ball or an annulus centered at zero in RN

with N ≥ 2 and IB := {|x| : x ∈ B}. Our aim in this chapter is to prove

the following

Theorem 2.1. Let u ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) be a classical

solution of

ut −∆u = f(t, |x|, u), x ∈ B, t > 0,

u(x, t) = 0, x ∈ ∂B, t > 0,

u(x, 0) = u0(x), x ∈ B,
(2.1)

where the following assumptions hold.

(f1) The nonlinearity f : [0,∞) × IB × R → R, (t, r, u) 7→ f(t, r, u) is

continuous in t, r and locally Lipschitz in u uniformly with respect to

t and r, i.e., for every K > 0 there is L = L(K) > 0 such that

|f(t, r, u1)− f(t, r, u2)| ≤ L|u1 − u2|

for all (t, r) ∈ [0,∞)× IB and u1, u2 ∈ [−K,K].

(f2) The function f(·, ·, 0) is bounded on [0,∞)× IB.

(U1) There is e ∈ SN−1 such that u0 ≥ u0 ◦ σe and u0 6≡ u0 ◦ σe in B(e).

(U2) The solution is uniformly bounded, i.e., ‖u‖L∞(B×(0,∞)) <∞.

21
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Then u is asymptotically foliated Schwarz symmetric with respect to some

p ∈ SN−1, i.e., all elements of

ω(u) = {z ∈ C(B) : ‖u(·, tn)− z‖L∞(B) → 0 for some tn →∞}

are foliated Schwarz symmetric with respect to p.

This theorem characterizes the asymptotic symmetry of any solution that

satisfies the assumptions, but it does not give conditions for the existence. In

this regard, it is important to remark that if the nonlinearity f is continuous

and locally Lipschitz in u uniformly with respect to t and |x|, it follows from

standard semigroup theory that, for every u0 ∈ C(B), the corresponding

local (in time) problem admits a unique solution u ∈ C(B × [0, T (u0))) for

some time T (u0) > 0. Further, it has been studied extensively in recent years

under which assumptions on the nonlinearity f and the initial condition

u0 this unique solution exists globally in time and the corresponding orbit

{u(·, t) : t > 0} is relatively compact in C(B). In this case the set ω(u) is a

nonempty connected compact set. We refer the reader to [12,49,52] and the

references therein, where many specific examples are discussed which give

rise to this behavior.

All the symmetry results in this thesis have direct implications for the

elliptic and periodic parabolic versions of the respective problem that is

being studied. For example, an immediate consequence of Theorem 2.1 is

the following

Corollary 2.2. (i) Let f : IB ×R→ R, (r, u) 7→ f(r, u) be continuous in

r ∈ IB and locally Lipschitz in u uniformly with respect to r. Moreover,

let u ∈ C2(B) be a classical solution of the elliptic problem

−∆u = f(|x|, u) in B,

u(x) = 0 on ∂B,
(2.2)

such that (U1) holds for u in place of u0. Then u is foliated Schwarz

symmetric with respect to some p ∈ SN−1.

(ii) Suppose that f : [0,∞) × IB × R → R satisfies (f1) and is periodic

in t, i.e., there is T > 0 such that f(t + T, r, u) = f(t, r, u) for all

t, r, u. Suppose furthermore that u ∈ C2,1(B× (0,∞))∩C(B× [0,∞))

is a T -periodic solution of (2.1), i.e., u(x, t + T ) = u(x, t) for all

x ∈ B, t ∈ [0,∞), and such that (U1) holds. Then u(·, t) is foliated

Schwarz symmetric with respect to some p ∈ SN−1 for all times t ∈
[0,∞).
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As mentioned in the introduction of the thesis, an easy example giving

rise to a (sign changing) nonradial but foliated Schwarz symmetric solution

of (2.2) – and thus also of (2.1) – is given by f(|x|, u) = λ2u, where λ2 is

the second Dirichlet eigenvalue of the Laplacian.

Under additional spectral assumptions on the solution, statements simi-

lar to part (i) of Corollary 2.2 have been derived in [30,44] as an intermediate

step in the proof of symmetry results for solutions of (2.2) with low Morse

index. We note that results on radial symmetry of nonnegative time periodic

solutions had been obtained by Dancer and Hess [17] in the setting where

B is a ball in RN and f is nonincreasing in |x|.

We derive Theorem 2.1 from a more general theorem in Section 2.1

below, dealing with a class of fully nonlinear problems, as in [49]. To prove

that every solution u is asymptotically foliated Schwarz symmetric, we use

a parabolic rotating plane method as detailed in the introduction. Note

however that assumption (U1) does not imply that the functions in ω(u)

are strictly decreasing in the polar angle with respect to the symmetry axis.

For instance, in case B is a ball, f is decreasing in |x|, and u0 ∈ C(B) is a

nonnegative function satisfying (U1), then, as explained in the introduction,

a result due to Poláčik [49, Corollary 2.6] implies that ω(u) only consists of

radial functions.

This chapter is organized as follows. We introduce a fully nonlinear ver-

sion of problem (2.1) in Section 2.1, then in Section 2.2 we present a family

of linear parabolic problems associated with the fully nonlinear problem.

The estimates required to study these linear problems are contained in Sec-

tion 2.3. Section 2.4 contains a standard regularity result that will be used

in all the chapters and finally, in Section 2.5 we use a parabolic rotating

plane argument to prove the main results in this chapter.

To close this introduction, we would like to remark that, although Corol-

lary 2.2 is an immediate consequence of Theorem 2.1, it can also be derived

independently by a somewhat simpler argument not relying on the deep

estimates in [49]. We leave the details to the reader.

2.1 A fully nonlinear version of the model problem

In this section we set up a more general framework for our symmetry result.

The setting is strongly inspired by [49]. We consider the fully nonlinear
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parabolic problem

ut(x, t) = F (t, x, u,∇u,D2u), (x, t) ∈ B × (0,∞),

u(x, t) = 0, (x, t) ∈ ∂B × (0,∞),

u(x, 0) = u0(x), x ∈ B,
(2.3)

where, as before, B is a bounded radial domain in RN , N ≥ 2, and D2u =

(uxixj )
N
i,j=1 ∈ RN×N is the Hessian of u. As for the right hand side of (2.3),

we consider the following assumptions.

(F1) Reflection invariance: We have F : [0,∞) × B × B → R, where B is

an open convex set in R × RN × RN×N such that B × B is invariant

under the transformations

(x, u, p, q) 7→ (Rx, u,Rp,RqR), for every hyperplane reflection R ∈ RN×N .

Moreover, F (t, Rx, u,Rp,RqR) = F (t, x, u, p, q) for every hyperplane

reflection R ∈ RN×N and (t, x, u, p, q) ∈ (0,∞)×B × B.

(F2) Regularity: F is continuous on [0,∞)×B×B and Lipschitz in (u, p, q),

uniformly with respect to x and t, i.e., there is L > 0 such that

sup
x∈B,t≥0

|F (t, x, u, p, q)− F (t, x, ũ, p̃, q̃)| ≤ L|(u, p, q)− (ũ, p̃, q̃)|

for all (u, p, q), (ũ, p̃, q̃) ∈ B. Moreover, F is differentiable with respect

to q on [0,∞)×B × B.

(F3) Ellipticity: There is a constant α0 > 0 such that

∂qijF (t, x, u, p, q)ξiξj ≥ α0|ξ|2

for all (t, x, u, p, q) ∈ [0,∞)×B × B and ξ ∈ RN . Here and below, we

use the summation convention (summation over repeated indices).

We point out that these hypothesis are closely related to the ones in

[49, Section 2]. However, in contrast to [49], we make no monotonicity

assumptions on the nonlinearity and it may also include terms depending

on the radial derivative of u. So this allows us to also consider equations like

ut = g(t, |x|, u, |∇u|,∆u) + d(|x|)∇u · x, (x, t) ∈ B × [0,∞),

where

IB → R; r 7→ d(r)

R5 → R; (t, r, u, η, ξ) 7→ g(t, r, u, η, ξ)
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are continuous functions, g is Lipschitz continuous in (u, η, ξ) uniformly with

respect to (t, r), the partial derivative gξ exist everywhere, and gξ ≥ α0 for

some positive constant α0.

The symmetry result which we want to prove in this general setting relies

also on assumptions (U1) and (U2) for a fixed solution of (2.3), which were

stated in Theorem 2.1.

Theorem 2.3. Assume (F1)− (F3), and let u ∈ C2,1(B× (0,∞))∩C(B×
[0,∞)) be a classical solution of the problem (2.3) satisfying assumptions

(U1),(U2) and such that the functions (x, t) 7→ u(x, t + s) for s ≥ 1 are

equicontinuous on B × [0, 1], that is,

lim
h→0

sup
x,x̄∈B,t,t̄∈[t0,t0+1],
|x−x̄|+|t−t̄|<h,

t0≥1

|u(x, t)− u(x̄, t̄)| = 0. (2.4)

Then there is p ∈ SN−1 such that, for all z ∈ ω(u), z is foliated Schwarz

symmetric with respect to p, i.e., u is asymptotically foliated Schwarz sym-

metric with respect to p.

Remark 2.4. Note that if u satisfies (2.4) and assumption (U2) from Theo-

rem 2.1, then it follows from the Arzelà-Ascoli Theorem that {u(·, t) : t ≥ 1}
is a precompact set in C0(B). Therefore ω(u) ⊂ C0(B) and

lim
t→∞

inf
z∈ω(v)

‖v(·, t)− z‖L∞(B) = 0.

2.2 Linearization of fully nonlinear problems

To use the rotating plane method in the parabolic setting, the crucial step is

to consider the linear problem satisfied by the difference between a solution

of (2.3) and its reflection at a hyperplane. In this section we give the details

of this linearization in the fully nonlinear setting. As before, let B denote

a ball or an annulus in RN , N ≥ 2. We introduce some notation first.

Let e ∈ SN−1, then H(e) := {x ∈ RN : x · e = 0} denotes a hyperplane

perpendicular to e, σe : B → B denotes the reflection with respect to H(e),

that is, σe(x) := x − 2(x · e)e, and B(e) := {x ∈ B : x · e > 0} denotes the

half domain. Moreover, we let u denote a solution of (2.3) and assume the

hypothesis of Theorem 2.3.

Define ue : B × [0,∞)→ R by

ue(x, t) := u(x, t)− u(σe(x), t) for x ∈ B(e), t > 0.
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Then ue is a solution of the problem

uet = aeiju
e
xixj + beiu

e
xi + ceue in B(e)× (0,∞),

ue = 0 on ∂B(e)× (0,∞),

ue(x, 0) = u0(x)− u0(σe(x)) for all x ∈ B(e),

(2.5)

where the coefficients aeij , b
e
i , c

e ∈ L∞(B × (0,∞)) for i, j = 1, . . . , N, are

obtained, as in [49], via the Hadamard formulas. To make this precise,

define B × (0,∞)→ R; (x, t) 7→ ue(x, t) := u(σe(x), t) and consider

ce(x, t) :=

{∫ 1
0 Fu(t, |x|, su+ (1− s)ue, Du,D2u))ds, if ue(x, t) 6= 0,

0, if ue(x, t) = 0,

bei (x, t) :=


∫ 1

0 Fpi(t, |x|, ue, . . . , (ue)xi−1 , suxi

+(1− s)(ue)xi , uxi+1 , . . . , D
2u))ds, if (ue)xi(x, t) 6= 0,

0, if (ue)xi(x, t) = 0,

aeij(x, t) :=

∫ 1

0
Fqij (t, |x|, ue, Due, . . . , (ue)xi−xj− , suxixj

+ (1− s)(ue)xixj , uxi+xj+ , . . . , uxNxN ))ds

for e ∈ SN−1, x ∈ B, and t > 0, where (i−, j−), (i+, j+) stand for the pairs of

indices preceding, respectively, following, (i, j) within a fixed identification

of RN×N with RN2
.

By (F1) and (F2) the integrals make sense and the right hand side of (2.5)

is equal to the difference of F (t, |x|, u,Du,D2u) and F (t, |x|, ue, Due, D2ue).

As a consequence of (F2) and (F3), there is β0 > 0 such that

|ce(x, t)|, |bei (x, t)|, |aeij(x, t)| < β0 and aeij(x, t)ξiξj ≥ α0|ξ|2 (2.6)

for all x ∈ B(e), t > 0, i, j ∈ {1, . . . , N}, ξ ∈ RN , and e ∈ SN−1 with α0 > 0

as in (F3).

2.3 Estimates for linear problems

In this section we quote some estimates due to Poláčik [49]. Consider the

following general linear parabolic equation.

vt = aij(x, t)vxixj + bi(x, t)vxi + c(x, t)v, (x, t) ∈ U × (τ, T ), (2.7)

v = 0, (x, t) ∈ ∂U × (τ, T ), (2.8)
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where U is an open subset of some fixed bounded domain Ω ⊂ RN , 0 ≤ τ <
T ≤ ∞, the coefficients aij , bi, c are defined on U × (τ, T ), are measurable,

and satisfy that

N∑
i,j=1

aij(x, t)ξiξj ≥ α0|ξ|2, x ∈ U, t ∈ [τ, T ), ξ ∈ RN ,

|aij(x, t)|, |bi(x, t)|, |c(x, t)| < β0, x ∈ U, t ∈ [τ, T ),

(2.9)

for all i, j ∈ {1, . . . , N} and for some constants α0 > 0 and β0 ≥ 1.

When referring to a solution (resp. supersolution) of equation (2.7),

we mean a function v in the Sobolev space W 2,1
N+1,loc(U × (τ, T )) such that

(2.7) (resp. with “= ”replaced by “≥ ”) is satisfied almost everywhere. A

solution (resp. supersolution) of the boundary value problem (2.7),(2.8) is

in addition supposed to be continuous on U × [τ, T ) and to satisfy (2.8)

(resp. with “= ”replaced by “≥ ”) in the pointwise sense. We introduce

now some notation. For a bounded set Q ⊂ RN+1, a bounded continuous

function v : Q→ R, and p ∈ (0,∞], let

[v]p,Q :=

(
1

|Q|

∫
Q
|v(x, t)|p d(x, t)

) 1
p

if p <∞ and

[v]∞,Q := sup
Q
|v|.

Lemma 2.5. ( [49, Lemma 3.4] ) Given ε > 0, d > 0, θ > 0, there are

positive constants κ, p determined only by N, diam(Ω), α0, β0, d, ε, and

θ with the following property. If D,U are domains in Ω with D ⊂⊂ U,

dist(D, ∂U) ≥ d, |D| > ε, and v ∈ C(U × [τ, τ + 4θ]) is a supersolution of

equation (2.7) with coefficients satisfying (2.9) for some τ ∈ R and T =

τ + 4θ, then

inf
D×(τ+3θ,τ+4θ)

v ≥ κ[v+]p,D×(τ+θ,τ+2θ) − e4mθ sup
∂P (U×(τ,τ+4θ))

v−,

where m = sup
U×(τ,τ+4θ)

c.

If v is a solution of (2.7), then the conclusion holds with p = ∞ and κ

is independent of ε.

Theorem 2.6. (Special case of [49, Theorem 3.7])

Fix ρ ∈ (0, diam(Ω)
2 ).Then there is

δ = δ(N, diam(Ω), α0, β0, ρ) > 0

and, for every d, θ > 0,

µ = µ(N, diam(Ω), α0, β0, d, θ, ρ) ∈ (0, 1]
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with the following properties: If D ⊂ U are subdomains of Ω satisfying

inrad(D) > ρ, |U\D| < δ, dist(D, ∂U) > d,

if v ∈ C(U × [τ,∞)) is a solution of problem (2.7),(2.8) with coefficients

satisfying (2.9) for some τ ∈ R, T =∞, and if

v > 0 in D × [τ, τ + 8θ),

‖v−(·, τ)‖L∞(U\D) ≤ µ‖v‖L∞(D×(τ+θ,τ+2θ),

then the following statements hold true:

(S1) v(x, t) > 0 for all (x, t) ∈ D × [τ,∞).

(S2) ‖v−(x, t)‖L∞(U) → 0 as t→∞.

Lemma 2.7. ( [49, Lemma 3.5] ) Given ε > 0, d > 0, θ > 0, 0 < τ1 <

τ2 < τ3 < τ4, there are positive constants κ, κ1, and p determined only by

N, diam(Ω), α0, β0, d, ε, τ2 − τ1, τ3 − τ2, τ3 − τ4, and θ with the following

property. If D,U are domains in Ω with D ⊂⊂ U, dist(D, ∂U) ≥ d, |D| > ε,

and v ∈ C(U × [τ, T ]) is a supersolution of

vt = aij(x, t)vxixj + bi(x, t)vxi + c(x, t)v + g(x, t), (x, t) ∈ U × (τ, T ),

where τ1 − 2θ ≤ τ ≤ τ1 − θ, T ≥ τ4, the coefficients satisfy (2.9), and

g ∈ LN+1(U × (τ, τ4)), then

inf
D×(τ3,τ4)

v ≥ κ[v+]p,D×(τ1,τ2) − κ1‖g−‖LN+1(U×(τ,τ4)) − em sup
∂P (U×(τ,τ+4θ))

v−,

where m = sup
U×(τ,τ+4θ)

c.

If v is a solution of (2.7), then the conclusion holds with p = ∞ and

κ, κ1 are independent of ε.

2.4 Regularity of solutions

To show that Theorem 2.3 implies Theorem 2.1 we need to show that under

the assumptions of Theorem 2.1 the condition (2.4) holds. In this regard

there is the following result due to Poláčik.

Proposition 2.8 (Particular case of Proposition 2.7 in [49]). Let B ⊂ RN

be a ball or an annulus and let (F2) and (F3) hold. Further, assume that

(0, 0, 0) ∈ B and that the function F (·, ·, 0, 0, 0) is bounded on [0,∞) × B.
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Then for every solution u ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) of (2.3)

satisfying (U2), we have that

sup
x,x̄∈B,t,t̄∈[s,s+1],

x 6=x̄,t6=t̄,
s≥1

|u(x, t)− u(x̄, t̄)|
|x− x̄|α + |t− t̄|

α
2

<∞ for some α > 0.

Indeed, being a ball or an annulus, B is smoothly bounded and therefore

satisfies assumption (A) of [49, Proposition 2.7].

Although the previous Proposition suffices for our purposes in this chap-

ter, we use instead the following lemma, which is more precise with respect

to the dependence of the constants and it also includes the case of problems

with Neumann boundary conditions. This will be needed in the following

chapters. The proof follows standard techniques as used in [49, Proposition

2.7]. Recall the definition of the Hölder spaces for uniformly continuous

functions given in (5). In the following ν denotes the outward normal vector

Lemma 2.9. Let Ω ⊂ RN be a smooth bounded domain, I ⊂ R open,

µ ∈ C1(Ω × I), g ∈ L∞(Ω × I), and let v ∈ C2,1(Ω × I) ∩ C(Ω× I) be a

classical solution of

vt − µ(x, t)∆v = g(x, t) in Ω× I, (2.10)

satisfying

v = 0 on ∂Ω× I or ∂νv = 0 on ∂Ω× I.

Suppose moreover that

inf
Ω×I

µ(x, t) >
1

K
,

‖v‖L∞(Ω×I) + ‖µ‖C1(Ω×I) + ‖g‖L∞(Ω×I) < K.

for some K > 0. Let I ⊂ I with dist(I, ∂I) ≥ 1. Then there are constants

C > 0 and γ ∈ (0, 1), depending only on Ω and K such that

‖v‖C1+γ,(1+γ)/2(Ω×[s,s+1]) ≤ C for all s ∈ I.

In particular, if I = (0,∞), then for h ∈ {v, vxj : j ∈ {1, . . . , N}}, we have

that

sup
x,x̄∈Ω , t,t̄∈[s,s+1],
x6=x̄ , t 6=t̄ , s≥1

|h(x, t)− h(x̄, t̄)|
|x− x̄|γ + |t− t̄|

γ
2

< C, (2.11)

and the semiorbit {v(·, t) : t ≥ 1} is relatively compact in C(Ω). Therefore

ω(v) is a nonempty connected compact subset of C(Ω) satisfying

lim
t→∞

inf
z∈ω(v)

‖v(·, t)− z‖L∞(Ω) = 0.
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Proof. Fix s ∈ I and set

Q := Ω× [s, s+ 1] ⊂ Ω× I.

Then v ∈ W 2,1
N+3(Q) because v ∈ C2,1(Q). Further, since ‖µ‖C1(Ω×I) < K

we have that

|µ(x, t)− µ(y, s)| ≤ K|(x, t)− (y, s)| for all (x, t), (y, s) ∈ Q.

Then all the assumptions of [38, Theorem 7.30, p.181] are satisfied if

v = 0 on ∂B × (0,∞), and all the assumptions of [38, Theorem 7.35, p.185]

are satisfied if ∂νv = 0 on ∂B×(0,∞). In both cases, the respective theorem

implies the existence of a constant C1(Ω,K) = C1 > 0 such that

‖D2v‖LN+3(Q) + ‖vt‖LN+3(Q) ≤ C1(‖g‖LN+3(Q) + ‖u‖LN+3(Q)) ≤ 2C1|Ω|K.

Then, by a standard interpolation argument,

‖v‖
W 2,1
N+3(Q)

≤ C2

for some constant C2(Ω,K) = C2 > 0.

By Sobolev embeddings (see, for example, [52, embedding (1.2)] or [63,

Corollary 1.4.1] and the references therein), we then have that

v ∈ C1+γ,(1+γ)/2(Q) for γ = 1− N + 2

N + 3
∈ (0, 1),

and there is a constant C3(Ω) = C3 > 0 such that

‖v‖C1+γ,(1+γ)/2(Q) ≤ C3‖v‖W 2,1
N+3(Q)

≤ C3C2.

This implies (2.11) if I = (0,∞), and the last claim follows from the Arzelà-

Ascoli Theorem (see [52, Proposition 53.3]).

2.5 Main result for scalar Dirichlet problems

Let u be a solution of (2.3) satisfying the assumptions of Theorem 2.3. We

use the definitions introduced in Section 2.2. Moreover, for every z ∈ ω(u),

let ze : B(e)→ R be given by

ze(x) := z(x)− z(σe(x)).

Set

M := {e ∈ SN−1 | ze(x) ≥ 0 for all x ∈ B(e) and z ∈ ω(u)}.

The parabolic rotating plane method relies on the following two Lemmas.
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Lemma 2.10. Let e ∈ SN−1 be as in (U1). There is some ε > 0 such that

e′ ∈M for all e′ ∈ SN−1 with |e′ − e| < ε.

Proof. If e ∈ SN−1 is as in (U1), then it follows from (2.5) and the parabolic

strong maximum principle (see for example [51]) that

ue(x, t) > 0 in B(e)× (0,∞), (2.12)

and therefore e ∈M. Let δ > 0 be chosen as in Theorem 2.6 corresponding

to Ω = B, ρ := 1
4 inrad(B), and α0, β0 as in (2.6). Moreover, let D ⊂⊂

B(e) be a subdomain such that |B(e)\D| < δ and inrad(D) > ρ. Put

d := 1
2 dist(D, ∂B(e)), θ := 1, and let µ ∈ (0, 1] be as in Theorem 2.6

corresponding to these choices of Ω, α0, β0, d, θ, and ρ. By (2.12) there

exists some η > 0 such that

ue > η in D × [1, 9].

Moreover, there is some ε > 0 such that, for all e′ ∈ SN−1 with |e− e′| < ε,

D ⊂⊂ B(e′), |B(e′)\D| < δ, dist(D, ∂B(e′)) > d, ue
′
> η in D × [1, 9], and

‖(ue′)−(·, 1)‖L∞(B(e′)) ≤ µη ≤ µ‖ue
′‖L∞(D×[2,3]),

by the continuity of u and (2.12).

Hence, for these e′ ∈ SN−1, the hypothesis of Theorem 2.6 are satisfied

with U = B(e′), τ = 1, θ = 1, and D as above. We therefore get that

‖(ue′)−(·, t)‖L∞(B(e′)) → 0, as t→∞.

This shows e′ ∈M for e′ ∈ SN−1 with |e− e′| < ε, as claimed.

Lemma 2.11. Let e ∈M. If there is some z̃ ∈ ω(u) such that z̃e 6≡ 0, then

there is some ε > 0 such that e′ ∈M for all e′ ∈ SN−1 with |e− e′| < ε.

Proof. Since z̃e 6≡ 0 there is some α > 0 and x0 ∈ B(e) such that z̃e(x0) ≥
2α > 0. Let δ > 0 be chosen as in Theorem 2.6 corresponding to Ω = B,

ρ := 1
4 inrad(B), and α0, β0 as in (2.6). Moreover, let D ⊂⊂ B(e) be

a subdomain such that |B(e)\D| < δ, inrad(D) > ρ and x0 ∈ D. Put

d := 1
2 dist(D, ∂B(e)), θ := 1

8 , and let µ ∈ (0, 1] be as in Theorem 2.6

(corresponding to these choices of Ω, α0, β0, d, θ and ρ). Since ze ≥ 0 in

B(e) for all z ∈ ω(u) and dist(u(·, t), ω(u)) → 0 in C0(B) as t → ∞ by

Remark 2.4, there is some T0 > 0 such that

‖(ue)−(·, t)‖L∞(B(e)) <
µκα

8
e−4β0 for t ≥ T0, (2.13)
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where κ > 0 is the constant given by Lemma 2.5 for Ω, α0, β0, d as above and

θ = 1. Next, we may take T1 ≥ T0 +1 such that ‖ue(·, T1)− z̃e‖L∞(B(e)) < α

and therefore ue(x0, T1) > α. We then apply Lemma 2.5 to U = B(e),

τ := T1 + 2 and θ = 1 in order to get

inf
D×(τ,τ+1)

ue ≥ κ‖(ue)+‖L∞(D×(τ−2,τ−1)) − e4β0 sup
∂P (B(e)×(τ−3,τ+1))

(ue)−

≥ κα− µκα

8
≥ κα

2
=: η > 0.

Moreover, by continuity, there is some ε > 0 such that

D ⊂⊂ B(e′), |B(e′)\D| < δ, dist(D, ∂B(e′)) > d

and

inf
D×(τ,τ+1)

ue
′ ≥ η

2

‖(ue′)−(·, τ)‖L∞(B(e′)) ≤ ‖(ue)−(·, τ)‖L∞(B(e)) +
ηµ

4
.

for all e′ ∈ SN−1 with |e− e′| < ε.

Combining this with (2.13), we find that

‖(ue′)−(·, τ)‖L∞(B(e′)) ≤
ηµ

4
+
µκα

8
e−4β0

≤ µη

2
≤ µ‖(ue′)+‖L∞(D×(τ+ 1

8
,τ+ 1

4
))

for every e′ ∈ SN−1 with |e− e′| < ε. In particular, for these e′ ∈ SN−1 the

hypothesis of Theorem 2.6 are satisfied with U = B(e′) and θ = 1
8 . Therefore

‖(ue′)−(x, t)‖L∞(B(e′)) → 0 as t→∞,

which yields e′ ∈M for all e′ ∈ SN−1 with |e− e′| < ε, as claimed.

We are now ready to prove the main symmetry result of this chapter.

We give two proofs, the first one is shorter, but the second one might pro-

vide a better insight on the rotating plane method since it is slightly more

constructive.

Proof of Theorem 2.3. By Lemma 2.10 we have that N :=M◦ 6= ∅, where

M◦ denotes the relative interior of M in SN−1. Furthermore, Lemma 2.11

implies that ze ≡ 0 in B(e) for all z ∈ ω(u) and e ∈ ∂N , where ∂N denotes

the relative boundary of N in SN−1. The result follows from Corollary 1.6

applied to U = ω(u).
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Alternative proof of Theorem 2.3. Let e ∈ SN−1 be as in (U1). Then, by

Lemma 2.10, there is ε > 0 such that

e′ ∈M for all e′ ∈ SN−1 with |e′ − e| < ε. (2.14)

Let P be any two dimensional subspace of RN containing e. Without loss

of generality, we may assume that e = (1, 0, . . . , 0) and

P = {x = (x1, 0, ..., 0, xN ) | x1, xN ∈ R}.

Define

eθ := ( cos θ , 0 , ... , 0 , sin θ ) and zθ := zeθ ∈ C0(B(eθ))

for θ ∈ R and

Θ1 := sup{θ > 0 : eφ ∈M for all 0 ≤ φ ≤ θ},
Θ2 := inf{θ < 0 : eφ ∈M for all θ ≤ φ ≤ 0}.

We note that Θ2 < 0 < Θ1 by (2.14). If Θ1 −Θ2 ≥ 2π (and in particular if

Θ1 =∞ or Θ2 = −∞), it immediately follows from the definition ofM that

every H(eθ), θ ∈ R, is a symmetry hyperplane for all elements of ω(u). If

both Θ1 and Θ2 are finite and Θ1 −Θ2 < 2π, we have zΘ1 ≡ zΘ2 ≡ 0 for all

z ∈ ω(u) as a consequence of Lemma 2.11, so that H(eΘ1) and H(eΘ2) are

symmetry hyperplanes for all elements of ω(u). Moreover, eΘ1 6= eΘ2 and

eϕ ∈M for all ϕ ∈ (Θ2,Θ1). Since this can be done for all two dimensional

subspaces P of RN containing e, we can use Proposition 1.5, applied to

U = ω(u), to obtain the existence of p ∈ SN−1 such that every z ∈ ω(u) is

foliated Schwarz symmetric with respect to p, as claimed.

Proof of Theorem 2.1. Let u ∈ C2,1(B×(0,∞))∩C(B×[0,∞)) be a solution

of (2.1) such that all the assumptions in Theorem 2.1 hold. We show how

Theorem 2.3 implies Theorem 2.1.

Let K := ‖u‖L∞(B×(0,∞)). Note that u satisfies (2.10) with µ ≡ 1 and

g(x, t) := f(t, x, u(x, t)) ≤ L ‖u1‖L∞(B×(0,∞)) + ‖f(·, ·, 0)‖L∞(B×(0,∞)) <∞

for all x ∈ B and t > 0 by (f1), (f2), and (U2), where L(K) = L is the

constant given in (f1). Then, by Lemma 2.9, we have that u satisfies (2.11)

and therefore (2.4).

On the other hand, we may consider (2.1) as a special case of (2.3) with

B = (−K − 1,K + 1)× RN × RN2
and

F : [0,∞)×B × B → R, F (t, x, u, p, q) = trace(q) + f(t, |x|, u).
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With this definition, assumptions (F1) and (F3) are obviously satisfied and

(F2) follows from assumption (f1). Hence the assumptions of Theorem 2.1

imply those of Theorem 2.3 and this ends the proof.



Chapter 3

Parabolic equations with

Neumann boundary

conditions

In this chapter we turn our attention to nonlinear parabolic equations with

Neumann boundary conditions. The goal of this Chapter is to prove the

following

Theorem 3.1. Let u ∈ C2,1(B×(0,∞))∩(B×[0,∞)) be a classical solution

of

ut − µ(|x|, t)∆u = f(t, |x|, u), x ∈ B, t > 0,

∂νu = 0, x ∈ ∂B, t > 0,

u(x, 0) = u0(x), x ∈ B,
(3.1)

where

(µ) the diffusion coefficient µ ∈ C1(IB × (0,∞)) is such that there are

constants µ∗ ≥ µ∗ > 0 with ‖µi‖C1(IB×(0,∞)) ≤ µ∗ and µi(r, t) ≥ µ∗
for all r ∈ IB and t > 0.

Further, assume that the hypothesis (f1), (f2), (U1), and (U2) from Theorem

2.1 are satisfied. Then there is some p ∈ SN−1 such that all elements of ω(u)

are foliated Schwarz symmetric with respect to p.

We stress that this result holds for positive and for nodal solutions of

(3.1). Analogously as in Corollary 2.2, Theorem 3.1 yields immediate corol-

laries for the elliptic and for the time periodic versions of (3.1).

Although many (existence) results for (2.1) have a similar version for

(3.1) (with µ ≡ 1), it is clear that the Neumann boundary conditions are

35
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much less restrictive than the Dirichlet counterpart, and the symmetries of

the solution are coerced to a lesser degree by the influence of the boundary.

To have an idea of the symmetry properties of solutions of (3.1), let us

consider the following elliptic equation.

−ε2∆u = u− up in Ω,

u > 0 in Ω,

∂νu = 0 on ∂Ω.

(3.2)

Here ε is a small positive constant, 1 < p < N+1
N+2 (= ∞ if N = 2), and

Ω ⊂ RN is a smooth bounded domain. Solutions to (3.2) can be regarded

as stationary solutions of (3.1) with µ ≡ ε2 in the case where Ω is a ball.

If Ω is the unit ball, the first interesting remark regarding symmetry

properties of (3.2) is that the result of Gidas, Ni, and Nirenberg [26] does

not hold for (3.2) and therefore the usual moving plane method can not be

applied. Indeed, for small values of ε many nonradial positive solutions have

been constructed, in particular single-peak solutions, multipeak solutions,

and also solutions concentrating on multidimensional sets —lower dimen-

sional inner spheres for example. These results can be found in [42] and the

references therein together with an overview of the qualitative properties of

solutions to elliptic —and some parabolic—problems, with a special focus

on the differences between Neumann and Dirichlet boundary conditions.

We just mention one more revealing fact in this regard: for a general

smooth domain Ω, the least energy solutions of (3.2) are known to be single-

peak solutions. The location of the concentrating points is determined by

the geometry of the underlying domain and the boundary conditions. For in-

stance, under Neumann boundary conditions, the maximum point is located

near a maximum of the mean curvature of ∂Ω, whereas, for the same prob-

lem under Dirichlet boundary conditions, the concentrating point is near

the most distant point to ∂Ω. We refer to [42] and the references therein for

the formal statements. This suggest that solutions of (3.1) tend to concen-

trate near the boundary rather than near the center, and therefore foliated

Schwarz symmetry is a natural partial symmetry to be expected in this

setting. As a matter of fact, the least-energy solution of (3.2) in a ball is

foliated Schwarz symmetric, and this was proved in [39] using a version of

the elliptic rotating plane method.

As in the previous chapter, the strategy to prove Theorem 3.1 is to

use a parabolic rotating plane argument. However, as the above discussion

suggests, the arguments used for the Dirichlet problem can not be easily

extended to the present case. Indeed, Theorem 2.1 relies strongly on maxi-
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mum principles for small domains (and its consequences, e.g. Theorem 2.6),

which are only available under Dirichlet boundary conditions, and there-

fore a different approach is needed for problem (3.1). In this chapter, we

develop new tools to study the symmetries of (3.1) exploiting the nature

of the Neumann boundary conditions. In particular, we use the fact that

it is possible to extend solutions to second order Neumann problems on B

to a larger domain via inversion at the boundary. The extended solution

satisfies an equation in the strong sense, and therefore it is possible to use

Harnack inequalities and maximum principles to obtain information up to

the boundary. Specifically, we prove a quantitative Harnack-Hopf type prin-

ciple, Lemma 3.4 below, which yields information up to the non-smooth part

of the boundary of cylinders over half balls and half annuli. With Lemma

3.4 we are able to show a stability property of reflection inequalities with

respect to small perturbations of a hyperplane, see Lemma 3.5 below.

We give a brief outline of this chapter. We start with the details of

the extension argument in Section 3.1. Next, in Section 3.2, we derive a

quantitative Harnack-Hopf type lemma for equations in cylinders over half

balls and half annuli under mixed boundary conditions and then use it to

prove our main perturbation result in this setting, Lemma 3.5. Section 3.3

contains the proof of Theorem 3.1. Finally, in Section 3.7 we include a brief

discussion on equations with angular derivative terms and the possibility of

a varying axis of asymptotic symmetry.

Some of the results presented in this chapter were submitted for publi-

cation in [55].

3.1 Extension of solutions in radial domains

We now detail the extension procedure mentioned in the introduction of the

chapter. First we fix some notation. Let B be a ball or an annulus in RN

centered at zero, and fix 0 ≤ A1 < A2 <∞ such that

B :=

{
{x ∈ RN : A1 < |x| < A2}, if A1 > 0,

{x ∈ RN : |x| < A2}, if A1 = 0.
(3.3)

Note that IB = {|x| : x ∈ B} = [A1, A2]. Define

B̃ :=

{
{x ∈ RN :

A2
1

A2
< |x| < A2

2
A1
}, if A1 > 0,

{x ∈ RN : |x| < 2A2}, if A1 = 0,
(3.4)
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and for x ∈ B̃ \B we put

x̂ :=


A2

2

|x|2
x, if |x| ≥ A2,

A2
1

|x|2
x, if |x| ≤ A1.

Lemma 3.2. Let I ⊂ R be an open interval, let µ, g : B × I → R be given

functions, and let u ∈ C2,1(B × I) ∩ C(B × I) be a solution of{
ut − µ(x, t)∆u = g(x, t) in B × I,

∂νu = 0 on ∂B × I.

Then the function

ũ : B̃ → R, ũ(x, t) :=

u(x, t), x ∈ B, t ∈ I,
u(x̂, t), x ∈ B̃ \B, t ∈ I,

(3.5)

satisfies that ũ ∈W 2,1
p,loc(B̃× I)∩C1,0(B̃× I) for any p ≥ 1 and it is a strong

solution of the equation

ũt − µ̃(x, t)∆ũ− b̃(x, t)∂rũ = g̃(x, t) in B̃ × I, (3.6)

where ∂r = 1
|x|

N∑
j=1

xj∂j is the radial derivative and

µ̃(x, t) :=

µ(x, t), x ∈ B, t ∈ I,
|x|2
|x̂|2µ(x̂, t

)
, x ∈ B̃ \B, t ∈ I,

b̃(x, t) :=

0, x ∈ B, t ∈ I
(4−2N)|x|
|x̂|2 µ(x̂, t), x ∈ B̃ \B, t ∈ I,

g̃(x, t) :=

g(x, t), x ∈ B, t ∈ I,
g(x̂, t), x ∈ B̃ \B, t ∈ I.

Proof. The proof is by direct calculation. Let t ∈ I and x ∈ B̃ with |x| ≥ A2.

To simplify the presentation we assume A1 = 0 and we will often omit the

argument (x̂, t). Then,

∇ũ(x, t) = (∇u)

(
δij |x|2 − 2xixj

|x|4

)N
i,j=1

A2
2 (3.7)

=

(
∂iu

|x|2
− 2xi
|x|4

N∑
k=1

xk∂ku

)N
i=1

A2
2.
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It follows, by the Neumann boundary conditions, that

∇ũ(x, t) = ∇u(x, t) for all x ∈ B, t > 0. (3.8)

Indeed, for x ∈ B this follows from the definition of ũ, and if x ∈ ∂B, then

|x| = A2 and the outward normal vector is ν(x) = x/A2, thus by (3.7) we

have that

∇ũ(x, t) = ∇u(x, t)(δij − νiνj)Ni,j=1 = ∇u(x, t)− ∂νu(x, t)ν = ∇u(x, t).

Now we calculate the second derivatives.

(∂j(∂iu(x̂, t)))Ni,j=1 = (∂jiu)Ni,j=1

(
δij |x|2 − 2xixj

|x|4

)N
i,j=1

A2
2

=

(
∂jiu

|x|2
− 2xj
|x|4

N∑
k=1

xk∂kiu

)N
i,j=1

A2
2.

D2ũ(x, t) = (∂ji(u(x̂, t)))Ni,j=1 =

(
∂j

(
∂iu

|x|2
− 2xi
|x|4

N∑
k=1

xk∂ku

))N
i,j=1

A2
2

= A2
2

(
∂j(∂iu)|x|2 − ∂iu(2xj)

|x|4

− 2

δij
N∑
k=1

xk∂ku+ xi
N∑
k=1

[δkj∂ku+ xk∂j(∂ku)]

|x|4
+ 8

xixj
N∑
k=1

xk∂ku

|x|6

)N
i,j=1

= A2
2

((
∂jiu

|x|4
− 2xj
|x|6

N∑
k=1

xk∂kiu

)
A2

2 −
2xj∂iu

|x|4
+

−2δij
N∑
k=1

xk∂ku

|x4|
+
−2xi∂ju

|x|4

+

(
−2xi
|x|6

N∑
k=1

xk∂jku+
4xjxi
|x|8

N∑
k=1

N∑
l=1

xkxl∂lku

)
A2

2 +

8xixj
N∑
k=1

xk∂ku

|x|6

)N
i,j=1

.
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Then, the formula for the Laplacian is the following.

∆ũ(x, t) =

N∑
i=1

∂iiũ(x, t) =

=

(
∆u

|x|4
−

2
N∑
i=1

N∑
k=1

xixk∂kiu

|x|6
−

2
N∑
i=1

N∑
k=1

xixk∂iku

|x|6
+

4
N∑
k=1

N∑
l=1

xkxl∂lku

|x|6

)
A4

2

+

(−2
N∑
i=1

xi∂iu

|x|4
+

−2N
N∑
k=1

xk∂ku

|x4|
+

−2
N∑
i=1

xi∂iu

|x|4
+

8
N∑
k=1

xk∂ku

|x|4

)
A2

2

=
A4

2

|x|4

(
∆u+

4− 2N

A2
2

(∇u · x)

)
.

Also, note that

4− 2N

|x̂|2
(∇(ũ(x, t)) · x) =

4− 2N

A4
2

|x|2
N∑
i=1

xi

(
∂iu

|x|2
− 2xi
|x|4

N∑
k=1

xk∂ku

)
A2

2

=
2N − 4

A2
2

(∇u · x),

which motivates the definition of the coefficient b̃ in the statement of the

Lemma. If A1 > 0, one can make similar calculations for x ∈ B̃ with

|x| < A1. Then, it is easy to check that (3.6) holds for almost every x ∈ B̃
and t ∈ I.

By (3.8) we have ũ ∈ C1,0(B̃ × I). Now, fix p ≥ 1. By assumption,

‖u‖
W 2,1
p (B×J)

< ∞ for any subinterval J ⊂⊂ I. As calculated above, the

map x 7→ x̂ has uniformly bounded first and second derivatives in B̃ \ B,

and therefore ‖ũ‖
W 2,1
p (B̃×J)

< ∞. Since (3.6) holds almost everywhere in

B̃ × I we find that ũ ∈W 2,1
p,loc(B̃ × I) is a strong solution of (3.6).

Remark 3.3. A similar extension property is valid in half balls and half

annuli under mixed boundary conditions. More precisely, let B+ := {x ∈
B : xN > 0}, I ⊂ R be an open interval, let µ, g : B+ × I → R given

functions and let u ∈ C2,1(B+ × I) ∩ C(B+ × I) be a solution of

ut − µ(x, t)∆u = g(x, t) in B+ × I,

satisfying u = 0 on Σ1 × I and ∂νu = 0 on Σ2 × I, where

Σ1 := {x ∈ ∂B+ : xN = 0}, Σ2 := {x ∈ ∂B+ : xN > 0}. (3.9)
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Let B̃+ := {x ∈ B̃ : xN > 0} and define ũ : B̃+ → R by (3.5) for x ∈ B̃+.

Then ũ ∈ W 2,1
p,loc(B̃+ × I) ∩ C1,0(B̃+ × I) for any p > N + 2 and it is a

strong solution of (3.6) in B̃+ with coefficients defined analogously as in

Lemma 3.2.

3.2 A Harnack-Hopf type lemma and related esti-

mates

The first result of this section is an estimate related to a linear parabolic

boundary value problem on a (parabolic) half cylinder. The estimate can

be seen as an extension of both the Harnack inequality and the Hopf lemma

since it also gives information on a “tangential”derivative at corner points.

A somewhat related (but significantly weaker) result for supersolutions of

the Laplace equation was given in [29, Lemma A.1].

Lemma 3.4. Let a, b ∈ R, a < b, I := (a, b), B+ := {x ∈ B : xN > 0}.
Suppose that v ∈ C2,1(B+ × I) ∩ C(B+ × I) satisfies

vt − µ∆v − cv ≥ 0 in B◦+ × I,

∂v

∂ν
= 0 on Σ2 × I,

v = 0 on Σ1 × I,

v(x, a) ≥ 0 for x ∈ B+,

where the sets Σi are given in (3.9) and the coefficients satisfy

1

M
≤ µ(x, t) ≤M and |c(x, t)| ≤M for (x, t) ∈ B+ × I

with some positive constant M > 0. Then v ≥ 0 in B+ × (a, b). Moreover,

if v(·, a) 6≡ 0 in B+, then

v > 0 in B+ × I and
∂v

∂eN
> 0 on Σ1 × I. (3.10)

Furthermore, for every δ1 > 0, δ2 ∈ (0, b−a4 ], there exist κ > 0 and p > 0

depending only on δ1, δ2, B, and M such that

v(x, t) ≥ xN κ
(∫

Q(δ1,δ2)
vp d(x, t)

) 1
p

(3.11)

for all x ∈ B+ and t ∈ [a+ 3δ2 , a+ 4δ2]. where

Q(δ1, δ2) := {(x, t) : x ∈ B+, xN ≥ δ1, a+ δ2 ≤ t ≤ a+ 2δ2}.
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Proof. We begin by showing that v ≥ 0 in B+ × I. Let ε > 0 and define

B+ × I → R; (x, t) 7→ ϕ(x, t) := e−Mtv(x, t) + ε.

Then

ϕt − µ∆ϕ− (c−M)ϕ = −ε(c−M) ≥ 0, x ∈ B◦+, t ∈ I,
∂ϕ

∂ν
(x, t) = 0, x ∈ Σ2, t ∈ I,

ϕ(x, t) = ε, x ∈ Σ1, t ∈ I,

ϕ(x, t) ≥ ε

2
> 0, x ∈ B+, t ∈ [a, a+ s)

for some s ∈ (0, b− a), since the function (x, t) 7→ e−Mtv(x, t) is continuous

in B+ × [a, b). By the maximum principle (see for example [38, Theorem

2.7] or [51, Theorem 5, Chapter 3]) the minimum of u is attained at the

parabolic boundary ∂P (B+× I) = (Σ1× I)∪ (Σ2× I)∪ (B+×{a}). By the

boundary point lemma (see for example [38, Lemma 2.8]) the minimum of

ϕ can not be achieved in Σ2 × [a+ s, b] because of the Neumann boundary

conditions. Since ϕ ≥ 0 in the rest of the parabolic boundary we get that

ϕ ≥ 0 in B+ × I, that is v(x, t) ≥ −εeMt in B+ × I. Letting ε→ 0 we have

that v ≥ 0 in B+ × I. Moreover, if v(·, a) 6≡ 0 in B+, then the first claim in

(3.10) follows similarly by the strong maximum principle and the boundary

point lemma.

Next we note that the second claim in (3.10) is a consequence of the first

claim and the inequality (3.11) (for suitably chosen δ1, δ2). It thus remains

to prove (3.11). Let δ1 > 0, δ2 ∈ (0, b−a4 ] and consider B̃, B̃+ as defined in

(3.4) and Remark 3.3. Without loss, we may assume that

δ1 < min
{δ2

2
,
dist(B, ∂B̃)

3

}
. (3.12)

By Remark 3.3, there exists an extension ṽ ∈ W 2,1
N+1,loc(B̃+ × I) of v which

satisfies L(x, t)ṽ ≥ 0 in B̃+×I in the strong sense. Here the linear differential

operator L is given by

L(x, t)w := wt − µ̃(x, t)∆w − b̃(x, t)∂rw − c̃(x, t)w

with µ̃, b̃ given as in Lemma 3.2 and

c̃(x, t) :=

c(x, t), x ∈ B+, t ∈ I,
c(x̂, t), x ∈ B̃+ \B+, t ∈ I.
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Moreover, there is a positive constant β0 which only depends on B and

M such that µ̃, b̃, and c̃ are uniformly bounded by β0, and µ̃ is bounded

below by β−1
0 . Next, we define the compact sets

Kδ1 := {x ∈ B+ : xN ≥
δ1

2
} and

K̃δ1 := {x ∈ B̃+ : xN ≥
δ1

2
, dist(x, ∂B̃) ≥ δ1}

By Lemma 2.7 there exist κ1 > 0 and p > 0, depending only on δ1, δ2, B,

and M such that

inf
x∈K̃δ1

t∈[a+ 5
2
δ2,a+4δ2]

ṽ(x, t) ≥ κ1

(∫
K̃δ1×[a+δ2,a+2δ2]

(ṽ)p d(x, t)

) 1
p

≥ κ1

(∫
Q(δ1,δ2)

vp d(x, t)

) 1
p

. (3.13)

Here we used in the last step that

Q(δ1, δ2) ⊂ Kδ1 × [a+ δ2, a+ 2δ2] ⊂ K̃δ1 × [a+ δ2, a+ 2δ2].

Next, we define

D := {(x, t) : t < 0, xN <
δ1

2
, |x− δ1eN |2 + t2 < δ2

1};

Γ1 := {(x, t) : t ≤ 0, xN <
δ1

2
, |x− δ1eN |2 + t2 = δ2

1};

Γ2 := {(x, t) : t ≤ 0, |x− δ1eN |2 + t2 ≤ δ2
1 , xN =

δ1

2
}.

Note that Γ1 ∪ Γ2 equals ∂PD, the parabolic boundary of D. Let x0 ∈ Σ1

and t0 ∈ [a+ 3δ2, a+ 4δ2]. By construction and (3.12), we then have

{(x0 + x, t0 + t) : (x, t) ∈ D} ⊂ B̃+
◦
× [a+

5

2
δ2, a+ 4δ2]

and

{(x0 + x, t0 + t) : (x, t) ∈ Γ2} ⊂ K̃δ1 × [a+
5

2
δ2, a+ 4δ2]. (3.14)

Next we fix k > 0 such that

k ≥ 2β0[δ1 + β0N(1 + δ1)]

δ1
2 .

Moreover, we define the function

z : D → R, z(x, t) :=
(
e−k(|x−δ1eN |2+t2) − e−kδ1

2
)
e−β0t.
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Put also

ε :=

min
(x,t)∈Γ2

ṽ(x0 + x, t0 + t)

max
(x,t)∈Γ2

z(x, t)
> 0

and consider

w : D → R, w(x, t) := ṽ(x0 + x, t0 + t)− εz(x, t)

Then w ≥ 0 on Γ2 and also w ≥ 0 on Γ1, since z ≡ 0 on Γ1. Moreover, for

(x, t) ∈ D we have

L(t0 + t, x0 + x)z(x, t)

=[−β0 − c̃(t+ t0, x0 + x)]z(x, t)

+ 2k e−k(|x−δ1eN |2+t2)−β0t
[
µ̃(t0 + t, x0 + x)(N − 2k|x− δ1eN |2)

− t− b̃(t0 + t, x0 + x)
x0 + x

|x0 + x|
· (x− δ1eN )

]
≤2k e−k(|x−δ1eN |2+t2)−β0t

[
δ1 −

2k

β0

(δ1

2

)2
+ β0N(1 + δ1)

]
≤ 0,

by the definition of k. Therefore we have

L(t0 + t, x0 + x)w(x, t) ≥ 0 for (x, t) ∈ D and w ≥ 0 on ∂PD = Γ1 ∪ Γ2.

By the maximum principle for strong solutions, we conclude that w ≥ 0 in

D and thus in particular

ṽ(x0 + seN , t0) ≥ εz(seN , 0) ≥ ε1s min
(x,t)∈Γ2

ṽ(x0 + x, t0 + t) for s ∈ (0,
δ1

2
)

with a constant ε1 ∈ (0,diam(B)−1) depending only on the function z and

B. By (3.14) and since x0 ∈ Σ1, t0 ∈ [a+3δ2, a+4δ2] were chosen arbitrarily,

we conclude that

v(x, t) ≥ ε1xN inf
y∈K̃δ1

τ∈[a+ 5
2
δ2,a+4δ2]

ṽ(y, τ)

for x ∈ B+ with xN <
δ1

2

and t ∈ [a+ 3δ2, a+ 4δ2].

By definition of Kδ1 and since 0 ≤ ε1xN ≤ 1 for x ∈ B+, the latter estimate

holds also without the restriction xN < δ1
2 . Combining this fact with (3.13),

we obtain that

v(x, t) ≥ κ1ε1xN

(∫
Q(δ1,δ2)

vp d(x, t)

) 1
p

for all x ∈ B+ and t ∈ [a + 3δ2 , a + 4δ2], so that (3.11) holds with κ :=

κ1ε1.
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For the last lemma of this section, we first recall for convenience some

notation. For e ∈ SN−1, let H(e) := {x ∈ RN : x · e = 0}, σe : B → B be

given by σe(x) := x − 2(x · e)e, and B(e) := {x ∈ B : x · e > 0}. Moreover,

for a function v : B × I → R we let ve : B × [0,∞)→ R be given by

ve(x, t) := v(x, t)− v(σe(x), t) for x ∈ B(e), t > 0.

We also put
Σ1(e) := {x ∈ ∂B(e) : x · e = 0},
Σ2(e) := {x ∈ ∂B(e) : x · e > 0}.

(3.15)

To implement the rotating plane technique for the boundary value prob-

lems considered in our main results, we need to analyze under which con-

ditions positivity of ve(·, t) in B(e) at some time t ∈ I induces positivity of

ve
′
(·, t′) in B(e′) for a slightly perturbed direction e′ at a later time t′ > t.

The following perturbation lemma is sufficient for our purposes.

Lemma 3.5. Let d, k,M > 0 be given constants and let v ∈ C2,1(B× [0, 1])

be a function satisfying the following:

(Eχ) There is a function

χ : [0,
√

1 + diam(B)2 ]→ [0,∞) with lim
ϑ→0

χ(ϑ) = 0

such that

|v(x, t)− v(y, s)|+ |∇v(x, t)−∇v(y, s)| ≤ χ(|(x, t)− (y, s)|)

for all (x, t), (y, s) ∈ B × [0, 1].

There is e ∈ SN−1 such that

(i) the function ve satisfies

vet − µ∆ve − cve ≥ 0 in B(e)× (0, 1),

∂ve

∂ν
= 0 on Σ2(e)× (0, 1),

ve = 0 on Σ1(e)× (0, 1),

ve(x, 0) ≥ 0 for all x ∈ B(e),

where the coefficient functions µ and c are in L∞(B(e) × (0, 1)) and

satisfy that

1

M
≤ µ ≤M and |c| ≤M in B(e)× (0, 1),
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(ii) sup{ve(x, 1
4) : x ∈ B(e), x · e ≥ d} ≥ k,

then there is ρ > 0, depending only on B, d, k, M, and the function χ with

ve
′
(·, 1) > 0 in B(e′) for all e′ ∈ SN−1 with |e− e′| < ρ.

Remark 3.6. The result obviously remains true if ve is replaced by −ve.
We will use this fact in the next chapter.

Proof. Let e ∈ SN−1 be such that (i) and (ii) are satisfied, and let κ > 0

and p > 0 be the constants given by Lemma 3.4 applied to a = 0, b = 1,

δ1 = d and δ2 = 1
4 . We first note that condition (Eχ) and hypothesis (ii)

imply that there exists C1 > 0, depending only on B, d, k, M, and χ, such

that

κ

(∫
Qe

(ve)p dx dt

) 1
p

≥ C1,

where Qe := {(x, t) : x ∈ B(e), x · e ≥ d, 1
4 < t < 1

2}. Then, by Lemma 3.4,

it follows that

∇ve(x, 1) · e ≥ C1 for all x ∈ Σ1(e). (3.16)

Note that

∇ve′(x, 1) = (∇ve′(x, 1) · e′)e′ for all e′ ∈ SN−1 and x ∈ H(e′).

since ve
′ ≡ 0 in H(e′). In particular |∇ve′(·, 1)| = |∇ve′(·, 1) · e′| in H(e′).

Then

|∇ve′(x, 1) · e′| = |∇ve′(x, 1)| − |∇ve(x, 1)|+ |∇ve(x, 1) · e|

≥ −|∇ve′(x, 1)−∇ve(x, 1)|+∇ve(x, 1) · e

for all e′ ∈ SN−1 and x ∈ H(e′). Then, by (Eχ) and (3.16), there is some

ρ0 > 0, depending only on B, d, k, M, and χ, such that

∇ve′(x, 1) · e′ ≥ C1

2

{
for all e′ ∈ SN−1 and x ∈ B
with |e− e′| < ρ0 and |x · e′| ≤ ρ0.

(3.17)

By Lemma 3.4, there is some η1 > 0 which only depends on B, d, k, M, and

χ, such that

ve(x, 1) ≥ η1 for x ∈ B(e) with x · e ≥ ρ0

2
.

Again by condition (Eχ), we may fix ρ ∈ (0, ρ0), depending only on B, d,

k, M and χ, such that for all e′ ∈ SN−1 with |e− e′| < ρ,

ve
′
(x, 1) ≥ η1

2
for x ∈ B(e′) with x · e′ ≥ ρ0

2
. (3.18)
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For fixed e′ ∈ SN−1 with |e− e′| < ρ, (3.17) ensures that

ve
′
(x, 1) = v(x, 1)− v(σe′(x), 1) > 0 for x ∈ B(e′) with x · e′ ≤ ρ0

2
.

Combining this with (3.18), we find that

ve
′
(x, 1) > 0 for x ∈ B(e′),

as claimed.

3.3 Main result for scalar Neumann problems

This section is devoted to the proof of Theorem 3.1. Let B denote a ball

or an annulus in RN , and let u ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) be a

classical (possibly sign changing) solution of (3.1) such that the hypothesis

(f1), (f2), (µ), (U1), and (U2) of Theorem 3.1 are fulfilled. We first note

that

ut − µ(|x|, t)∆u− c(x, t)u = f(t, |x|, 0) in B × (0,∞),

∂νu = 0 on ∂B × (0,∞)

with

c(x, t) :=


f(t, |x|, u(x, t))− f(t, |x|, 0)

u(x, t)
, if u(x, t) 6= 0,

0, if u(x, t) = 0

for x ∈ B, t > 0. By (f1) and (U2) we have c ∈ L∞(B × (0,∞)), and thus

(f2) and Lemma 2.9 imply that the functions

B × [0, 1]→ R; (x, t) 7→ u(x, τ + t), τ ≥ 1, (3.19)

and B × [0, 1] → RN ; (x, t) 7→ ∇u(x, τ + t), τ ≥ 1, are uniformly equicon-

tinuous. Hence there exists a function

χ : [0,
√

1 + diam(B)2 ]→ [0,∞) with lim
ϑ→0

χ(ϑ) = 0

such that all of the functions in (3.19) satisfy condition (Eχ) of

Lemma 3.5. Next, we set

ue(x, t) := u(x, t)− u(σe(x), t) for x ∈ B, t > 0, and e ∈ SN−1.

We wish to apply Corollary 1.6 to the sets U := ω(u) and

N := {e ∈ SN−1 | ∃ T > 0 such that ue(x, t) > 0 for all x ∈ B(e), t > T}
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With M defined as in (1.3), it is obvious that N ⊂ M. We note that the

function ue satisfies

uet − µ(|x|, t)∆ue = ce(x, t)ue in B(e)× (0,∞),

∂ue

∂ν
= 0 on Σ2(e)× (0,∞),

uei = 0 on Σ1(e)× (0,∞),

(3.20)

with Σi(e) as defined in (3.15) and

ce(x, t) :=


f(t, |x|, u(x, t))− f(t, |x|, u(σe(x), t))

ue(x, t)
, if ue(x, t) 6= 0,

0, if ue(x, t) = 0

for x ∈ B, t > 0.

By (f1) and (µ) there is M > 0 such that

‖ce‖L∞(B×(0,∞)) ≤M for all e ∈ SN−1.

and
1

M
≤ µ(|x|, t) ≤M for all x ∈ B, t > 0.

By (U1), there exists ẽ ∈ SN−1 such that uẽ(·, 0) ≥ 0, uẽ(·, 0) 6≡ 0 on

B(ẽ) and thus uẽ(x, t) > 0 in B(ẽ) × (0,∞) by Lemma 3.4, so that ẽ ∈ N .

Moreover, it easily follows from Lemmas 3.4 and 3.5 that N is a relatively

open subset of SN−1. By Corollary 1.6, it therefore only remains to prove

that z ≤ z ◦ σe in B(e) for every z ∈ ω(u) and e ∈ ∂N .

We argue by contradiction, assume there exists ê ∈ ∂N and z ∈ ω(u)

such that z 6≤ z ◦ σê in B(ê). Define

ze : B → R by ze(x) := z(x)− z(σe(x))

for e ∈ SN−1. Then there exist constants d, k > 0 such that

sup{zê(x) : x ∈ B, x · ê ≥ d} > k

We now let ρ > 0 be given by Lemma 3.5 corresponding to the choices of

d, k, M and χ made above. By continuity and since ê ∈ ∂N , there exists

e ∈ N such that

|e− ê| < ρ (3.21)

and

sup{ze(x) : x ∈ B, x · e ≥ d} > k. (3.22)
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Let (tn)n∈N ⊂ (0,∞) be a sequence with tn →∞ and u(tn, ·)→ z in L∞(B).

By (3.22), there exists n0 ∈ N such that

sup{ue(tn, x) : x ∈ B, x · e ≥ d} > k for all n ≥ n0.

Moreover, by the definition of N , there exists T > 0 such that ue(·, t) > 0

in B(e) for t ≥ T . Next, fixing n ∈ N such that tn ≥ max{T + 1
4 , tn0} and

applying Lemma 3.5 to the function

B × [0, 1]→ R, (x, t) 7→ u(x, tn −
1

4
+ t),

we find, using (3.21), that uê(x, tn + 3
4) > 0 for all x ∈ B(ê). Hence ê ∈ N

by Lemma 3.4. Since N is relatively open in SN−1, this contradicts the fact

that ê ∈ ∂N . The proof of Theorem 3.1 is thus finished.

3.4 Equations with angular derivative terms

Note that both Theorem 2.3 and Theorem 3.1 imply that all the limit profiles

z ∈ ω(u) share the same symmetry axis Rp. This is somewhat surprising,

since the symmetry axis is not fixed by any of the assumptions in the Theo-

rems. The direction of symmetry p ∈ SN−1 can not be determined without

extra hypothesis; for e ∈ SN−1 as in (U1), we can only deduce that p · e > 0.

However, if the symmetry of the equation is “altered” by an angular

derivative term, then foliated Schwarz symmetric limit profiles with respect

to different vectors are indeed a possibility, i.e., u has a varying axis of

asymptotic symmetry. We have the following result in this regard.

Theorem 3.7. Let B be a disc or annulus in R2 and u ∈ C2,1(B×(0,∞))∩
C(B × [0,∞)) be a classical solution of

ut −∆u+ d(t)uθ = f(t, |x|, u) in B × (0,∞),

u(x, 0) = u0(x) for x ∈ B,
(3.23)

with

∂νu = 0 on ∂B × (0,∞) or u = 0 on ∂B × (0,∞),

where uθ = ∂θu denotes the angular derivative, d ∈ C([0,∞)), and hy-

pothesis (f1), (f2), (U1), (U2) from Theorem 2.1 are satisfied. Then for all

z ∈ ω(u), there is some pz ∈ SN−1 such that z is foliated Schwarz symmetric

with respect to pz.
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We take B a planar domain for simplicity, but from the proof it is clear

that the result can be easily generalized to higher dimensions and more

general equations. Notice that angular and radial derivatives prevent a

direct application of the standard moving plane method, even when B is a

ball and the coefficients and nonlinearity are time- and space-independent.

Proof of Theorem 3.7. The idea of the proof is simply to transform (3.23)

into an equation with no angular derivative term. In the following we shall

use the same symbol for a function in Cartesian coordinates and its polar

coordinates version. Let v(r, θ, t) := u(r, θ +D(t), t), where

D(t) :=

∫ t

0
d(s)ds,

which exists for all t > 0 since d ∈ C([0,∞)). Then

∂tv(r, θ, t) = ∂θu(r, θ +D(t), t)∂tD(t) + ∂tu(r, θ +D(t), t)

= d(t)uθ(r, θ +D(t), t) + ut(r, θ +D(t), t)

and so, by (3.23),

vt −∆v = f(t, |x|, v) in B × (0,∞),

v(x, 0) = u0(x) in B,

with

∂νv = 0 on ∂B × (0,∞) or v = 0 on ∂B × (0,∞).

Since v is just a (time dependent) continuous rotation (in space) of u,

the claim follows from Theorem 2.3 applied to v if Dirichlet boundary con-

ditions are satisfied, or from Theorem 3.20 if v satisfies Neumann boundary

conditions.

Observe that under the general assumptions of Theorem 3.7, ω(u) might

only have one element, and therefore we can not guarantee that there exist

different axis of symmetry for different limit profiles. But from the proof

it is clear that, if d ≡ 1 for example, then u has a “varying axis of asymp-

totic symmetry” which is continuously rotating counterclockwise as the time

variable increases.



Chapter 4

Parabolic systems with

Neumann boundary

conditions

In this chapter we begin our study of the asymptotic shape of solutions

to parabolic systems. To begin with, we investigate the asymptotic symme-

tries of positive solutions of competitive parabolic systems on bounded radial

domains with Neumann boundary conditions.

Recall that B denotes a ball or an annulus in RN with N ≥ 2 and that

IB := {|x| : x ∈ B}. We have the following result.

Theorem 4.1. Let u1, u2 ∈ C2,1(B×(0,∞))∩C(B× [0,∞)) be nonnegative

functions such that u = (u1, u2) solves

(u1)t − µ1(|x|, t)∆u1 = f1(t, |x|, ui)− α1(|x|, t)u1u2 x ∈ B, t > 0,

(u2)t − µ2(|x|, t)∆u2 = f2(t, |x|, ui)− α2(|x|, t)u1u2 x ∈ B, t > 0,

∂νu1(x, t) = ∂νu2(x, t) = 0 x ∈ ∂B, t > 0,

u1(x, 0) = u0,1(x) , u2(x, 0) = u0,2(x) for all x ∈ B,

(4.1)

where ν stands for the outward normal vector and the following holds.

(h1) For i = 1, 2, the nonlinearity fi : [0,∞)×IB×[0,∞)→ R is continuous

and for any compact subset K ⊂ [0,∞) we have that

sup
r∈IB ,t>0,
v,v̄∈K,v 6=v̄

|fi(t, r, v)− fi(t, r, v̄)|
|v − v̄|

<∞,

that is, fi is Lipschitz continuous in v uniformly with respect to t and

r. Moreover fi(t, r, 0) = 0 for all r ∈ IB, t > 0, and i ∈ {1, 2}.

51
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(h2) There are constants µ∗ ≥ µ∗ > 0 such that ‖µi‖C2,1(IB×(0,∞)) ≤ µ∗ and

µi(r, t) ≥ µ∗ for all r ∈ IB, t > 0, and i ∈ {1, 2}.

(h3) There exist constants α∗ ≥ α∗ > 0 such that α∗ ≤ αi(r, t) ≤ α∗ for all

r ∈ IB, t > 0, and i ∈ {1, 2}.

(h4) The solution is uniformly bounded, that is, max
i=1,2

‖ui‖L∞(B×(0,∞)) <∞.

(h5) There is e ∈ SN−1 such that u0,1 6≡ u0,1 ◦ σe, u0,2 6≡ u0,2 ◦ σe, and

u0,1 ≥ u0,1 ◦ σe, u0,1 ≤ u0,2 ◦ σe in B(e).

Then there is some p ∈ SN−1 such that u is asymptotically foliated Schwarz

symmetric with respect to antipodal points, i.e., all elements of ω(u1) are

foliated Schwarz symmetric with respect to p, and all elements of ω(u2) are

foliated Schwarz symmetric with respect to −p.

A direct consequence of Theorem 4.1 is the following result for the nonau-

tonomous Lotka-Volterra model discussed in the introduction of the thesis.

Theorem 4.2. Let u1, u2 ∈ C2,1(B×(0,∞))∩C(B× [0,∞)) be nonnegative

functions such that u = (u1, u2) solves (1), where (2) and assumptions (h4)

and (h5) from Theorem 4.1 hold. Then there is some p ∈ SN−1 such that

all elements of ω(u1) are foliated Schwarz symmetric with respect to p, and

all elements of ω(u2) are foliated Schwarz symmetric with respect to −p.

As mentioned in the introduction of the thesis, without the assumption

(h5), we can construct solutions of a stationary problem which are not fo-

liated Schwarz symmetric. To be precise, we have the following existence

result for a class of elliptic Lotka-Volterra systems.

Theorem 4.3. Suppose that B := {x ∈ R2 : 1
2 < |x| < 1} and let k ∈ N.

For every a ≥ 16k2 there exists αk,a > 0 such that the system

−∆u1 = au1 − u2
1 − αu1u2 in B,

−∆u2 = au2 − u2
2 − αu1u2 in B,

∂νu1 = ∂νu2 = 0 on ∂B,

(4.2)

admits, for every α ≥ αk,a, a positive classical solution u = (u1, u2) such

that the angular derivatives ∂ui
∂θ of the components change sign at least k

times on every circle contained in B.

To prove our main result, Theorem 4.1, we use some of the tools of

Chapter 3 (the extension in Lemma 3.2 and the Harnack-Hopf Lemma 3.4).

However, the rotating plane method faces new complications when applied
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to systems. The main difficulties with systems appear when dealing with the

so-called semi-trivial limit profiles, that is, elements of ω(u1, u2) of the form

(z, 0) and/or (0, z). In these cases the perturbation argument within the

rotating plane method cannot be carried out as in the previous Chapters.

To overcome this obstacle, we apply a new normalization procedure and

distinguish different cases for the asymptotics of the normalized profile. We

also mention that the existence and nature of semi-trivial limit profiles are

a subject of current research, and it is often linked with the concept of

“permanence”, see e.g. [11, 18,19,37,40,41].

It is natural to ask whether similar symmetry properties are available for

other kinds of systems. Indeed, the proof of Theorem 4.1 can be adjusted

to deal with a variety of problems. We have the following three results.

The first one characterizes the asymptotic symmetry of a different kind

of competitive parabolic system known as cubic systems.

Theorem 4.4. Let u1, u2 ∈ C2,1(B×(0,∞))∩C(B× [0,∞)) be nonnegative

functions such that u = (u1, u2) solves

(u1)t −∆u1 = λ1u1 + γ1u
3
1 − α1u1u

2
2 in B × (0,∞),

(u2)t −∆u2 = λ2u2 + γ2u
3
2 − α2u

2
1u2 in B × (0,∞),

∂νu1 = ∂νu2 = 0 on ∂B × (0,∞),

u1(x, 0) = u0,1(x), u2(x, 0) = u0,2(x) for x ∈ B,

(4.3)

where λi, γi, and αi are positive constants for i = 1, 2, and assumptions (h4)

and (h5) from Theorem 4.1 hold. Then there is some p ∈ SN−1 such that

all elements of ω(u1) are foliated Schwarz symmetric with respect to p, and

all elements of ω(u2) are foliated Schwarz symmetric with respect to −p.

The elliptic counterpart of this system is being studied extensively due to

its relevance in the study of binary mixtures of Bose-Einstein condensates,

see [22].

Now we turn our attention to cooperative parabolic systems. The follow-

ing result studies the cooperative counterpart of (4.1).

Theorem 4.5. Let u1, u2 ∈ C2,1(B×(0,∞))∩C(B× [0,∞)) be nonnegative

functions such that u = (u1, u2) solves

(ui)t − µi(|x|, t)∆ui = fi(t, |x|, ui) + αi(|x|, t)u1u2, x ∈ B, t > 0

∂νui = 0, x ∈ ∂B, t > 0,

ui(x, 0) = u0,i(x), x ∈ B, i = 1, 2.

(4.4)

Suppose furthermore that assumptions (h1)-(h4) from Theorem 4.1 hold and

that
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(h5)’ there is e ∈ SN−1 such that u0,i 6≡ u0,i ◦ σe and u0,i ≥ u0,i ◦ σe in B(e)

for i = 1, 2.

Then there is some p ∈ SN−1 such that all elements of ω(u1) ∪ ω(u2) are

foliated Schwarz symmetric with respect to p.

If a stronger assumption regarding the interaction between the compo-

nents of the solution is assumed (see (A3) below), then we can also consider

sign-changing solutions and cooperative systems with more than two equa-

tions. We have the following

Theorem 4.6. Let J := {1, . . . , n} for some n ∈ N and let u = (u1, . . . , un)

with ui ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) be a solution of

(ui)t = ∆ui + Fi(t, |x|, u) in B × (0,∞),

∂νui = 0 on ∂B × (0,∞),

ui(x, 0) = u0,i(x) for all x ∈ B, i ∈ J,
(4.5)

where

max
i∈J
‖ui‖L∞(B×(0,∞)) <∞ (4.6)

and the following holds:

(A1) For each i ∈ J the function Fi : [0,∞) × IB × Rn → R; (t, r, v) 7→
Fi(t, r, v) is locally Lipschitz in v uniformly with respect to r and t,

that is, for any compact subset K ⊂ Rn there is some C(K) = C > 0

such that

sup
r∈IB , t>0,
v,v̄∈K, v 6=v̄

|Fi(t, r, v)− Fi(t, r, v̄)|
|v − v̄|

< C.

Moreover, max
i∈J

sup
r∈IB ,t>0

|Fi(t, r, 0)| <∞.

(A2) For every i, j ∈ J, i 6= j, one has that ∂Fi(t, r, u)/∂uj ≥ 0 for all

t ∈ [0,∞), r ∈ IB, and u ∈ Rn such that the derivative exists.

(A3) For each M there is a constant σ = σ(M) > 0 such that the following

holds: for every nonempty subsets I1, I2 ⊂ J with I1 ∩ I2 = ∅ and

I1
⋃
I2 = J, there are i ∈ I1 and j ∈ I2 such that ∂Fi(t, r, u)/∂uj ≥ σ

for all r ∈ IB, t ∈ [0,∞), and u ∈ Rn with |u| ≤ M, such that the

derivative exists.
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(A4) There is e ∈ SN−1 such that

u0,i 6≡ u0,i ◦ σe and u0,i(x) ≥ u0,i(σe(x))

for all x ∈ B(e) and i ∈ J.

Then there is some p ∈ SN−1 such that all elements of
n⋃
i=1

ω(ui) are foliated

Schwarz symmetric with respect to p.

Hypothesis (A2) is a cooperativity assumption and (A3) is often referred

to as irreducibility. (A3) was used for some symmetry results in [50].

The chapter is organized as follows. Section 4.1 contains an extension of

Lemma 3.4 to systems and an estimate for quotients of solutions. In Section

4.2 we detail the linearization procedure for competitive parabolic systems

and the proof of Theorem 4.1. Section 4.3 is devoted to cooperative systems

and contains the proof of Theorems 4.5 and 4.6. In Section 4.4 we detail our

study of cubic parabolic systems and prove Theorem 4.4. Finally, in Section

4.5, we prove Theorem 4.3.

Some of the results presented in this chapter were submitted for publi-

cation in [55].

4.1 Harnack-Hopf type lemma and quotient esti-

mates

For this whole chapter we assume that B has the form given in (3.3).

We start by extending Lemma 3.4 to the case of weakly coupled systems

with mixed boundary conditions.

Lemma 4.7. Let a, b ∈ R, a < b, I := (a, b), B+ := {x ∈ B : xN > 0},
J := {1, 2, . . . , n} for some n ∈ N, and w = (w1, w2, . . . , wn) with wi ∈
C2,1(B+ × I) ∩ C(B × I) be a classical solution of

(wi)t − µi∆wi =
∑
j∈J

cijwj in B◦+ × I,

∂wi
∂ν

= 0 on Σ2 × I,

wi = 0 on Σ1 × I,

wi(x, τ) ≥ 0 for all x ∈ B+, i ∈ J,

where µi, cij ∈ L∞(B+ × I) satisfy that inf
B+×I

µi > 0 and that

cij ≥ 0 on B+ × I for i 6= j. (4.7)
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Then

wi ≥ 0 in B+ × I for i ∈ J . (4.8)

Moreover, if wi(x, τ) 6≡ 0 for some i ∈ J, then

wi > 0 in B+ × I and
∂wi
∂eN

> 0 on Σ1 × I.

Furthermore, for every δ1 > 0, δ2 ∈ (0, b−a4 ], there exist κ > 0 and p > 0

depending only on δ1, δ2, B, and M such that

wi(x, t) ≥ xN κ
(∫

Q(δ1,δ2)
wpi d(x, t)

) 1
p

for all x ∈ B+, t ∈ [a + 3δ2, a + 4δ2], i ∈ J, with Q(δ1, δ2) as defined in

Theorem 3.4.

Proof. To prove (4.8), we fix λ > max
i∈J

∑
j∈J
‖cij‖L∞(B+×I) and let ε > 0. We

define

vi(x, t) := e−λtwi(x, t) + ε, for x ∈ B+, t ∈ I and i ∈ J .

Then

(vi)t − µi∆vi − (cii − λ)vi >
∑

j∈J\{i}

cijvj in B+
◦ × I,

∂vi
∂ν
≡ 0 on Σ2 × I, and

vi ≥ ε > 0 on Σ1 × I ∪ B+ × {a}.

We show that vi > 0 in B+ × I for all i ∈ J. We argue as in [51, Section 8].

Assume this is not the case and let

t̄ := sup{t ∈ [a, b) : vi > 0 in B+ × [a, t) for all i ∈ J}.

By continuity, we have t̄ > a, vi(·, t̄) ≥ 0 in B+ for all i ∈ J and vj(x̄, t̄) = 0

for some x̄ ∈ B+ and some j ∈ J . Since the domain is a half cylinder, the

Neumann boundary conditions on Σ2 imply that x̄ ∈ B+
◦ (see for example

[38, Lemma 2.8]). But then

0 ≥ (vj)t(x̄, t̄)− µi∆vi(x̄, t̄)− (cii − λ)vi(x̄, t̄) >
∑

j∈J\{i}

cijvj(x̄, t̄) ≥ 0,

a contradiction. Therefore vi > 0 in B+ × I for all i ∈ J . Since ε > 0 was

chosen arbitrarily, we conclude that (4.8) holds. Consequently, (4.7) implies

that

(wi)t − µi(x, t)∆wi − cii(x, t)wi =
∑

j∈J\{i}

cijwj ≥ 0 in B+ × I for i ∈ J.

The result now follows from Lemma 3.4.
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A key ingredient of the proof of Theorem 4.1 is the following quotient

estimate which compares the values of the components of u at different

times. Similar estimates were obtained by Húska, Poláčik, and Safonov

in [35, Corollary 3.10] (see Lemma 5.11 in Chapter 5) for positive solutions

of scalar parabolic Dirichlet problems. However, the Neumann boundary

conditions on ∂B allow to obtain a stronger result with a simpler proof. In

the following, for matters of simplicity, we sometimes omit the argument

(x, t).

Lemma 4.8. Let B be a ball or an annulus and let a function u ∈ C2,1(B×
(0,∞)) ∩ C(B × [0,∞)) be a classical solution of

ut − µ∆u− c u = 0 in B × (0,∞),

u > 0 in B × (0,∞),

∂νu = 0 on ∂B × (0,∞),

(4.9)

where the coefficients µ and c are in L∞(B × (0,∞)) and satisfy that

inf
x∈B, t>0

µ(x, t) ≥ β−1
0 ,

‖µ‖L∞(B×(0,∞)) + ‖c‖L∞(B×(0,∞)) < β0

for some β0 > 0. Then there is a constant η > 1 depending only on β0 and

B such that

1

η
≤ u(x, t)

‖u(·, τ)‖L∞(B)
≤ η for all x ∈ B, t ∈ [τ − 3, τ + 3], and τ ≥ 5.

Proof. Let ũ denote the extension of u to B̃ as defined in (3.5). Then, by

Lemma 3.2, ũ is a strong solution of

(ũ)t − µ̃∆ũ− b̃ ∂rũ = c̃ ũ in B̃ × (0,∞).

Here µ̃, b̃ ∈ L∞(B̃ × (0,∞)) are defined as in Lemma 3.2 and c̃ ∈ L∞(B̃ ×
(0,∞)) is defined by

c̃(x, t) :=

{
c(x, t), x ∈ B, t ∈ (0,∞),

c(x̂, t), x ∈ B̃ \B, t ∈ (0,∞).

Also note that inf
B×(0,∞)

µ̃ ≥ µ∗ by our assumptions on µ and the definition

of µ̃.

Now, fix τ ≥ 5. We apply Lemma 2.7 with U = B̃, D = B, p =∞, and

v = ũ. The application yields κ1 > 0 such that

inf
B×(τ−3,τ+3)

u ≥ κ1‖u(·, τ − 4)‖L∞(B), (4.10)
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since ũ coincides with u on B×(0,∞). Moreover, by the maximum principle

(see for example [38, Lemma 7.1]) and the uniform bounds on the coefficients,

there exists κ2 > κ1 independent of τ such that

‖u(·, s)‖L∞(B) ≤ κ2‖u(·, τ − 4)‖L∞(B) for all s ∈ [τ − 3, τ + 3]. (4.11)

For x ∈ B and t ∈ (τ − 3, τ + 3) we have that

u(x, t)

‖u(·, τ)‖L∞(B)
≥
κ1‖u(·, τ − 4)‖L∞(B)

‖u(·, τ)‖L∞(B)
≥ κ1

κ2
,

by (4.11) and (4.10); on the other hand,

u(x, t)

‖u(·, τ)‖L∞(B)
≤
κ2‖u(·, τ − 4)‖L∞(B)

‖u(·, τ)‖L∞(B)
≤ κ2

κ1
.

Therefore the claim follows with η = κ2
κ1

.

4.2 Neumann parabolic systems with competition

For this whole section, let u1, u2 ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) be

functions such that u = (u1, u2) solves (4.1) and such that assumptions

(h1)-(h5) from Theorem 4.1 are fulfilled.

We begin with two remarks.

Remark 4.9. Note that ui satisfies

(ui)t − µi(|x|, t)∆ui = gi(x, t), x ∈ B, t > 0,

with gi : B × (0,∞)→ R given by

gi(x, t) = fi(t, |x|, ui(x, t))− αi(|x|, t)u1(x, t)u2(x, t) for i = 1, 2.

Moreover, by (h1)-(h4), we have that inf
B×(0,∞)

µi ≥ K−1 and

‖ui‖L∞(B×(0,∞)) + ‖µi‖C1(B×(0,∞)) + ‖gi‖L∞(B×(0,∞)) < K for i = 1, 2

and for some constant K > 0. Then Lemma 2.9 implies that

‖ui‖Ca,a/2(B×[s,s+1]) < C for all s ∈ [1,∞), i = 1, 2 (4.12)

for some a ∈ (1, 2) and C > 0. In particular ui and ∇ui satisfy (2.11), the

semiorbits {ui(·, t) : t ≥ 1} are precompact in C(B) for i = 1, 2, and

lim
t→∞

inf
(z1,z2)∈ω(u)

‖u1(·, t)− z1‖L∞(B) + ‖u2(·, t)− z2‖L∞(B) = 0,
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where

ω(u) :={(z1, z2) ∈ C(B)× C(B) : there is tn →∞ as n→∞ such that

lim
n→∞

‖u1(·, tn)− z1‖L∞(B) + ‖u2(·, tn)− z2‖L∞(B) = 0}.

Moreover, the omega limit sets of u = (u1, u2) and its components are

related as follows:

ω(ui) = {zi : z = (z1, z2) ∈ ω(u)} for i = 1, 2. (4.13)

Indeed, let i ∈ {1, 2} and tn →∞ be a sequence such that ui(·, tn)→ zi
in L∞(B) as n → ∞ with zi ∈ ω(ui). Then, by compactness, we can pass

to a subsequence such that uj(·, tn) → zj in L∞(B) as n → ∞ for some

zj ∈ ω(uj) with j ∈ {1, 2}\{i}. This implies the inclusion “⊆ ” in (4.13).

Since the inclusion “⊇ ” is obvious, the claim follows.

Remark 4.10. Note that ui satisfies (4.9) with µ = µi and

c(x, t) := αi(t, |x|)u2(x, t) +


fi(t, |x|, ui(x, t))

ui(x, t)
, if ui(x, t) 6= 0,

0, if ui(x, t) = 0,

where c ∈ L∞(B × (0,∞)) by (h1), (h3), and (h4). Then, by (h2) all the

assumptions of Lemma 4.8 are satisfied.

4.2.1 Linearization of competitive systems

Next, we slightly change some notation used in the previous Chapters in

order to deal with competitive systems of two equations. For e ∈ SN−1,

a radial domain B ⊂ RN , I ⊂ R, and a pair v = (v1, v2) of functions

vi : B × I → R, i = 1, 2, we set

ve1(x, t) := v1(x, t)− v1(σe(x), t)

ve2(x, t) := v2(σe(x), t)− v2(x, t)
x ∈ B, t > 0. (4.14)

The same notation is used if the functions do not depend on time. More

precisely, for a pair z = (z1, z2) of functions zi : B → R, i = 1, 2, we set

ze1(x) := z1(x)− z1(σe(x))

ze2(x) := z2(σe(x))− z2(x)
x ∈ B, t > 0. (4.15)

Since u = (u1, u2) solves (4.1), for fixed e ∈ SN−1 we have

(ue1)t − µ1∆ue1 − ĉe1(x, t)ue1 =α1[û1û2 − u1u2] = α1[u1u
e
2 − û2u

e
1],

(ue2)t − µ2∆ue2 − ĉe2(x, t)ue2 =α2[u1u2 − û1û2] = α2[u2u
e
1 − û1u

e
2]
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in B × (0,∞) with ûi(x, t) := ui(σe(x), t)) and

ĉei (x, t) :=


fi(t, |x|, ui(x, t))− fi(t, |x|, ui(σe(x), t))

ui(x, t)− ui(σe(x), t)
, if uei (x, t) 6= 0,

0, if uei (x, t) = 0

for x ∈ B, t > 0, i = 1, 2. Setting

ce1(x, t) := ĉe1(x, t))− α1(|x|, t)u2(σe(x), t)

ce2(x, t) := ĉe2(x, t))− α2(|x|, t)u1(σe(x), t)
x ∈ B, t > 0,

we thus obtain the system

(ue1)t − µ1∆ue1 − ce1ue1 = α1u1u
e
2

(ue2)t − µ2∆ue2 − ce2ue2 = α2u2u
e
1

in B(e)× (0,∞) (4.16)

together with the boundary conditions

∂uei
∂ν

= 0 on Σ2(e)× (0,∞), uei = 0 on Σ1(e)× (0,∞), (4.17)

where the sets Σi(e) are given as in (3.15) for i = 1, 2. As a consequence of

(h1),(h3), and (h4), we have

max
i=1,2

‖cei‖L∞(B×(0,∞)) ≤M for all e ∈ SN−1 (4.18)

for some constant M > 0. Moreover, by making M larger if necessary and

using (h2), we may also assume that

1

M
≤ µi(|x|, t) ≤M for x ∈ B, t > 0 and i = 1, 2. (4.19)

We note that, by (h3) and since u1, u2 ≥ 0 in B × (0,∞), system (4.16) is

a weakly coupled linear parabolic cooperative system. For these systems a

variety of estimates are available (see for example [51] and [50]). In par-

ticular, Lemma 4.7 can be applied to study the boundary value problem

(4.16), (4.17).

See also Remark 4.17 iv) below for a method to linearize more general

competitive systems.

4.2.2 Main result for Neumann competitive systems

Let

N := {e ∈ SN−1 : uei > 0 in B(e)× [T,∞) for i = 1, 2 and some T > 0}.

We have the following two Lemmas which we prove at the end of this

subsection.
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Lemma 4.11. The set N is relatively open in SN−1.

Lemma 4.12. For every e ∈ ∂N and every z ∈ ω(u) we have ze1 ≡ ze2 ≡ 0

in B(e).

Then we can proceed to the

Proof of Theorem 4.1. Define

U := ω(u1) ∪ −ω(u2) = {z1,−z2 : z ∈ ω(u)} (4.20)

and

M := {e ∈ SN−1 : ze ≥ 0 in B(e) for all z ∈ U}.

Note that the last equality in (4.20) is a consequence of (4.13). Then we

have that N ⊂M. Moreover, for e ∈ SN−1 as in (h5), we have

uei (·, 0) ≥ 0, uei (·, 0) 6≡ 0 in B(e) for i = 1, 2.

Lemma 4.7 then implies that uei > 0 on B(e) × (0,∞) for i = 1, 2, so

that e ∈ N and thus N is nonempty. Moreover N is a relatively open subset

of SN−1 by Lemma 4.11 and, by Lemma 4.12, z ≡ z ◦ σe for all z ∈ U and

e ∈ ∂N . The result now follows from Corollary 1.6.

Proof of Lemma 4.11. Let e ∈ N . Then (ue1, u
e
2) is a solution of (4.16), and

there is T > 0 such that ue1 and ue2 are positive in B(e)× (T,∞). Thus

(ue1)t − µ1∆ue1 − ce1ue1 = α1u1u
e
2 ≥ 0

(ue2)t − µ2∆ue2 − ce2ue2 = α2u2u
e
1 ≥ 0

in B(e)× [T,∞),

since α1 and α2 are nonnegative by hypothesis (h3). By (4.12), the functions

B × [0, 1]→ R, (x, t) 7→ ui(x, T + t), i = 1, 2,

satisfy the assumptions of Lemma 3.5. Therefore, by Remark 3.6, we find

that there exists ρ > 0 such that ue
′
i (·, T +1) > 0 in B(e′) for e′ ∈ SN−1 with

|e′ − e| < ρ. Hence, by Lemma 4.7, e′ ∈ N for e′ ∈ SN−1 with |e′ − e| < ρ,

and thus N is open.

Proof of Lemma 4.12. Let z = (z1, z2) ∈ ω(u), and consider an increasing

sequence tn → ∞ with t1 > 6 and such that ui(·, tn) → zi uniformly in B

for i = 1, 2. We will only show that ze2 ≡ 0 in B(e) for all e ∈ ∂N , since the

same argument shows that ze1 ≡ 0 in B(e) for all e ∈ ∂N . By (4.12) there
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exists a function χ : [0,
√

1 + diam(B)2 ] → [0,∞) with lim
ϑ→0

χ(ϑ) = 0 such

that all the functions

B × [0, 1]→ R; (x, t) 7→ u2(x, τ + t), τ ≥ 1, (4.21)

satisfy the equicontinuity condition (Eχ) of Lemma 3.5. Arguing by con-

tradiction, we now assume that zê2 6≡ 0 in B(ê) for some ê ∈ ∂N . By the

equicontinuity of the functions in (4.21), there are ζ ∈ (0, 1
4), a nonempty

open subset Ω ⊂⊂ B(ê), and k1 > 0 such that, after passing to a subse-

quence,

uê2 ≥ k1 on Ω× [tn − ζ, tn + ζ] for all n ∈ N. (4.22)

We now apply a normalization procedure for u1, since we cannot exclude

the possibility that u1(·, tn)→ 0 as n→∞. Define, for n ∈ N,

In := [tn − 2, tn + 2] ⊂ R, βn := ‖u1(·, tn)‖L∞(B)

and the functions

vn : B × In → R, vn(x, t) =
u1(x, t)

βn
.

By Lemma 4.8 and Remark 4.10, there exists η > 1 such that

1

η
≤ vn ≤ η on B × In for all n ∈ N. (4.23)

Moreover, we have that

‖vn‖C1+γ,(1+γ)/2(B×[s,s+1]) < L for all s ∈ [tn − 1, tn + 1], n ∈ N

and for some γ ∈ (0, 1) and L > 0; that is,

sup
x,x̄∈B, t,t̄∈[s,s+1],
x 6=x̄, t 6=t̄, s∈[−1,1]

|vn(x, tn + t)− vn(x̄, tn + t̄)|
|x− x̄|γ + |t− t̄|

γ
2

< L, (4.24)

and

sup
x,x̄∈B, t,t̄∈[s,s+1],
x 6=x̄, t 6=t̄, s∈[−1,1]

|∇vn(x, tn + t)−∇vn(x̄, tn + t̄)|
|x− x̄|γ + |t− t̄|

γ
2

< L

for all n ∈ N. This follows from Lemma 2.9 and the fact that vn satisfies

(vn)t − µ1∆vn = (c− α1u2)vn in B × In,
∂νvn = 0 in ∂B × In
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with c ∈ L∞(B × (0,∞)) given by

c(x, t) :=


f1(t, |x|, u1(x, t))

u1(x, t)
, if u1(x, t) 6= 0,

0, if u1(x, t) = 0,

for x ∈ B and t > 0.

Then, by (4.24) and by adjusting the function χ above, we may also

assume that all of the functions

B × [0, 1]→ R; (x, t) 7→ vn(x, τ + t), τ ∈ [tn − 1, tn + 1], n ∈ N,

satisfy the equicontinuity condition (Eχ) of Lemma 3.5.

For e ∈ SN−1 and n ∈ N we also consider

ven : B × In → R, ven(x, t) := vn(x, t)− vn(σe(x), t),

and we note that

(ven)t − µ1∆ven − ce1ven = α1vnu
e
2 in B(e)× In,

(ue2)t − µ2∆ue2 − ce2ue2 = α2βnu2v
e
n in B(e)× In,

∂νv
e
n = ∂νu

e
2 = 0 on Σ2(e)× In,

ven(x, t) = ue2(x, t) = 0 on Σ1(e)× In

(4.25)

with Σi(e) as defined in (3.15).

Set

Qn := B(ê)× [tn − ζ , tn + ζ] for n ∈ N,

with ζ as in (4.22). We now distinguish two cases.

Case 1: lim sup
n→∞

‖vên‖L∞(Qn) > 0. (4.26)

In this case, by (4.24), there are d ∈ (0, 1), k2 > 0, and t∗ ∈ [−ζ, ζ] such

that, after passing to a subsequence,

sup{vên(x, tn + t∗) : x ∈ B(ê), x · ê ≥ d} ≥ k2 for n ∈ N.

Without loss, we may assume that d < min{x · ê : x ∈ Ω}, so that also

sup{uê2(x, tn + t∗) : x ∈ B(ê), x · ê ≥ d} ≥ k1 for n ∈ N

by (4.22). Let M be as in (4.18), (4.19), k := 1
2 min{k1, k2}, and let ρ > 0

be the constant given by Lemma 3.5 for the choices of M, d, k, and χ made
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in this proof. Since ê ∈ ∂N , there exists e ∈ N such that |e − ê| < ρ
2 ,

x1, x2 ∈ B(e) and, by equicontinuity,

sup{ven(x, tn + t∗) : x ∈ B(e), x · e ≥ d} ≥ k,
sup{ue2(x, tn + t∗) : x ∈ B(e), x · e ≥ d} ≥ k

for all n ∈ N. Since e ∈ N we can fix n ∈ N such that

ven(x, tn + t∗ − 1

4
) ≥ 0, ue2(x, tn + t∗ − 1

4
) ≥ 0, for all x ∈ B(e).

Then, applying Lemma 3.5 to the functions

B× [0, 1]→ R; (x, t) 7→ u2(x, tn+ t∗− 1

4
+ t), (x, t) 7→ vn(x, tn+ t∗− 1

4
+ t),

we conclude that

uē2(·, tn + t∗ +
3

4
) > 0 and vēn(·, tn + t∗ +

3

4
) > 0 in B(ē)

for all ē ∈ SN−1 with |ē − e| < ρ, and thus in particular for ē = ê. But

this implies uêi (·, tn + t∗ + 3
4) > 0 in B(ê) for i = 1, 2, and thus ê ∈ N by

Lemma 4.7. This contradicts the hypothesis that ê ∈ ∂N , since N is open

by Lemma 4.11.

Case 2: lim
n→∞

‖vên‖L∞(Qn) = 0. (4.27)

In this case let

Q := B(ê)× (−ζ, ζ)

and fix a nonnegative function ϕ ∈ C∞c (Q) with ϕ ≡ 1 on Ω × (− ζ
2 ,

ζ
2).

Moreover, let

ϕn ∈ C∞c (Qn) be given by ϕn(x, t) := ϕ(x, tn + t), n ∈ N.

Setting (uê2)+ := max{uê2, 0} and (uê2)− := −min{uê2, 0}, we find by (h3),

(4.22), and (4.23) that, for n ∈ N,

An :=

∫
Qn

α1vnu
ê
2ϕnd(x, t) =

∫
Qn

α1vn[(uê2)+ − (uê2)−]ϕnd(x, t)

≥ α∗
η

∫
Qn

(uê2)+ϕnd(x, t)− α∗η ‖(uê2)−‖L∞(Qn) ‖ϕ‖L1(Q),

≥ α∗
η
k1|Ω|ζ − α∗η ‖(uê2)−‖L∞(Qn) ‖ϕ‖L1(Q), (4.28)
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where the last term on the right hand side goes to zero as n → ∞ because

ê ∈ ∂N . Hence we have

lim inf
n→∞

An > 0.

On the other hand, integrating by parts, we have by (4.25) that

An =

∫
Qn

[(vên)t − µ1∆vên − cê1vên]ϕnd(x, t)

= −
∫
Qn

[vên(ϕn)t + vên∆(µ1ϕn) + cê1v
ê
nϕn]d(x, t)

≤ ‖vên‖L∞(Qn)

∫
Q

(
|(ϕ)t|+ |∆(µ1(x, tn + t)ϕ)|+Mϕ

)
d(x, t) (4.29)

for n ∈ N. Invoking (h2) and (4.27), we conclude that

lim sup
n→∞

An ≤ 0.

So we have obtained a contradiction again, and thus the claim follows.

Remark 4.13. At first glance, the estimates (4.28),(4.29) might appear as

purely technical elements in the proof. They have however a deeper meaning:

these estimates imply that the symmetry of each component ui is asymptot-

ically entangled or that the symmetry of the components is synchronizing as

time goes forward. We will see this entanglement effect in more detail in the

following section (see Remark 4.17 below), but as a first remark, note that

if the competition coefficients αi were zero, then we have a decoupled system

and each of the components of the solution is still asymptotically foliated

Schwarz symmetric (by Theorem 3.1), but not necessarily with respect to

antipodal points.

4.3 Cooperative parabolic systems

Proof of Theorem 4.5. Let u1, u2 ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) be

functions such that u = (u1, u2) solves (4.4), and suppose that (h1)-(h4)

and (h5)′ in the statement of the theorem are satisfied. The proof is almost

exactly the same as the one of Theorem 4.1 with only two changes. The

first change we need to make concerns the definitions of ve2 and ze2 in (4.14)

and (4.15). More precisely, we now set vei (x, t) = vi(x, t) − vi(σe(x), t) and

zei (x) = zi(x) − zi(σe(x)) for i = 1, 2. With this change, we again arrive at

the linearized system (4.16). Considering now the sets

U := ω(u1) ∪ ω(u2) = {z1, z2 : z ∈ ω(u)}
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in place of (4.20) and

N := {e ∈ SN−1 : ∃ T > 0 s.t. uei > 0 in B(e)× [T,∞) for i = 1, 2},

we may now validate the assumptions of Corollary 1.6 in exactly the same

way as in Subsection 4.2.2. Hence the proof is complete.

Remark 4.14. (i) Note that both Theorem 4.1 and Theorem 4.5 assume

that the components ui are nonnegative, and this assumption is essen-

tial for the cooperativity of the linearized system (4.16). Without

the sign restriction, systems (4.1) and (4.4) arise from each other by

replacing ui by −ui for i = 1, 2 and adjusting f accordingly.

(ii) Our method breaks down if the coupling term has different signs in

the components, as e.g. in a predator-prey type system

(u1)t − µ1∆u1 = f1(t, |x|, u1) + α1u1u2

(u2)t − µ2∆u2 = f2(t, |x|, u2)− α2u1u2

in B × (0,∞). (4.30)

In this case, there seems to be no way to derive a cooperative linearized

system of the type (4.16) for difference functions related to hyperplane

reflections. The asymptotic shape of solutions for this system (satisfy-

ing Dirichlet or Neumann boundary conditions) remains an interesting

open problem. In Chapter 5 we show a partial result in this direction

regarding semi-trivial limit profiles (see Theorems 5.2 and 5.4).

4.3.1 Irreducible cooperative systems of n-equations

In this subsection we prove Theorem 4.6 following the techniques used in

the proof of Theorem 4.1. Let us set a framework for the parabolic rotating

plane method in this setting.

Let g : B×(0,∞)→ R be given by g(x, t) := F (t, |x|, u(x, t)). Note that,

by assumption (A1) and (4.6), we have that ‖g‖L∞(B×(0,∞)) <∞. Then, by

Lemma 2.9,

‖ui‖Ca,a/2(B×[s,s+1]) ≤ C for all s ≥ 1, j ∈ J, (4.31)

and for some constants a ∈ (1, 2) and C > 0. Moreover

lim
t→∞

inf
z∈ω(u)

n∑
i=1

‖ui(·, t)− zi‖L∞(B) = 0. (4.32)

For e ∈ SN−1, recall the sets Σ1(e) and Σ2(e) defined in (3.15) and let

uei (x, t) := ui(x, t) − ui(σe(x), t), for all x ∈ B(e), t > 0, and i ∈ J. Then
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we can use the Hadamard formulas (as in [50]) to get the following weakly

coupled linear system

(uei )t −∆uei =
N∑
j=1

ceij(x, t)u
e
j in B(e)× (0,∞),

∂uei
∂ν

= 0 on Σ2(e)× (0,∞),

uei = 0 on Σ1(e)× (0,∞),

(4.33)

for all i ∈ J , where

ceij(x, t) :=

∫ 1

0
∂ujFi(t, |x|, u1(x, t), . . . , uj−1(x, t), suj(x, t) (4.34)

+ (1− s)uj(σe(x), t), uj+1(σe(x), t), . . . , un(σe(x), t))ds,

if ue(x, t) 6= 0 and ceij(x, t) := 0 if ue(x, t) 6= 0, for x ∈ B(e) and t > 0.

Note that by (A1)-(A2) these coefficients are defined almost everywhere

and

ceij ≥ 0 for all i, j ∈ J with i 6= j. (4.35)

Further, by (A1) and (4.6), there is M ≥ 1 such that

‖ceij‖L∞(B×(0,∞)) < M for all i, j ∈ J. (4.36)

Now, for this section let

N := {e ∈ SN−1 : uei > 0 in B(e)× [T,∞) for i ∈ J and some T > 0}.
(4.37)

We now prove the analog of Lemmas 4.11 and 4.12.

Lemma 4.15. The set N is relatively open in SN−1.

Proof of Lemma 4.11. Let e ∈ N . Then, by (4.33), (4.35), and (4.37) there

is T > 0 such that

(uei )t −∆uei − ceiiuei ≥ 0 in B(e)× [T,∞),

∂uei
∂ν

= 0 on Σ2(e)× [T,∞),

uei = 0 on Σ1(e)× [T,∞).

By (4.31) the functions

B × [0, 1]→ R; (x, t) 7→ ui(x, T + t), i = 1, 2
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satisfy the equicontinuity condition (Eχ) from Lemma 3.5 and then, by

Lemma 3.5, there exists ρ > 0 such that ue
′
i (·, T + 1) > 0 in B(e′) for all

e′ ∈ SN−1 with |e′ − e| < ρ and i ∈ J. Hence, by Lemma 4.7, e′ ∈ N for

e′ ∈ SN−1 with |e′ − e| < ρ, and thus N is open.

Lemma 4.16. For every e ∈ ∂N and every z ∈ ω(u) we have zei ≡ 0 in

B(e) for i ∈ J .

Proof. Let e ∈ ∂N , z ∈ ω(u), and tn →∞ a sequence such that uei (·, tn)→
zei uniformly as n→∞ for all i ∈ J. We argue by contradiction and consider

two cases.

Case 1: Assume that zei 6≡ 0 in B(e) for all i ∈ J. In this case, by (4.31)

and (4.32), there are k > 0, d > 0, and ε > 0 such that, passing to a

subsequence,

sup{ue′i (x, tn) : x ∈ B(e′), x · e′ ≥ d} ≥ k for all n ∈ N

and for all e′ ∈ SN−1 with |e− e′| < ε.

By (4.31) there exists a function

χ : [0,

√
1 + diam(B)2 ]→ [0,∞) with lim

ϑ→0
χ(ϑ) = 0

such that all of the functions

B × [0, 1]→ R; (x, t) 7→ ui(x, tn + t− 1

4
) for n ∈ N, i ∈ J,

satisfy the equicontinuity condition (Eχ) of Lemma 3.5. Let M > 0 be as

in (4.36). Let ρ > 0 be the constant given by Lemma 3.5 for these choices

of d, k, M, and χ. Take ê ∈ N such that |ê− e| < 1
2 min{ρ, ε}. Since ê ∈ N ,

we may find n̄ ∈ N such that

uêi > 0 in B(ê)× [tn̄ −
1

4
,∞) for all i ∈ J.

Then applying Lemma 3.5 to the functions

B × [0, 1]→ R; (x, t) 7→ uêi (x, tn̄ + t− 1

4
) for i ∈ J,

we conclude that

uēi (·, tn̄ +
3

4
) > 0 in B(ē) for all i ∈ J and all ē ∈ SN−1 with |ē− e′| < ρ.

Thus, in particular this holds for ē = e. But this implies uei (·, T + 3
4) > 0

in B(e) for all i ∈ J. Therefore e ∈ N by Lemma 4.7. This contradicts the

hypothesis that e ∈ ∂N , since N is open by Lemma 4.15.
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Case 2: Assume that

I1 := {i ∈ J : zei ≡ 0} 6= ∅,
I2 := {i ∈ J : zei 6≡ 0} 6= ∅.

In this case, by (4.6) and hypothesis (A3), we can assume without loss of

generality that ze1 ≡ 0, ze2 6≡ 0, and that

inf
B(e)×(0,∞)

ce12 ≥ σ for some σ > 0. (4.38)

Then there is tn →∞ such that uei (·, tn)→ zei for all i ∈ J and by equiconti-

nuity there are k, ζ > 0 and a nonempty open subset Ω ⊂⊂ B(e) such that,

passing to a subsequence,

ue2(x, t) > k in Ω× [tn − 2ζ, tn] for all n ∈ N. (4.39)

Now, by [50, Lemma 3.6] applied with D = Ω and U = B(e), there are

positive constants κ, κ1, and p such that

inf
x∈Ω

ue1(x, tn) ≥ κ[(ue1)+]p,Ω×(tn−2ζ,tn−ζ) − κ1 max
j∈J

sup
∂P (B(e)×(tn−3ζ,tn+ζ))

(uej)
−

for all n ∈ N. Then, since e ∈ ∂N , this implies that

lim inf
n→∞

[ue1]p,Ω×(tn−2ζ,tn−ζ) ≤ κ
−1 lim

n→∞
inf
x∈Ω

ue1(x, tn) = 0,

since ze1 ≡ 0 by assumption. But this implies, by (4.31), that

lim inf
n→∞

‖ue1‖L∞(Ω×(tn−2ζ , tn−ζ)) = 0. (4.40)

Let ϕ ∈ C∞c (B(e) × (0, ζ)) be a nonnegative function such that ϕ 6≡ 0

and

supp(ϕ) ⊂ Q := Ω×
(

1

3
ζ ,

2

3
ζ

)
.

In particular

C1 := ‖ϕ‖L1(B(e)×(0,ζ)) = ‖ϕ‖L1(Q) > 0. (4.41)

Let

Qn := Ω× (tn − 2ζ, tn − ζ) for n ∈ N
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and ϕn ∈ C∞c (Qn) given by ϕn(x, t) := ϕ(x, t − tn + 2ζ) for n ∈ N. Then,

by (4.36), (4.38), (4.39), and (4.41)

An :=

∫
Qn

n∑
j=2

ce1j(x, t)u
e
jϕnd(x, t) =

∫
Qn

n∑
j=2

ce1j(x, t)[(u
e
j)

+ − (uej)
−]ϕnd(x, t)

≥ σkC1 −MC1

n∑
j=2

‖(uej)−‖L∞(Qn) (4.42)

for all n ∈ N.
On the other hand, using (4.33) and integration by parts, we get that

An =

∫
Qn

ue1[−(ϕn)t −∆ϕn − ce11ϕn]d(x, t)

≤
∫
Q
|ϕt|+ |∆ϕ|+M |ϕ|d(x, t)‖ue1‖L∞(Qn) = C2‖ue1‖L∞(Qn) (4.43)

for all n ∈ N, where C2 :=
∫
Q |ϕt|+ |∆ϕ|+M |ϕ|d(x, t) > 0.

Since e ∈ ∂N ,

lim
n→∞

‖(uej)−‖L∞(Qn) = 0 for all j ∈ J,

and thus

0 <
σkC1

C2
≤ lim inf

n→∞
‖ue1‖L∞(Ωn) = 0

by (4.42), (4.43), and (4.40). This is again a contradiction. Therefore we

must have that zi ≡ 0 for all i ∈ J. Since z ∈ ω(u) and e ∈ ∂N were chosen

arbitrarily, this concludes the proof of the Lemma.

Proof of Theorem 4.6. Let N be as in (4.37) and let M be as in (1.3) with

U = {zi : z ∈ ω(u)} =
⋃n
i=1 ω(ui), where this last equality follows by

compactness as in (4.13). We obviously have N ⊂ M. Moreover, for e ∈
SN−1 as in (A4), we have

uei (·, 0) ≥ 0, uei (·, 0) 6≡ 0 on B(e) for all i ∈ J ,

Lemma 4.7 then implies that uei > 0 on B(e) × (0,∞) for i = 1, 2, so that

e ∈ N and thus N is nonempty. Moreover N is a relatively open subset of

SN−1 by Lemma 4.15 and, by Lemma 4.16, z ≡ z ◦ σe for all z ∈ U and

e ∈ ∂N . The result now follows from Corollary 1.6.

Remark 4.17. (i) The irreducibility condition (A3) makes the proof sim-

pler since no normalization argument is necessary. However, the al-

lowance of more than two equations requires a Harnack inequality for

systems [50, Lemma 3.6].
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(ii) The cooperative system (4.4) is not irreducible.

(iii) The “symmetry entanglement” or “symmetry synchronization” dis-

cussed in Remark 4.13 is easier to understand under the irreducibility

assumption (A3). For instance, let M as in the proof of Theorem 4.6

and let tn be a sequence of times such that tn → ∞. Then, for every

e ∈M we can infer from the proof of Lemma 4.16 the equivalence

lim
n→∞

‖uei (·, tn)‖L∞(B(e)) = 0 ⇐⇒ lim
n→∞

‖uej(·, tn)‖L∞(B(e)) = 0.

for some i ∈ J for all j ∈ J

Actually, this statement holds for all e ∈ SN−1, since SN−1 =M∪−M
by Corollary 1.4 and Theorem 4.6. Recall that a semitrivial limit pro-

file is an element z ∈ ω(u) where zi ≡ 0 for some i ∈ {1, . . . , n}. Then,

the equivalence from above implies an interesting further symmetry

characterization of semitrivial limit profiles: the nonzero components

must be radial functions. We will prove in the next chapter (see The-

orems 5.2, 5.4, and 5.5) that this is also the case for other parabolic

systems with Dirichlet boundary conditions without any irreducibility

assumption.

(iv) Consider J = {1, 2} and assume that the system (4.5) satisfies (A1)

and that instead of (A2) we have that

(A2)’ For every i, j ∈ J, i 6= j, it follows that ∂Fi(t, r, u)/∂uj ≤ 0 for

all t ∈ [0,∞), r ∈ IB, and u ∈ Rn such that the derivative exists.

Then (4.5) is a competitive parabolic system. In this case we can also

use the Hadamard formulas (4.34) to obtain a weakly coupled system

as in (4.33) for the difference function (ue1, u
e
2) as defined in (4.14) for

e ∈ SN−1. Therefore we can argue as in Theorem 4.6 if we also assume

that

(A3)’ For each M there is a constant σ = σ(M) > 0 such that

∂Fi(t, r, u)/∂uj ≤ −σ for all i, j = 1, 2, i 6= j, r ∈ IB, t ∈ [0,∞),

and u ∈ Rn with |u| ≤M such that the derivative exists.

(A4)’ There is some e ∈ SN−1 such that u0,i 6≡ u0,i ◦ σe for i = 1, 2

and u0,1(x) ≥ u0,1(σe(x)), u0,2(x) ≤ u0,2(σe(x)) for all x ∈ B(e).

However if the system does not satisfy (A3)’, as for example (4.1) or

(4.3), then a normalization argument as in Lemma 4.12 is needed,

and further assumptions have to be made to successfully apply the

normalization.
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4.4 Cubic parabolic systems

We now proceed to the proof of Theorem 4.4. For this section, let u1, u2 ∈
C2,1(B × (0,∞)) ∩ C(B × [0,∞)) be nonnegative functions such that u =

(u1, u2) solves (4.3) where λi, γi, and αi are positive constants for i = 1, 2.

Further assume that (h4) and (h5) from Theorem 4.1 hold.

The proof of Theorem 4.4 follows closely the proof of Theorem 4.1 ex-

cept in two steps: the estimate (4.28) in that proof and the linearization

procedure.

4.4.1 Linearization of cubic parabolic systems

For the linearization, let e ∈ SN−1 and let uei : B(e)×(0,∞)→ R for i = 1, 2

be given by

ue1(x, t) := u1(x, t)− u1(σe(x), t)

ue2(x, t) := u2(σe(x), t)− u2(x, t)
x ∈ B, t > 0.

To simplify the notation we write ûi as a shortcut for the function

B × (0,∞)→ R ; (x, t) 7→ ui(σe(x), t) for i = 1, 2,

and omit the arguments (x, t). Then we have that ue1 satisfies that

(ue1)t −∆ue1 = λ1u1 + γ1u
3
1 − α1u1u

2
2 − (λ1û1 + γ1û

3
1 − α1û1û

2
2)

= λ1u
e
1 + γ1(u2

1 + u1û1 + û2
1)ue1 − α1u1u

2
2 + α1û1û

2
2 + α1u1û

2
2 − α1u1û

2
2

= (λ1 + γ1(u2
1 + u1û1 + û2

1)− α1û
2
2)ue1 + α1u1(û2

2 − u2
2)

= (λ1 + γ1(u2
1 + u1û1 + û2

1)− α1û
2
2)ue1 + α1u1(û2 + u2)ue2

in B(e)×(0,∞), and ue2 satisfies a similar equation. Therefore, we have that

(ue1)t − µ1∆ue1 − ce1ue1 = ae1u
e
2 in B(e)× (0,∞),

(ue2)t − µ2∆ue2 − ce2ue2 = ae2u
e
1 in B(e)× (0,∞),

∂ue1
∂ν

=
∂ue2
∂ν

= 0 on Σ2(e)× (0,∞),

ue1 = ue2 = 0 on Σ1(e)× (0,∞),

(4.44)

where the sets Σi(e) are given as in (3.15) and the coefficients cei , ai ∈
L∞(B × (0,∞)) are given by

cei (x, t) := λi + γi[u
2
i + uiui(σe(x), t) + u2

i (σe(x), t)]− αiu2
j (σe(x), t),

aei (x, t) := αiui[uj + uj(σe(x), t)] ≥ 0,
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for all i, j = 1, 2, i 6= j.

Arguing as in Remark 4.9 using

gi(x, t) := λiui(x, t) + γi(ui(x, t))
3 − αiui(x, t)(uj(x, t))2

for i = 1, 2, i 6= j, we have that

lim
t→∞

inf
(z1,z2)∈ω(u)

‖u1(·, t)− z1‖L∞(B) + ‖u2(·, t)− z2‖L∞(B) = 0.

and that

‖ui‖Ca,a/2(B×[s,s+1]) < C for all s ∈ [1,∞), i = 1, 2 (4.45)

for some a ∈ (1, 2) and C > 0.

4.4.2 Main result for cubic systems

In this subsection we use the same notation employed in Subsection 4.2.2

to denote the analog set with respect to a solution (u1, u2) of (4.3). This

should cause no confusion. Let

N := {e ∈ SN−1 : uei > 0 in B(e)× [T,∞) for i = 1, 2 and some T > 0}.
(4.46)

Lemma 4.18. The set N is relatively open in SN−1.

Proof. The result follows in exactly the same way as in the proof of Lemma

4.11.

Let e ∈ SN−1. We define the functions zei : B(e)→ R for i = 1, 2 by

ze1(x) := z1(x)− z1(σe(x))

ze2(x) := z2(σe(x))− z2(x)
x ∈ B, t > 0.

Then we have the following

Lemma 4.19. For every e ∈ ∂N and every z ∈ ω(u) we have ze1 ≡ ze2 ≡ 0

in B(e).

Proof. Let z = (z1, z2) ∈ ω(u), and consider an increasing sequence tn →∞
with t1 > 6 and such that ui(·, tn) → zi uniformly in B for i = 1, 2. We

only show that ze2 ≡ 0 in B(e) for all e ∈ ∂N , since an analogous argument

shows that ze1 ≡ 0 in B(e) for all e ∈ ∂N . By (4.45) there exists a function
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χ : [0,
√

1 + diam(B)2 ]→ [0,∞) with lim
ϑ→0

χ(ϑ) = 0 and such that all of the

functions

B × [0, 1]→ R; (x, t) 7→ u2(x, τ + t), τ ≥ 1, (4.47)

satisfy the equicontinuity condition (Eχ) of Lemma 3.5. Arguing by con-

tradiction, we now assume that zê2 6≡ 0 in B(ê) for some ê ∈ ∂N . By the

equicontinuity of the functions in (4.47), there exists ζ ∈ (0, 1
4), a nonempty

open subset Ω ⊂⊂ B(ê) and k1 > 0 such that, after passing to a subsequence,

uê2 ≥ k1 on Ω× [tn − ζ, tn + ζ] for all n ∈ N. (4.48)

We now apply a normalization procedure for u1. Define, for n ∈ N,

In := [tn − 2, tn + 2] ⊂ R, βn := ‖u1(·, tn)‖L∞(B)

and the functions

vn : B × In → R, vn(x, t) :=
u1(x, t)

βn
.

Note that u1 satisfies (4.9) with µ ≡ µ1 and

c := λ1 + γ1u
2
1 − α1u

2
2 ∈ L∞(B × (0,∞)). (4.49)

Therefore, by Lemma 4.8, there is η > 1 such that

1

η
≤ vn ≤ η in B × In for all n ∈ N. (4.50)

By (4.49), (4.50), and the fact that vn satisfies

(vn)t − µ1∆vn = c vn in B × In,
∂νvn = 0 on ∂B × In

for all n ∈ N, we have that Lemma 2.9 implies

‖vn‖C1+γ,(1+γ)/2(B×[s,s+1]) < L for all s ∈ [tn − 1, tn + 1], n ∈ N,

and for some γ ∈ (0, 1) and L > 0.

As a consequence, by adjusting the function χ above, we may also assume

that all of the functions

B × [0, 1]→ R; (x, t) 7→ vn(x, s+ t) for s ∈ [tn − 1, tn + 1], n ∈ N,

satisfy the equicontinuity condition (Eχ) of Lemma 3.5.
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For e ∈ SN−1 and n ∈ N we also consider

ven : B × In → R, ven(x, t) := vn(x, t)− vn(σe(x), t),

and we note that

(ven)t − µ1∆ven − ce1ven = β−1
n ae1u

e
2 in B(e)× (0,∞),

(ue2)t − µ2∆ue2 − ce2ue2 = βna
e
2v
e
n in B(e)× (0,∞),

∂νv
e
n = ∂νu

e
2 = 0 on Σ2(e)× In,

ven(x, t) = ue2(x, t) = 0 on Σ1(e)× In

(4.51)

with Σi(e) as defined in (3.15), where

β−1
n ae1(x, t) = α1vn[u2 + u2(σe(x), t)] ∈ L∞(B(e)× In).

Let

Qn := B(ê)× [tn − ζ, tn + ζ]) for all n ∈ N

and ζ as in (4.48). We now distinguish two cases.

Case 1: lim sup
n→∞

‖vên‖L∞(Qn) > 0.

This case leads to a contradiction in exactly the same way as in Case 1 in

the proof of Lemma 4.12, see (4.26).

Case 2: lim
n→∞

‖vên‖L∞(Qn) = 0. (4.52)

In this case let

Q := B(ê)× (−ζ, ζ)

and fix a nonnegative function ϕ ∈ C∞c (Q) with ϕ ≡ 1 on Ω × (− ζ
2 ,

ζ
2).

Moreover, let ϕn ∈ C∞c (Qn) be given by ϕn(x, t) := ϕ(x, tn + t). We have

that

An :=

∫
Qn

aê1(x, t)

βn
uê2ϕnd(x, t) =

∫
Qn

α1[u2(x, t) + u2(σê(x), t)]vnu
ê
2ϕnd(x, t)

=

∫
Qn

α1[2u2(x, t) + uê2(x, t)][(uê2)+ − (uê2)−]ϕnvnd(x, t)

≥ α1η
−1k2

1|Ω|ζ − 2ηα1‖u2‖L∞(B×(0,∞))

∫
Qn

(uê2)−ϕnd(x, t),
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by (4.50) and (4.48). Since the last term on the right hand side goes to zero

as n→∞ because ê ∈ ∂N , we have that lim inf
n→∞

An > 0. On the other hand,

integrating by parts, we have by (4.51) that

An =

∫
Qn

[(vên)t − µ1∆vên − cê1vên]ϕnd(x, t)

= −
∫
Qn

[vên(ϕn)t + vên∆(µ1ϕn) + cê1v
ê
nϕn]d(x, t)

≤ ‖vên‖L∞(Ωn)

∫
Q
|ϕt|+ µ1|∆ϕ|+Mϕ d(x, t).

Then (4.52) implies that lim sup
n→∞

An ≤ 0, and we also obtain a contradic-

tion in this case. This concludes the proof.

We now proceed to the

Proof of Theorem 4.4. Let N be as in (4.46) and define

U := ω(u1) ∪ −ω(u2) = {z1,−z2 : z ∈ ω(u)},
M := {e ∈ SN−1 : z ≥ z ◦ σe in B(e) for all z ∈ U}.

We obviously have N ⊂M. Moreover, for e ∈ SN−1 as in (h5), we have

uei (·, 0) ≥ 0, uei (·, 0) 6≡ 0 on B(e) for i = 1, 2.

Lemma 4.7 then implies that uei > 0 on B(e) × (0,∞) for i = 1, 2, so that

e ∈ N and thus N is nonempty. Moreover N is a relatively open subset of

SN−1 by Lemma 4.18 and, by Lemma 4.19, z ≡ z ◦ σe for all z ∈ U and

e ∈ ∂N . The result now follows from Corollary 1.6.

Remark 4.20. (i) We believe that this method can also be used to han-

dle a wider variety of competing systems, whenever the difference func-

tion uei satisfies a weakly coupled system like (4.44) (see Remark 4.17

(iv) in this regard) and whenever the estimate (4.28) can be executed

in a similar way.

(ii) We have considered problem (4.3) with constant coefficients for sim-

plicity, but from the proof it is clear that the result can be easily gen-

eralized to the case where µ1, µ2 are functions satisfying (h2), α1, α2,

functions satisfying (h3) and λi, γi ∈ L∞(IB × (0,∞)) for i = 1, 2.
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4.5 Existence of stationary solutions without foli-

ated Schwarz symmetry

We now proceed to the proof of Theorem 4.3.

Proof of Theorem 4.3. We find (u1, u2) via the method of sub- and super-

solutions. For this we fix a ≥ 16k2 and we define the set

Ω0 :=
{

(r cos θ, r sin θ) :
1

2
< r < 1, 0 < θ <

2π

k

}
⊂ B

and the auxiliary function ϕ ∈ C1(Ω0) in polar coordinates by

ϕ(r, θ) :=

{
1 + cos(2kθ), if θ ∈ ( π2k ,

3π
2k ),

0, if θ ∈ [0, π2k ] ∪ [3π
2k ,

2π
k ].

Note that ϕ ∈W 2,∞(Ω0). Moreover, since a ≥ 16k2, we have that

[−∆ϕ− aϕ+ ϕ2](r, θ) =
[(2k)2

r2
− a
]

cos(2kθ)− a+ ϕ2(r, θ)

≤ (a− (2k)2

r2
)− a+ 4 ≤ −4k2 + 4 ≤ 0

if (r, θ) ∈ (1
2 , 1) × ( π2k ,

3π
2k ) and [−∆ϕ − aϕ + ϕ2](r, θ) = 0 elsewhere. Next

we define the rotated domains

Ωn := {(r cos θ, r sin θ) :
1

2
< r < 1,

2nπ

k
< θ <

2(n+ 1)π

k
}

for n = 0, . . . , k − 1 and the functions ψ1, ψ2 ∈ W 2,∞(B) ∩ C1(B) in polar

coordinates by

ψ1(r, θ) := ϕ

(
θ − 2nπ

k

)
if (r, θ) ∈ Ωn for some n ∈ {0, . . . , k − 1},

ψ2(r, θ) := ϕ

(
θ +

(1− 2n)π

k

)
if (r, θ) ∈ Ωn for some n ∈ {0, . . . , k − 1}.

Since ψ1ψ2 ≡ 0 in B, it follows from the above computations on ϕ and

the boundary conditions ∂νψi = 0 on ∂B for i = 1, 2, that (ψ1, ψ2) is a

subsolution of (4.2) for arbitrary α > 0. Now, for the supersolution, fix an

arbitrary ε ∈ (0, 1) and define ψεi := ψi + ε ∈W 2,∞(B)∩C1(B) for i = 1, 2.

Moreover, put αk,a := 1
ε2

[
max
i=1,2

‖∆ψi‖L∞(B) + 3a
]
. Then for α ≥ αk,a and

i = 1, 2, we have

−∆ψεi − aψεi + (ψεi )
2 + αψε1ψ

ε
2 ≥ −∆ψi − 3a+ αε2 ≥ 0 in B
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Hence (ψε1, ψ
ε
2) is a supersolution of (4.2) for α ≥ αk,a. Now, for α ≥

αk,a, a variant of the standard method of sub- and supersolutions (see e.g.

[11, 20, 23]) yields the existence of a classical solution (u1, u2) of (4.2) such

that ψi ≤ ui ≤ ψεi in B for i = 1, 2. Moreover, since ε ∈ (0, 1), it is easy to

see that the angular derivatives ∂ui
∂θ , i = 1, 2 change sign at least k times on

every circle contained in B.



Chapter 5

Parabolic systems with

Dirichlet boundary

conditions

The main objective of this chapter is to establish the following analog of

Theorem 4.1 for competitive parabolic systems with Dirichlet boundary con-

ditions. For simplicity we just consider the case µ1 ≡ µ2 ≡ 1.

Theorem 5.1. Let B ⊂ RN be a ball or an annulus and let u1, u2 ∈ C2,1(B×
(0,∞))∩C(B× [0,∞)) be nonnegative functions such that u = (u1, u2) is a

solution of the system

(ui)t −∆ui = fi(t, |x|, ui)− αi(|x|, t)u1u2, x ∈ B, t > 0,

ui(x, t) = 0, x ∈ ∂B, t > 0,

ui(x, 0) = u0,i(x), x ∈ B
(5.1)

for i = 1, 2, where the following holds.

(h1)D For i = 1, 2, the nonlinearity fi : [0,∞)×IB× [0,∞)→ R, (t, r, v) 7→
fi(t, r, v) is continuously differentiable in v. Further, the functions fi
and ∂vfi are Hölder continuous in t and r for all v ∈ [0,∞), and locally

Lipschitz continuous in v uniformly with respect to t and r. In other

words, there is γ > 0 such that, for every h ∈ {fi, ∂vfi : i = 1, 2},

h(·, ·, v) ∈ Cγ,γ/2(B × (0,∞)) for all v ∈ [0,∞)

and

sup
r∈IB ,t>0,
v,v̄∈K,v 6=v̄

|h(t, r, v)− h(t, r, v̄)|
|v − v̄|

<∞,

79
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for any compact subset K ⊂ [0,∞). Moreover fi(t, r, 0) = 0 for all

r ∈ IB, t > 0, and i ∈ {1, 2}.

(h2)D There are positive constants α∗, α∗, and β such that αi ∈ Cβ,β/2(IB×
(0,∞)) and α∗ ≤ αi(r, t) ≤ α∗ for all r ∈ IB, t > 0, and i ∈ {1, 2}.

If u0,i satisfies hypothesis (h5) from Theorem 4.1, then there is some p ∈
SN−1 such that all elements of ω(u1) are foliated Schwarz symmetric with

respect to p, and all elements of ω(u2) are foliated Schwarz symmetric with

respect to −p.

The proof relies on a parabolic version of Serrin’s boundary point lemma

[56, Lemma 1] to achieve an analog of Lemma 3.5 to use a similar rotating

plane argument as in Theorem 4.1. Moreover, the normalization procedure

now relies on sharp estimates due to Húska, Polàčik, and Safonov [35] (see

Corollary 5.12 below).

The second objective of this chapter is to study more thoroughly the

symmetry properties of the semi-trivial limit profiles, that is, elements of

ω(u) where one of the components is zero. As explained in the introduction

of the thesis, systems of the type (5.1) are commonly used to model popu-

lation dynamics. In this setting, the existence of a semi-trivial limit profile

can be interpreted as the asymptotic extinction of one of the species. In such

a situation, one may guess that the remaining species, in the (asymptotic)

absence of a competing (or symbiotic) species, is likely to become asymp-

totically radially symmetric in B. We show that this is indeed the case if

additional assumptions are made.

Our first result in this regard assumes a particular structure for the

nonlinearity. For the rest of the Chapter, let λ1 > 0 denote the first Dirichlet

eigenvalue of the Laplacian in B.

Theorem 5.2. Let B be a ball or an annulus and let u1, u2 ∈ C2,1(B ×
(0,∞))∩C(B× [0,∞))∩L∞(B× (0,∞)) be nonnegative functions such that

u = (u1, u2) is a classical solution of

(ui)t −∆ui = fi(ui)− αi(x, t)u1u2 in B × (0,∞),

ui = 0 on ∂B × (0,∞),

ui(x, 0) = u0,i(x) for all x ∈ B, i = 1, 2,

(5.2)

where u0,i ∈ C0(B) is not identically zero and αi ∈ L∞(B × (0,∞)) for

i = 1, 2. Further, assume that

( E1 ) fi ∈ C1([0,∞)) is strictly concave in [0,∞), fi(0) = 0, and

fi(s)→ −∞ as s→∞ for i = 1, 2.
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( E2 ) f ′i(0) > λ1 for i = 1, 2.

Then all the semi-trivial limit profiles of u are radially symmetric. In par-

ticular, if there is (z, 0) ∈ ω(u), then z is radially symmetric and it is the

unique positive (weak) solution of

−∆z = f1(z) in B,

z ∈ C0(B) ∩H1
0 (B).

(5.3)

The analogous claim holds if there is (0, z) ∈ ω(u) with z 6≡ 0.

Hypothesis ( E1 ) might look a bit restrictive, but it is satisfied by many

interesting models. In particular, the Lotka-Volterra model for two compet-

ing species satisfies this assumption. Theorem 5.2 then directly implies the

following

Corollary 5.3. Let B be a ball or an annulus and let u1, u2 ∈ C2,1(B ×
(0,∞))∩C(B× [0,∞))∩L∞(B× (0,∞)) be nonnegative functions such that

u = (u1, u2) is a classical solution of

(ui)t −∆ui = aiui − biu2
i − αi(x, t)u1u2 in B × (0,∞),

ui = 0 on ∂B × (0,∞),

ui(x, 0) = u0,i(x) for all x ∈ B, i = 1, 2.

where u0,i ∈ C0(B) is not identically zero, ai > λ1, bi > 0, and αi ∈
L∞(B × (0,∞)) for i = 1, 2. If (z, 0) ∈ ω(u) then z ∈ C0(B) ∩ H1

0 (B) is

a positive radially symmetric function and it is the unique weak solution of

−∆z = a1z − b1z2 in B. The analogous claim holds for (0, z) ∈ ω(u).

The Lotka-Volterra model assumes that the coefficients αi are positive

for i = 1, 2, but this assumption is not needed for the claim in Corollary

5.3. Indeed, Theorem 5.2 makes no assumption on the sign of α1 and α2,

and therefore the result also applies to semitrivial limit profiles of coopera-

tive, competitive, and predator-prey type systems (see (4.30)) with Dirichlet

boundary conditions and nonlinearities satisfying ( E1 ) and ( E2 ). However,

the standard predator-prey model does not satisfy ( E2 ), see (5.4) below.

Nonetheless, the symmetry of semi-trivial limit profiles can still be charac-

terized using a slightly different approach. We have the following

Theorem 5.4. Let B be a ball or an annulus and let u1, u2 ∈ C2,1(B ×
(0,∞))∩C(B× [0,∞))∩L∞(B× (0,∞)) be nonnegative functions such that
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u = (u1, u2) is a classical solution of

(u1)t −∆u1 = a1u1 − b1u2
1 − α1(x, t)u1u2 in B × (0,∞),

(u2)t −∆u2 = −a2u2 − b2u2
2 + α2(x, t)u1u2 in B × (0,∞),

ui = 0 on ∂B × (0,∞),

ui(x, 0) = u0,i(x) for all x ∈ B

(5.4)

and i = 1, 2, where u0,1 , u0,2 ∈ C0(B) are not identically zero, a1 > λ1,

a2 > 0, b1 > 0, b2 > 0, and α1, α2 ∈ L∞(B × (0,∞)) are nonnegative

functions. Then 0 6∈ ω(u1) and if (z, 0) ∈ ω(u) then z ∈ C0(B) ∩H1
0 (B) is

a positive radially symmetric function and it is the unique weak solution of

−∆z = a1z − b1z2 in B.

Here u1 is considered to be “the prey” whereas u2 is “the predator”.

The fact that the coefficient a2 appears with a minus in (5.4) is interpreted

in the model as the effect of diseases and other hazards for the predator.

This minus sign is the reason why system (5.4) does not satisfy assumption

( E2 ) in Theorem 5.2. In this case, however, the extinction of the prey is

impossible, because if u1 is close to zero then u2 also tends to zero (the

predator needs the prey to survive), and then the birth rate a1 > λ1 (where

as before λ1 > 0 denotes the first Dirichlet eigenvalue of the Laplacian in

B) is big enough to force a recovery of u1. We use this fact to characterize

the symmetry of the semitrivial limit profiles (z, 0).

In another context, we can consider systems of equations where it is

possible to ensure that the zero possesses some stability, in the sense that if

0 ∈ ω(ui) for some i = 1, 2, then ω(ui) = {0}. In this case the asymptotic

symmetry of the solution can be characterized using results due to Földes

and Polàčik [25] for asymptotically symmetric equations. This results how-

ever are only available for convex domains and therefore B must be a ball.

For simplicity we just develop these ideas for a very restricted class of sys-

tems, but we remark that the results in [25] are stated in a quite general

framework similar to that of Theorem 2.3. We have the following

Theorem 5.5. Let B be a ball and let u1, u2 ∈ C2,1(B × (0,∞)) ∩ C(B ×
[0,∞))∩L∞(B × (0,∞)) be nonnegative functions such that u = (u1, u2) is

a classical solution of

(ui)t −∆ui = ai(t)u
2
i − bi(t)ui − αi(x, t)u1u2 in B × (0,∞),

ui = 0 on ∂B × (0,∞),

ui(x, 0) = u0,i(x) for all x ∈ B
(5.5)
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and i = 1, 2, where u0,i ∈ C0(B) is not identically zero, αi ∈ C(B×(0,∞))∩
L∞(B×(0,∞)) is nonnegative, ai, bi ∈ C((0,∞))∩L∞((0,∞)), and there is

b∗ > 0 such that inf
x∈B,t>0

bi(t) > b∗. If there is (z, 0) ∈ ω(u) such that z 6≡ 0,

then ω(u2) = {0} and z is radially symmetric and strictly decreasing in the

radial variable. The analogous claim holds if there is (0, z) ∈ ω(u) such that

z 6≡ 0.

We now give a brief outline of this chapter. Section 5.1 is devoted to

the extension of Serrin’s boundary point lemma to parabolic equations and

to the proof of the main perturbation lemma in this Chapter. Section 5.2

contains the proof of Theorem 5.1 and finally Section 5.3 contains the proofs

of Theorems 5.2 to 5.5.

To close this introduction, let us mention that, analogously as in Sections

4.3 and 4.4, the proof of Theorem 5.1 can be adjusted to study the symmetry

properties of cooperative parabolic systems and other parabolic competitive

systems. Since the arguments for these adjustments are very similar to those

already presented in Sections 4.3 and 4.4 we do not give further details.

5.1 A parabolic version of Serrin’s boundary point

lemma

First we fix some notation. Let B be a ball or an annulus in RN centered

at zero and fix 0 ≤ A1 < A2 <∞ such that

B :=

{
{x ∈ RN : A1 < |x| < A2}, if A1 > 0,

{x ∈ RN : |x| < A2}, if A1 = 0.
(5.6)

For a subset A ⊂ B and δ > 0 we define

[A]δ := {x ∈ B : dist(x,A) ≤ δ}. (5.7)

For I ⊂ R, e ∈ SN−1, and a function v : B × I → R we define

ve : B × I → R by ve(x, t) := v(x, t)− v(σe(x), t).

Fix I := [0, 1] and e1 = (1, 0, . . . , 0) ∈ RN . Let v ∈ C2,1(B × I) be a

function such that ve1 satisfies

ve1t −∆ve1 − cve1 ≥ 0 in B(e1)× I,
ve1 = 0 on ∂B(e1)× I,
ve1 ≥ 0 in B(e1)× I,

(5.8)

and the following holds.
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(Hα,β0) There are α ∈ (0, 1) and β0 > 0 such that

‖v‖C2+α,1+α/2(B×I) + ‖c‖L∞(B(e1)×I) ≤ β0.

(Hk) There is k > 0 such that ‖ve1‖L∞(B(e)×( 1
7
, 4
7

)) ≥ k.

Remark 5.6. Let v ∈ C2,1(B×I) be a function satisfying (Hα,β0) and (Hk)

for some α ∈ (0, 1), β0 > 0, and k > 0. If ve1 ≡ 0 on ∂B(e)× I, then there

is δ ∈ (0, A1−A2
2 ), depending only on α, β0, k, and B such that |ve1 | < k in

[∂B(e)]δ × I. Therefore we have that

‖ve1‖L∞((B(e)\[∂B(e)]δ)×( 1
7
, 4
7

)) ≥ k. (5.9)

Our first Lemma focuses on points of the boundary ∂B(e1) which are

not corner points.

Lemma 5.7. Let v ∈ C2,1(B × I) be a function such that ve1 satisfies

(5.8) and such that assumptions (Hα,β0) and (Hk) hold for some α ∈ (0, 1),

β0 > 0, and k > 0. Then given δ ∈ (0, A1−A2
2 ), there are positive constants ε

and µ depending only on δ, α, β0, k, and B such that

ve1(x, t) ≥ µx1 for all x ∈ B(e1)\[∂B]δ, t ∈ [
6

7
, 1 ] (5.10)

and

∂ve1

∂ν
> ε in (∂B(e1)\[∂B ∩H(e1)]δ)× [

6

7
, 1 ]. (5.11)

Here ν is the inwards unit normal vector field on ∂B(e1).

Proof. By Remark 5.6 there is δ1 ∈ (0, δ) depending only on α, β0, k, δ, and

B, such that

‖ve1‖L∞((B(e)\[∂B(e)]δ1 )×( 1
7
, 4
7

)) ≥ k. (5.12)

Let r < min{δ1,
1
7} be such that for any t∗ ∈ [6

7 , 1] and x∗ ∈ ∂B(e1) with

dist(x∗, H(e1) ∩ ∂B) > δ1 we have that x∗ + rν(x∗) =: y ∈ B(e1) and

∂Br(y, t
∗)∩ (∂B(e1)× [0, t∗]) = {(x∗, t∗)}. Fix such a pair (x∗, t∗) and define

the sets

D := Br(y, t
∗) ∩B r

2
(x∗, t∗) ∩ (B(e1)× [0, t∗]),

Γ1 := ∂Br(y, t
∗) ∩B r

2
(x∗, t∗) ∩ (B(e1)× [0, t∗]),

Γ2 := Br(y, t∗) ∩ ∂B r
2
(x∗, t∗) ∩ (B(e1)× [0, t∗]),
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and the function z : D → [0, 1] given by

z(x, t) := (e−γ(|x−y|2+(t−t∗)2) − e−γr2
)e−β0(t−t∗) with γ =

2(N + 1)

r2

An easy calculation shows that

zt −∆z − cz

= e−β0(t−t∗)e−γ(|x−y|2+(t−t∗)2)2γ(−2γ|x− y|2 +N − (t− t∗)) + (−β0 − c)z

≤ e−β0(t−t∗)e−γ(|x−y|2+(t−t∗)2)γ(−γr2 + 2(N + 1)) = 0 in D. (5.13)

Let 0 < d < min{dist(Γ2, ∂B(e1)× [5
7 , 1]) , δ1} and define

K := {x ∈ B(e1) : dist(x, ∂B(e1)) ≥ d}.

Note that Γ2 ⊂ K× [5
7 , 1] and that K only depends on α, β0, k, δ, and B.

Then by (Hα,β0), (5.12), and Lemma 2.7, there is µ1 = µ1(α, β0, δ, k, B) > 0

such that ve1 ≥ µ1 in K × [5
7 , 1]. In particular, we have that ve1 ≥ µ1 in

Γ2. Let w : D → R be given by w := ve1 − µ1z. Since z ≡ 0 in Γ1 and

ve1 ≥ 0 in B(e1) we have that w ≥ 0 in Γ1 and, since z ≤ 1 in Γ2, it follows

that w ≥ 0 on ∂PD = Γ1 ∪ Γ2. Further, by (5.8) and (5.13) we get that

wt −∆w − cw ≥ 0 in D. Thus the maximum principle implies that w ≥ 0

in D. Since w(x∗, t∗) = 0 we have that ∂w(x∗,t∗)
∂ν ≥ 0 and thus

∂ve1

∂ν
(x∗, t∗) ≥ µ1

∂z

∂ν
(x∗, t∗) = 2e−γr

2
µ1γr =: ε > 0.

Since δ > δ1, this proves (5.11). Moreover, since ∂ve1
∂e1
≥ ε in (H(e1)\[∂B]δ1)×

[6
7 , 1], there is, by (Hα,β0), some δ2 = δ2(α, β0, δ, k, B) ∈ (0, δ1) such that

∂ve1

∂e1
≥ ε

2
in ([H(e1)\[∂B]δ1 ]δ2)× [

6

7
, 1]. (5.14)

On the other hand, B(e1)\[∂B(e1)]δ1 ⊂ B(e1)\[∂B(e1)]δ2 since δ2 < δ1.

Thus, by (Hα,β0), (5.12), and Lemma 2.7, there is µ2 > 0 depending only

on α, β0, δ, k, and B such that ve1 ≥ µ2 in (B(e1)\[∂B(e1)]δ2)× [5
7 , 1]. This,

together with (5.14) easily implies (5.10) for some µ > 0 depending only on

α, β0, δ, k, and B.

We now turn our attention to the corner points on the boundary ∂B(e1).

Lemma 5.8. Let v ∈ C2,1(B × I) be a function such that ve1 satisfies

(5.8) and such that assumptions (Hα,β0) and (Hk) hold for some α ∈ (0, 1),
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β0 > 0, and k > 0. Then there is ε > 0 depending only on α, β0, k, and B

such that

∂2ve1(x, 1)

∂s2
> ε and

∂2ve1(x, 1)

∂s̃2
< −ε (5.15)

for all x ∈ ∂B ∩H(e1), where s = 1√
2
(ν + e1) ∈ SN−1, s̃ = 1√

2
(−ν + e1) ∈

SN−1, and ν is the inwards unit normal vector field on ∂B.

Proof. Let x∗ ∈ ∂B ∩H(e1). There is r ∈ (0, 1
7) depending only on B such

that x∗ + rν(x∗) =: y ∈ H(e1) ∩ B and ∂Br(y, 1) ∩ (∂B × I) = {(x∗, 1)}.
Define

U := Br(y, 1) ∩B r
2
(x∗, 1) ∩ (B(e1)× I),

Λ1 := ∂Br(y, 1) ∩B r
2
(x∗, 1) ∩ (B(e1)× I),

Λ2 := Br(y, 1) ∩ ∂B r
2
(x∗, 1) ∩ (B(e1)× I),

Λ3 := Br(y, 1) ∩B r
2
(x∗, 1) ∩ (H(e1)× I),

and the function ϕ : B × I → [−diam(B),diam(B)] given by

ϕ(x, t) := x1(e−θ(|x−y|
2+(t−1)2) − e−θr2

)e−β0(t−1) with θ =
2(N + 3)

r2
.

A direct calculation shows that

ϕt −∆ϕ− cϕ

= e−θ(|(x,t)−(y,1)|2)−β0(t−1)2θx1(−2θ|x− y|2 +N + 2− t)− (β0 + c)ϕ

≤ e−θ(|(x,t)−(y,1)|2)−β0(t−1)2θx1(−2θ(
r

2
)2 +N + 3) = 0 in U. (5.16)

Since dist(Λ2, ∂B × I) > 0, there is δ1 > 0 depending only on B such

that Λ2 ⊂ (B(e1)\[∂B]δ1)× [ 6
7 , 1 ]. Then, by Lemma 5.7 with δ = δ1, there

is µ > 0 depending only on α, β0, k, and B such that ve1(x, t) ≥ µx1 for

x ∈ (B(e1)\[∂B]δ1) and t ∈ [ 6
7 , 1 ]. In particular ve1(x, t) ≥ µx1 for (x, t) ∈

Λ2. Define the function ψ : B × I → R by ψ(x, t) := ve1(x, t) − µϕ(x, t).

Then ψ ≥ 0 on Λ2, because ϕ(x, t) ≤ x1 for (x, t) ∈ Λ2. Moreover, since

ve1 ≥ 0 in B(e1)× I and ϕ ≡ 0 in Λ1 ∪ Λ3 by definition, we get that ψ ≥ 0

on ∂PU = Λ1 ∪ Λ2 ∪ Λ3. Further, by (5.8) and (5.16), ψt −∆ψ − cψ ≥ 0 in

U. Thus the maximum principle implies that ψ ≥ 0 in U. Now, remember

that s(x∗) = 1√
2
(ν(x∗) + e1). By direct calculation ∂ϕ

∂s (x∗, 1) = 0 and, since

ve1 ≡ 0 on ∂B(e1)× I, we have that

∂ve1

∂s
(x∗, 1) =

1√
2

(
∂ve1

∂e1
(x∗, 1) +

∂ve1

∂ν
(x∗, 1)) = 0.
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This implies that ∂ψ
∂s (x∗, 1) = 0 = ψ(x∗, 1). Since ψ ≥ 0 in U, it follows that

∂2ψ
∂s2

(x∗, 1) ≥ 0, and therefore

∂2ve1

∂s2
(x∗, 1) ≥ µ∂

2ϕ

∂s2
(x∗, 1) = µ(−4e−θr

2
θ

1√
2

(x− y) · s) = 2µe−θr
2
θr,

(5.17)

which yields the first inequality in (5.15) with ε := 2µe−θr
2
θr > 0. For

the second inequality, note that the function ve1 is antisymmetric in x with

respect to H(e1), and therefore

∂2ve1

∂s̃2
(x∗, 1) =

∂2ve1

∂(−s̃)2
(x∗, 1) = −∂

2ve1

∂s2
(x∗, 1) ≤ −ε,

where s̃(x∗) = 1√
2
(−ν(x∗) + e1). The proof is finished.

The next lemma will be helpful to guarantee positivity near corner

points.

Lemma 5.9. Let w ∈ C2(B(e1)) be a function such that the following holds.

(i) w ≡ 0 on ∂B(e1).

(ii) There is ε > 0 such that

∂2w(x)

∂s(x)2
> ε and

∂2w(x)

∂s̃(x)2
< −ε for all x ∈ H(e1) ∩ ∂B,

where s(x) = 1√
2
(ν(x) + e1), s̃(x) = 1√

2
(−ν(x) + e1), and ν is the

inwards unit normal vector field on ∂B.

(iii) There is a function χ : [0, diam(B) ]→ [0,∞) with lim
ϑ→0

χ(ϑ) = 0 such

that |D2w(x)−D2w(y)| ≤ χ(|x− y|) for all x, y ∈ B(e1).

Then there exists δ > 0 depending only on ε, χ, and B such that w ≥ 0 in

[H(e1) ∩ ∂B]δ ∩B(e1).

Proof. By hypothesis (iii) there is δ1 = δ1(ε, χ) > 0 such that, for every

x∗ ∈ H(e1) ∩ ∂B we have that

∂2w(x)

∂s(x∗)2
> ε and

∂2w(x)

∂s̃(x∗)2
< −ε for all x ∈ Bδ1(x∗) ∩B(e1). (5.18)

If A1 > 0 —where A1 is as in (5.6)—we also assume that

δ1 <

(
1

sin(π4 )
− 1

)
A1. (5.19)
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We show that the claim holds for any δ ∈ (0, δ12 ]. Without loss of gen-

erality we may assume for the rest of the proof that the domain B is two-

dimensional, since otherwise we can repeat the following argument to w re-

stricted to B(e1)∩P where P is any plane containing Re1 to yield the result.

By contradiction, assume there are x∗ ∈ H(e1)∩∂B and y ∈ B(e1)∩Bδ(x∗)
such that w(y) < 0. Then there are y1 ∈ H(e1) ∩ Bδ1(x∗) and λ1 > 0 such

that y = y1 + λ1s̃(x
∗). Let L1 := {λ ≥ 0 : y1 + λs̃(x∗) ∈ B(e1) ∩Bδ1(x∗)}

and A := {y1 + λs̃(x∗) : λ ∈ L1}. Note that A ∩ ∂B 6= ∅, by our

choice of δ and (5.19). In particular, we may find λB > 0 such that

y1 + λB s̃(x
∗) ∈ ∂B. Moreover, due to the fact that B is assumed to be

two-dimensional, there is λ2 > 0 such that x∗ + λ2s(x
∗) =: y2 ∈ A. Let

L2 := {λ ≥ 0 : x∗ + λs(x∗) ∈ B(e1) ∩Bδ1(x∗)} and define the functions

f1 : L1 → R and f2 : L2 → R by

f1(λ) := w(y1 + λs̃(x∗)), f2(λ) := w(x∗ + λs(x∗)).

By (5.18), we have that f ′′2 > ε in L2. By Assumption (i) it follows that

f ′2(0) =
∂w(x∗)

∂s(x∗)
=

1√
2

(
∂w(x∗)

∂ν(x∗)
+
∂w(x∗)

∂e1

)
= 0 = w(x∗) = f2(0).

Therefore f2(λ) > 0 for λ ∈ L2 ∩ (0,∞). Since y2 ∈ A, there is λ3 > 0 such

that f1(λ3) = w(y2) = f2(λ2) > 0. But then f1(0) = 0, f1(λ1) = w(y) < 0,

f1(λ3) > 0, and f1(λB) = 0. This contradicts the fact that f ′′1 < −ε in L1

by (5.18). Therefore w ≥ 0 in [H(e1) ∩ ∂B]δ ∩B(e1) as claimed.

We are ready to prove a perturbation result for supersolutions of scalar

equations.

Lemma 5.10. Let v ∈ C2,1(B× I) be a function such that ve1 (resp. −ve1)

satisfies (5.8) and such that assumptions (Hα,β0) and (Hk) hold for some

α ∈ (0, 1), β0 > 0, and k > 0. Then there exists ρ > 0 depending only on

α, β0, k, and B such that ve
′
(·, 1) ≥ 0 (resp. −ve′(·, 1) ≥ 0) in B(e′) for all

e′ ∈ SN−1 with |e1 − e′| < ρ.

Proof. Assume that ve1 satisfies (5.8) and that (Hα,β0) and (Hk) hold. By

Lemma 5.8 and assumption (Hα,β0), there are ε1 > 0 and ρ1 > 0 such that

∂2ve
′

∂s(x)2
(x, 1) > ε1 and

∂2ve
′

∂s̃(x)2
(x, 1) < −ε1, x ∈ ∂B ∩H(e′)

for all e′ ∈ SN−1 with |e′− e1| < ρ1. By Lemma 5.9 there is δ1 > 0 such that

ve
′
(·, 1) ≥ 0 in [∂B ∩H(e′)]δ1 ∩B(e′) (5.20)
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for all e′ ∈ SN−1 with |e′−e1| < ρ1. Further, by Lemma 5.7 with δ = δ1 there

is ε2 > 0 with ∂ve1
∂ν (·, 1) > ε2 on ∂B(e1)\[∂B ∩H(e1)]δ1 . Then, by (Hα,β0),

there are δ2 ∈ (0, δ1) and ρ2 ∈ (0, ρ1) with the property ∂ve
′

∂ν (·, 1) > ε2

in [∂B(e′)\[∂B ∩ H(e′)]δ1 ]δ2 for all e′ ∈ SN−1 with |e′ − e1| < ρ2. Since

ve
′
(·, 1) ≡ 0 on ∂B(e′) we have

ve
′
(·, 1) > 0 in [∂B(e′)\[∂B ∩H(e′)]δ1 ]δ2 ∩B(e′) (5.21)

for all e′ ∈ SN−1 with |e′ − e1| < ρ2. Moreover, by Lemma 5.7 with δ = δ2

there is µ > 0 with ve1(x, 1) ≥ µx1 > µδ2
2 for all x ∈ B(e1)\[∂B(e1)]δ2 .

Then, by (Hα,β0), there is ρ3 ∈ (0, ρ2) such that

ve
′
(x, 1) >

µδ2

2
for all x ∈ B(e′)\[∂B(e′)]δ2 (5.22)

for all e′ ∈ SN−1 with |e′ − e1| < ρ3. Therefore (5.20), (5.21), and (5.22)

imply that ve
′
(·, 1) ≥ 0 in B(e′) for all e′ ∈ SN−1 with |e′ − e1| < ρ3. It is

easy to check that the constant ρ3 depends only on α, β0, k, and B so this

yields the claim for ve1 .

From the proof of Lemmas 5.7 and 5.8 it is clear that their claims also

hold if we write −ve1 instead of ve1 . Therefore we can argue exactly the

same if we now assume that −ve1 satisfies (5.8). This ends the proof.

5.1.1 Homogeneous linear equations

We quote some recent estimates from [35].

Lemma 5.11 (Particular cases of Lemma 3.9 and Corollary 3.10 in [35]).

Let v ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) be a positive solution of

vt −∆v − cv = 0 in B × (0,∞),

v = 0 on ∂B × (0,∞),

where ‖c‖L∞(B×(0,∞)) < β0 for some β0 > 0. Then, there are positive con-

stants C1, C2, and ϑ depending only on B and β0 such that

v(x, τ)

‖v(·, τ)‖L∞(B)
≥ C1(dist(x, ∂B))ϑ, x ∈ B, τ ∈ [1,∞), (5.23)

and

‖v(·, τ + t)‖L∞(B)

‖v(·, τ)‖L∞(B)
∈
[
C2 ,

1

C2

]
, τ ∈ (1,∞), t ∈ [0, 1], (5.24)

where dist(x, ∂B) := inf{|x− y| : y ∈ ∂B}.
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By rescaling and combining the two estimates in the previous Lemma

we get the following

Corollary 5.12. Assume the hypothesis of Lemma 5.11. For any k > 0

there are positive constants C and ϑ depending only on B, β0, and k such

that, for any τ ≥ 2k,

C ≥ v(x, τ + t)

‖v(·, τ)‖L∞(B)
≥ C−1(dist(x, ∂B))ϑ, x ∈ B, t ∈ [−k, k].

Proof. Let ṽ : B × (0,∞) → R be given by ṽ(x, t) := v(x, kt) for x ∈ B,

t > 0. Clearly ṽ satisfies the assumptions of Lemma 5.11. Let C1, C2, and

ϑ be the constants (depending only on B, β0, and k) given by Lemma 5.11

for ṽ. Note that (5.24) implies that

‖ṽ(·, τ)‖L∞(B)

‖ṽ(·, τ + t)‖L∞(B)
∈
[
C2 ,

1

C2

]
, τ ∈ (1,∞), t ∈ [0, 1], (5.25)

Then, by (5.23), (5.24), and (5.25),

C−1
2 ‖ṽ(·, τ)‖L∞(B) ≥ ṽ(x, t+ τ) ≥ C1(dist(x, ∂B))ϑ‖ṽ(·, t+ τ)‖L∞(B)

≥ C1C2(dist(x, ∂B))ϑ‖ṽ(·, τ)‖L∞(B)

for all x ∈ B, τ ≥ 2, and t ∈ (−1, 1). The result follows.

5.2 Dirichlet parabolic systems with competition

For the remainder of the section we assume the hypothesis of Theorem 5.1,

that is, let u1, u2 ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) be nonnegative func-

tions such that u = (u1, u2) is a classical solution of (5.1) and such that

assumptions (h1)D and (h2)D from Theorem 5.1 and assumption (h5) from

Theorem 4.1 are fulfilled. We begin with a regularity remark.

Remark 5.13. Arguing exactly as in Remark 4.9 we have, by Lemma 2.9,

that

‖ui‖Ca,a/2(B×[s,s+1]) < C for all s ∈ [1,∞), i = 1, 2

for some a ∈ (1, 2) and C > 0. Then ω(u) is a nonempty compact subset of

C0(B)× C0(B) satisfying

lim
t→∞

inf
z∈ω(u)

‖u1(·, t)− z1‖L∞(B) + ‖u2(·, t)− z2‖L∞(B) = 0.
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Moreover, since the functions (x, t) 7→ fi(t, |x|, ui(x, t)) and αi are Hölder

continuous in B × [1,∞) for i = 1, 2, a standard regularity argument (see

for example [52, Remark 48.3 and Remark 47.4 (iii)] or [3, Theorem 2.2])

implies that

‖ui‖C2+γ,1+γ/2(B×[s,s+1]) < C for all s ∈ [2,∞), i = 1, 2 (5.26)

for some γ ∈ (0, 1) and C > 0. We briefly outline this argument. Let

I := [0, 2], Q := B × I, and let v ∈ C2,1(B × I) be a solution of

vt(x, t)−∆v(x, t) = f(t, x), x ∈ B, t ∈ I,
v(x, t) = 0, x ∈ ∂B, t ∈ I,

where

‖v‖C1+γ,(1+γ)/2(B×I) + ‖f‖Cγ,γ/2(B×I) < C (5.27)

for some γ ∈ (0, 1) and C > 0. Let

w : B × I → R be given by w(x, t) := tv(x, t).

Then

wt(x, t)−∆w(x, t) = tf(t, x)− v(x, t), (x, t) ∈ B × I,
w(x, t) = 0, (x, t) ∈ ∂P (B × I).

Then, by [52, Theorem 48.2] (see also [38, Theorem 4.28] and [11, Section

1.6.6]), there is a constant C1 > 0 depending only on B and γ such that

‖w‖C2+γ,1+γ/2(B×I) ≤ C1(‖w‖L∞(B×I) + ‖tf − v‖Cγ,γ/2(B×I)).

Then there is some constant C2 > 0 depending only on C, B, and γ such

that

‖w‖C2+γ,1+γ/2(B×I) ≤ C2

by (5.27). But this implies that

‖v‖C2+γ,1+γ/2(B×[1,2]) ≤ C3

for some C3 > 0 depending only on C, B, and γ. This implies (5.26) by

taking suitable translations of ui.
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5.2.1 Linearization of semilinear Dirichlet systems

The linearization procedure is similar to the one given in Subsection 4.2.1.

We repeat it for completeness. For e ∈ SN−1 we set

ue1(x, t) := u1(x, t)− u1(σe(x), t)

ue2(x, t) := u2(σe(x), t)− u2(x, t)
x ∈ B, t > 0.

The same notation is used if the functions do not depend on time. More

precisely, for a pair z = (z1, z2) of functions zi : B → R, i = 1, 2, we set

ze1(x) := z1(x)− z1(σe(x))

ze2(x) := z2(σe(x))− z2(x)
x ∈ B, t > 0.

Since u = (u1, u2) solves (5.1), for fixed e ∈ SN−1 we have

(ue1)t −∆ue1 − ce1ue1 = α1u1u
e
2 in B(e)× (0,∞),

(ue2)t −∆ue2 − ce2ue2 = α2u2u
e
1 in B(e)× (0,∞),

uei = 0 on ∂B(e)× (0,∞),

(5.28)

where cei ∈ L∞(B × (0,∞)), i = 1, 2, is given by

ce1(x, t) := ĉe1(x, t)− α1(|x|, t)u2(σe(x), t)

ce2(x, t) := ĉe2(x, t)− α2(|x|, t)u1(σe(x), t)
x ∈ B, t > 0,

with

ĉei (x, t) :=


fi(t, |x|, ui(x, t))− fi(t, |x|, ui(σe(x), t))

ui(x, t)− ui(σe(x), t)
, if uei (x, t) 6= 0,

0, if uei (x, t) = 0

for x ∈ B, t > 0, and i = 1, 2.

Moreover, by hypothesis (h1)D and (h2)D from Theorem 5.1, there is

M ≥ 1 such that

‖αi‖L∞(B×(0,∞)) + ‖cei‖L∞(B×(0,∞)) ≤M (5.29)

for all i = 1, 2 and e ∈ SN−1. Further, by (5.26), me may also assume that

‖ui‖C2+γ,1+γ/2(B×[s,s+1]) < M for all s ∈ [2,∞), i = 1, 2 (5.30)

for some γ ∈ (0, 1), by making M larger.
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5.2.2 Proof of Theorem 5.1

Let

N := {e ∈ SN−1 : uei > 0 in B(e)× [T,∞) for i = 1, 2 and some T > 0}.

We have the following two Lemmas which we prove at the end of this

subsection.

Lemma 5.14. The set N is relatively open in SN−1.

Lemma 5.15. For every e ∈ ∂N and every z ∈ ω(u) we have ze1 ≡ ze2 ≡ 0

in B(e).

Then we can proceed to the

Proof of Theorem 5.1. Define

U := ω(u1) ∪ −ω(u2) = {z1,−z2 : z ∈ ω(u)} (5.31)

and

M := {e ∈ SN−1 : ze ≥ 0 in B(e) for all z ∈ U}.

Note that the last equality in (5.31) is a consequence of (4.13). Then we

have that N ⊂M. Moreover, for e ∈ SN−1 as in assumption (h5), we have

uei (·, 0) ≥ 0, uei (·, 0) 6≡ 0 in B(e) for i = 1, 2.

The maximum principle then implies that uei > 0 on B(e) × (0,∞) for

i = 1, 2, so that e ∈ N and thus N is nonempty. Moreover N is a relatively

open subset of SN−1 by Lemma 5.14 and, by Lemma 5.15, z ≡ z ◦ σe for all

z ∈ U and e ∈ ∂N . The result now follows from Corollary 1.6.

Proof of Lemma 5.14. Let e ∈ N . Then (ue1, u
e
2) is a solution of (5.28), and

there is T > 0 such that ue1 and ue2 are positive in B(e)× (T,∞). Thus

(ue1)t −∆ue1 − ce1ue1 = α1u1u
e
2 ≥ 0

(ue2)t −∆ue2 − ce2ue2 = α2u2u
e
1 ≥ 0

in B(e)× [T,∞),

since α1 and α2 are nonnegative by hypothesis (h2)D. Without loss of

generality we may assume that e = e1. Then, by (5.30), the functions

B × I → R, (x, t) 7→ ui(x, T + t), i = 1, 2,

satisfy the assumptions of Lemma 5.10. Therefore we find that there exists

ρ > 0 such that ue
′
i (·, T + 1) ≥ 0 in B(e′) for e′ ∈ SN−1 with |e′ − e| < ρ.

Hence, by the maximum principle for systems, e′ ∈ N for e′ ∈ SN−1 with

|e′ − e| < ρ, and thus N is open.
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Proof of Lemma 5.15. Let z = (z1, z2) ∈ ω(u), and consider an increasing

sequence tn → ∞ with t1 > 6 and such that ui(·, tn) → zi uniformly in B

for i = 1, 2. We will only show that ze2 ≡ 0 in B(e) for all e ∈ ∂N , since the

same argument shows that ze1 ≡ 0 in B(e) for all e ∈ ∂N . Let M > 0 be as

in (5.29), (5.30) and γ ∈ (0, 1) as in (5.30). Then all the functions

B × [0, 1]→ R; (x, t) 7→ u2(x, τ + t), τ ≥ 2, (5.32)

satisfy condition (Hα,β0) of Lemma 5.10 with α = γ and β0 = M . In par-

ticular this implies that the functions in (5.32) are equicontinuous. Arguing

by contradiction, we now assume that zê2 6≡ 0 in B(ê) for some ê ∈ ∂N .

By the equicontinuity of the functions in (5.32), there are ζ ∈ (0, 1
7), a

nonempty open subset Ω ⊂⊂ B(ê), and k1 > 0 such that, after passing to a

subsequence,

uê2 ≥ k1 on Ω× [tn − ζ, tn + ζ] for all n ∈ N. (5.33)

We now apply a normalization procedure for u1. Define, for n ∈ N,

In := [tn − 3, tn + 3] ⊂ R, βn := ‖u1(·, tn)‖L∞(B)

and the functions

vn : B × In → R, vn(x, t) :=
u1(x, t)

βn
.

By Corollary 5.12 there exists η > 1 and ϑ > 0 such that

η ≥ vn ≥
1

η
dist(x, ∂B)ϑ on B × In for all n ∈ N. (5.34)

Moreover, we have that

‖vn‖C1+γ̃,(1+γ̃)/2(B×[s,s+2]) < C̃ for all s ∈ [tn − 2, tn + 2], n ∈ N

and for some γ̃ ∈ (0, 1) and C̃ > 0. This follows from Lemma 2.9 and the

fact that vn satisfies

(vn)t −∆vn = (c− α1u2)vn in B × In,
vn = 0 in ∂B × In

where

c(x, t) :=

∫ 1

0
∂vf1(t, |x|, su1(x, t))ds

for x ∈ B and t > 0. Here ∂vf1 denotes the derivative of f1 with respect

to the third variable. Note that c ∈ Cβ,β/2(B × [1,∞)) for some β > 0 by
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assumption (h1)D and (5.26). Thus, arguing as in Remark 5.13, we have

that

‖vn‖C2+γ,1+γ/2(B×[s,s+1]) < M for all s ∈ [tn − 1, tn + 1], n ∈ N (5.35)

by making the constant γ smaller and M larger if necessary.

Then, we may also assume that all of the functions

B × [0, 1]→ R; (x, t) 7→ vn(x, τ + t), τ ∈ [tn − 1, tn + 1], n ∈ N,

satisfy the equicontinuity condition (Hα,β0) of Lemma 5.10 with α = γ and

β0 = M.

For e ∈ SN−1 and n ∈ N we also consider

ven : B × In → R, ven(x, t) := vn(x, t)− vn(σe(x), t),

and we note that

(ven)t −∆ven − ce1ven = α1vnu
e
2 in B(e)× In,

(ue2)t −∆ue2 − ce2ue2 = α2βnu2v
e
n in B(e)× In,

ven = ue2 = 0 on ∂B(e)× In.

(5.36)

Set

Qn := B(ê)× [tn − ζ , tn + ζ] for n ∈ N,

with ζ as in (5.33). We now distinguish two cases.

Case 1: lim sup
n→∞

‖vên‖L∞(Qn) > 0.

In this case, by (5.35), there are d ∈ (0, 1), k2 > 0, and t∗ ∈ [−ζ, ζ] such

that, after passing to a subsequence,

sup{vên(x, tn + t∗) : x ∈ B(ê), dist(x, ∂B(ê)) ≥ d} ≥ k2 for n ∈ N.

Without loss, we may assume that

sup{uê2(x, tn + t∗) : x ∈ B(ê), dist(x, ∂B(ê)) ≥ d} ≥ k1 for n ∈ N

by (5.33). Next, let ρ > 0 be the constant given by Lemma 5.10 for δ = d,

k := 1
2 min{k1, k2}, β0 = M, α = γ, with M and γ as above. Since ê ∈ ∂N ,

there exists e ∈ N such that |e−ê| < ρ
2 , x1, x2 ∈ B(e) and, by equicontinuity,

sup{ven(x, tn + t∗) : x ∈ B(e), dist(x, ∂B(e)) ≥ d} ≥ k,
sup{ue2(x, tn + t∗) : x ∈ B(e), dist(x, ∂B(e)) ≥ d} ≥ k
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for all n ∈ N. Since e ∈ N we can fix n ∈ N such that

ven(x, tn + t∗ − 1

7
) ≥ 0, ue2(x, tn + t∗ − 1

7
) ≥ 0, for all x ∈ B(e).

Without loss of generality we may assume that e = e1. Then, applying

Lemma 5.10 to the functions

B× [0, 1]→ R; (x, t) 7→ u2(x, tn+ t∗− 1

7
+ t), (x, t) 7→ vn(x, tn+ t∗− 1

7
+ t),

we conclude that

uē2(·, tn + t∗ +
6

7
) ≥ 0 and vēn(·, tn + t∗ +

6

7
) ≥ 0 in B(ē)

for all ē ∈ SN−1 with |ē − e| < ρ, and thus in particular for ē = ê. But

this implies uêi (·, tn + t∗ + 6
7) ≥ 0 in B(ê) for i = 1, 2, and thus ê ∈ N by

the maximum principle for systems. This contradicts the hypothesis that

ê ∈ ∂N , since N is open by Lemma 5.14.

Case 2: lim
n→∞

‖vên‖L∞(Qn) = 0. (5.37)

In this case let

Q := B(ê)× (−ζ, ζ)

and fix a nonnegative function ϕ ∈ C∞c (Q) with ϕ ≡ 1 on Ω × (− ζ
2 ,

ζ
2).

Moreover, let

ϕn ∈ C∞c (Qn) be given by ϕn(x, t) := ϕ(x, tn + t), n ∈ N.

Setting (uê2)+ := max{uê2, 0} and (uê2)− := −min{uê2, 0}, we find by (h3),

(5.33), and (5.34) that, for n ∈ N,

An :=

∫
Qn

α1vnu
ê
2ϕnd(x, t) =

∫
Qn

α1vn[(uê2)+ − (uê2)−]ϕnd(x, t)

≥ α∗
η

∫
Qn

dist(x, ∂B)ϑ(uê2)+ϕnd(x, t)− α∗η ‖(uê2)−‖L∞(Qn) ‖ϕ‖L1(Q),

≥ α∗
η
k1|Ω|ζ inf

Ω
dist(x, ∂B)ϑ − α∗η ‖(uê2)−‖L∞(Qn) ‖ϕ‖L1(Q),

where the last term on the right hand side goes to zero as n → ∞ because

ê ∈ ∂N . Hence we have

lim inf
n→∞

An > 0.
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On the other hand, integrating by parts, we have by (5.36) that

An =

∫
Qn

[(vên)t −∆vên − cê1vên]ϕnd(x, t)

= −
∫
Qn

[vên(ϕn)t + vên∆ϕn + cê1v
ê
nϕn]d(x, t)

≤ ‖vên‖L∞(Qn)

∫
Q

(
|(ϕ)t|+ |∆ϕ)|+Mϕ

)
d(x, t)

for n ∈ N. Invoking (5.37) we conclude that

lim sup
n→∞

An ≤ 0.

So we have obtained a contradiction again and thus the claim follows.

5.3 Radial symmetry of semi-trivial limit profiles

5.3.1 Systems with concave nonlinearities

For this subsection we assume that B is a ball or an annulus and that

u1, u2 ∈ C2,1(B× (0,∞))∩C(B× [0,∞))∩L∞(B× (0,∞)) are nonnegative

functions such that u = (u1, u2) is a classical solution of (5.2) where, for

i = 1, 2, the coefficient and nonlinearity satisfy that αi ∈ L∞(IB × (0,∞)),

fi ∈ C1(R) is strictly concave in [0,∞), fi(0) = 0, f(s) → −∞ as s → ∞,
and the initial profile u0,i ∈ C0(B) is not identically zero.

Note that

(ui)t −∆ui − ci ui = fi(0) = 0 in B × (0,∞),

ui = 0 on ∂B × (0,∞),

ui(x, 0) = ui,0(x) for all x ∈ B, i = 1, 2,

where ci ∈ C(B × (0,∞)) ∩ L∞(B × (0,∞)) is given by

ci(x, t) :=

∫ 1

0
f ′(sui(x, t)) ds− αi(x, t)uj(x, t)

for i 6= j, i, j ∈ {1, 2}. And since u0,i ≥ 0, and u0,i 6≡ 0 in B, i = 1, 2, the

parabolic maximum principle implies that

u1 > 0 and u2 > 0 in B × (0,∞). (5.38)

Moreover by Lemma 2.9,

sup
x,x̄∈B, t,t̄∈[s,s+1],
x 6=x̄, t 6=t̄, s≥1

|ui(x, t)− ui(x̄, t̄)|
|x− x̄|γ + |t− t̄|

γ
2

< L, (5.39)
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for some positive constants L and γ, and the semiorbits {ui(·, t) : t ≥ 1}
are relatively compact in C0(B) for i = 1, 2. Therefore

ω(u) is a nonempty compact subset of C0(B)× C0(B) satisfying

lim
t→∞

inf
z∈ω(u)

‖u1(·, t)− z1‖L∞(B) + ‖u2(·, t)− z2‖L∞(B) = 0.
(5.40)

The results in this section use some well-known techniques for nonlinear

PDE’s with concave nonlinearities as used in [32] (see also [12, Chapters 9

& 10]). The following result is the key element in the proof of Theorems 5.2

and 5.4.

Theorem 5.16. Let u1, u2 ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) ∩ L∞(B ×
(0,∞)) be nonnegative functions such that u = (u1, u2) is a solution of (5.2)

satisfying ( E1 ) from Theorem 5.2 and with αi ∈ L∞(IB × (0,∞)), i = 1, 2.

Further assume that

(0, 0) 6∈ ω(u1, u2). (5.41)

If f ′1(0) > λ1 and there is (z, 0) ∈ ω(u1, u2), then z is radially symmetric

and it is the unique positive solution of (5.3). Analogously, if f ′2(0) > λ1

and there is (0, z) ∈ ω(u1, u2), then z is radially symmetric and it is the

unique positive solution of (5.3).

Proof. Assume (5.41), that f ′1(0) > λ1, and that there is (z̃, 0) ∈ ω(u1, u2).

It is well-known (see for example [32, Proposition 2.1]) that there is a unique

positive weak solution ϕ of (5.3). We will prove that z̃ = ϕ and the radial

symmetry of z follows by the uniqueness of ϕ.

Let tn →∞ be an increasing sequence such that

lim
n→∞

‖u1(·, tn)− z̃‖L∞(B) = 0,

lim
n→∞

‖u2(·, tn)‖L∞(B) = 0.

We proceed by contradiction. Assume that, passing to a subsequence, there

is γ > 0 such that

‖u1(·, tn)− ϕ‖2L2(B) > γ (5.42)

for all n ∈ N, where we have also used (5.39) to estimate the L2-norm with

the L∞-norm.

We have by hypothesis that

(0, 0) 6∈ ω(u). (5.43)
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Note that {z ∈ C0(B) : (z, 0) ∈ ω(u)} is compact, since ω(u) is compact by

(5.40). In the following we fix a nonempty subdomain U ⊂⊂ B. Then, by

(5.43) and Corollary 5.12 with k = 1, there are C̃ > 0 and η > 0 such that

inf
x∈U,

(z,0)∈ω(u)

z(x) ≥ C̃ inf
(z,0)∈ω(u)

‖z‖L∞(B) > η. (5.44)

Since ϕ is bounded, there is some ε = ε(η, ϕ) ∈ (0, 1) such that

‖ϕ‖L∞(B) ≤
η

ε
. (5.45)

Let c ∈ L∞(B) be given by

c(x) :=

{
f1(ϕ)−f1(εϕ)

(1−ε)ϕ , if x ∈ U,
f1(ϕ)
ϕ , if x ∈ B\U.

Note that the strict concavity of f1 and the fact that f1(0) = 0 imply that

f1(ϕ(x))

ϕ(x)
− c(x) ≥ 0 for all x ∈ B,

f1(ϕ(x))

ϕ(x)
− c(x) > 0 for all x ∈ U.

(5.46)

Let

δ := inf

{ ∫
B
|∇w|2 − c(x)w2dx :

∫
B
w2dx = 1 , w ∈ H1

0 (B)

}
. (5.47)

Since c ∈ L∞(B), standard arguments (see, for example, [28, Theorem

8.38]) imply that there is a positive function v ∈ H1
0 (B) such that∫

B
∇v∇w − c(x)vw dx = δ

∫
B
vw dx for all w ∈ H1

0 (B).

In particular, for w = ϕ we get by integration by parts that

δ

∫
B
vϕ dx =

∫
B

(
f1(ϕ)

ϕ
− c(x)

)
ϕv dx > 0,

by (5.46), and therefore δ > 0.

Now, let

K := max{ |B| ‖α1u1(u1 − ϕ)‖L∞(B×(0,∞)) , |B| ‖u1 − ϕ‖2L∞(B×(0,∞)) }

and let k > 0 be such that

Ke−δk < γ. (5.48)
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By Corollary 5.12 for this choice of k, there is C > 0 such that

lim
n→∞

‖u2‖L∞(B×[tn−t0,tn]) ≤ C lim
n→∞

‖u2(·, tn)‖L∞(B) = 0,

for all t0 ∈ [0, k]. Then, by (5.44) and (5.40) there is n∗ ∈ N such that

‖u2‖L∞(B×[tn∗−k,tn∗ ]) <
δγ

K
, (5.49)

inf
U×[tn∗−k,tn∗ ]

u1 > η. (5.50)

Using (5.45), (5.50), and the strict concavity of f1 we have that

f1(u1(x, t))− f1(ϕ(x))

u1(x, t)− ϕ(x)
≤ c(x) for all x ∈ B, t ∈ [tn∗ − k, tn∗ ].

By (5.49), (5.47), we have integrating by parts that

d

dt
‖u1(·, t)− ϕ‖2L2(B) = 2

∫
B

(u1 − ϕ)(u1)tdx

= 2

∫
B

(u1 − ϕ)(∆u1 + f1(u1)− α1u1u2)dx

= 2

∫
B
−|∇(u1 − ϕ)|2 +

f1(u1)− f1(ϕ)

u1 − ϕ
(u1 − ϕ)2 − α1u1u2(u1 − ϕ)dx

≤ 2

∫
B
−|∇(u1 − ϕ)|2 + c(x)(u1 − ϕ)2 +

K

|B|
‖u2‖L∞(B×(tn−k,tn))dx

≤ −2

∫
B

[
|∇(u1 − ϕ)|2 − c(x)(u1 − ϕ)2

]
dx+K‖u2‖L∞(B×(tn−k,tn))

≤ δ
(
− 2‖u1(·, t)− ϕ‖2L2(B) + γ

)
(5.51)

for t ∈ (tn∗ − k, tn∗).
Let

τ := inf

{
t ∈ (tn∗ − k , tn∗) : ‖u1(·, s)− ϕ‖2L2(B) > γ for all s ∈ (t , tn∗)

}
.

Then by (5.51)

d

dt
‖u1(·, t)− ϕ‖2L2(B) ≤ −δ‖u1(·, t)− ϕ‖2L2(B) (5.52)

for t ∈ [τ, tn∗ ]. Thus, (5.42), (5.52), and Gronwall’s inequality yield

γ < ‖u1(·, tn∗)− ϕ‖2L2(B) ≤ e
−δ(tn∗−τ)‖u1(·, τ)− ϕ‖2L2(B). (5.53)
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If τ > tn∗ − k, then by continuity ‖u1(·, τ)− ϕ‖2L2(B) = γ which yields a

contradiction with (5.53). Then τ = tn∗ − k, but this implies

γ < ‖u1(·, tn∗)− ϕ‖2L2(B) ≤ e
−δk‖u1(·, tn∗ − k)− ϕ‖2L2(B)

≤ e−δk|B| ‖u1 − ϕ‖2L∞(B×(0,∞)) < γ,

by (5.53) and (5.48), again a contradiction.

Therefore z̃ ≡ ϕ. Since we can argue similarly for (0, z̃) ∈ ω(u1, u2) with

z̃ 6≡ 0 the proof is finished.

Proof of Theorem 5.2. The result follows from Theorem 5.16 once we prove

that (0, 0) 6∈ ω(u1, u2). We argue by contradiction. Let tn → ∞ be an

increasing sequence such that (u1(·, tn), u2(·, tn))→ (0, 0) in C0(B)×C0(B)

as n→∞ and let ψ ∈ C2(B) ∩ C0(B) be the solution of

−∆ψ = λ1ψ in B,

ψ = 0 on ∂B,

ψ > 0 in ∂B,

(5.54)

with ‖ψ‖L∞(B) = 1.

By assumption ( E2 ) there is c > 0 such that f ′i(0) > c+ λ1 for i = 1, 2.

Then, using that f ′i is decreasing (since fi is concave) and that fi(0) = 0,

i = 1, 2, we get by integration by parts that

∂t

∫
B
ui(x, t)ψ(x)dx =

∫
B

∆uiψ(x) + fi(ui)ψ(x)− αi(x, t)u1u2ψ(x)dx

≥
∫
B

[(−λ1 + f ′i(ui))ui − αi(x, t)u1u2]ψ(x)dx

≥ Ψ(t)

∫
B
uiψ(x)dx, (5.55)

for t > 0, where Ψ : [0,∞)→ R is a continuous function given by

Ψ(t) := inf
x∈B

i,j∈{1,2}, i 6=j,

(−λ1 + f ′i(ui(x, t))−Muj(x, t)),

with

M := max
i=1,2

‖αi‖L∞(B×(0,∞)).

Then lim
n→∞

Ψ(tn) > c. Therefore, passing to a subsequence,

Ψ(tn) > c for all n ∈ N.
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Set

τn := inf

{
t ∈ (0, tn) : Ψ(s) > c for all s ∈ (t, tn)

}
for n ∈ N.

Then by (5.55), (5.38), (5.54),

0 ≤
∫
B
ui(x, τn)ψ(x)dx ≤

∫
B
ui(x, tn)ψ(x)dx for n ∈ N, i = 1, 2.

Thus, by (5.39),

lim
n→∞

‖ui(·, τn)‖L∞(B) = 0 for i = 1, 2. (5.56)

Since ui(·, 0) = u0,i 6≡ 0 by hypothesis, we can assume that τn > 0 for

all n ∈ N. Then by continuity Ψ(τn) = c for all n ∈ N. On the other

hand, (5.56) and the definition of Ψ imply that lim
n→∞

Ψ(τn) > c, and we

have reached a contradiction. Thus (0, 0) 6∈ ω(u) and the result follows by

Theorem 5.16.

Proof of Theorem 5.4. We prove first that 0 6∈ ω(u1). We argue by con-

tradiction. Let tn → ∞ be an increasing sequence such that t1 > 1 and

u1(·, tn) → 0 in C0(B) as n → ∞. By assumption there is µ > 0 such that

a1 > µ+ λ1. Let M > 0 be such that

max
i=1,2

‖ui‖L∞(B×(0,∞)) + ‖αi‖L∞(B×(0,∞)) < M,

and k > 0 be such that

e−
a2
2
k <

µ

2M2
. (5.57)

Note that u1 satisfies

(u1)t −∆u1 − cu1 = 0 in B × (0,∞),

u1 = 0 on ∂B × (0,∞),

with

c := a1 − b1u1 − α1u2 ∈ L∞(B × (0,∞)).

Then, by Corollary 5.12 with this choice of k, there is C > 0 such that

‖u1‖L∞(B×[t−k,t]) ≤ C‖u1(·, t)‖L∞(B) for all t > 2k. (5.58)
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In particular, lim
n→∞

‖u1‖L∞(B×[tn−k,tn]) = 0. Then, passing to a subsequence,

we have that

‖u1‖L∞(B×[tn−k,tn]) ≤
a2

2M
for all n ∈ N.

But then

(u2)t −∆u2 = (−a2 − b2u2 + α2u1)u2 ≤ −
a2

2
u2 in B × [tn − k, tn],

u2 = 0 on ∂B × (0,∞),

for all n ∈ N. Then the parabolic maximum principle yields that

‖u2(·, tn)‖L∞(B) ≤ e−
a2
2
k‖u2(·, tn − k)‖L∞(B) < e−

a2
2
kM <

µ

2M
(5.59)

for all n ∈ N, by (5.57).

Let ψ ∈ C2(B) ∩ C0(B) be the solution of (5.54) with ‖ψ‖L∞(B) = 1.

Then, for t > 0, we get by integration by parts that

∂t

∫
B
u1(x, t)ψ(x)dx =

∫
B

∆u1ψ(x) + (a1 − b1u1 − α1(x, t)u2)u1ψ(x)dx

≥
∫
B

(−λ1 + a1 − b1u1 − α1(x, t)u2)u1ψ(x)dx

> Ψ(t)

∫
B
u1(x, t)ψ(x)dx, (5.60)

where Ψ : [0,∞)→ R is a continuous function given by

Ψ(t) := inf
x∈B

(µ− b1u1(x, t)−Mu2(x, t)).

By (5.59),

Ψ(tn) >
µ

2
− b1‖u1(·, tn)‖L∞(B),

for all n ∈ N. Then lim inf
n→∞

Ψ(tn) ≥ µ
2 . After passing to a subsequence, we

may assume that Ψ(tn) ≥ µ
3 for all n ∈ N. Let

τn := inf

{
t ∈ (0, tn) : Ψ(s) ≥ µ

3
for all s ∈ (t, tn)

}
for n ∈ N. Then, by (5.60) and the nonnegativity of u1 and ψ,

0 ≤
∫
B
u1(x, τn)ψ(x)dx ≤

∫
B
u1(x, tn)ψ(x)dx for all n ∈ N.

Then

lim
n→∞

‖u1(·, τn)‖L∞(B) = 0. (5.61)
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Since u1 > 0 in B×(0,∞) we can assume that, passing to a subsequence,

τn > 2k for all n ∈ N. Then, by (5.58) and (5.61) we get, again up to a

subsequence, that

‖u1‖L∞(B×[τn−k,τn]) ≤
a2

2M
for all n ∈ N.

Arguing as before this implies that ‖u2(·, τn)‖L∞(B) <
µ

2M and therefore

lim inf
n→∞

Ψ(τn) ≥ µ
2 . On the other hand, by the continuity of Ψ and the def-

inition of τn, we have that Ψ(τn) = µ/3 for all n ∈ N. We have reached a

contradiction. Therefore 0 6∈ ω(u1) and in particular (0, 0) 6∈ ω(u). Then

the claim follows by Theorem 5.16.

5.3.2 Systems as asymptotically symmetric equations

In this subsection B ⊂ RN denotes a ball.

Proof of Theorem 5.5. Note that

(u1)t = ∆u1 + a1(t)u2
1 − b1(t)u1 + g(x, t), in B × (0,∞),

u1 = 0 on ∂B × (0,∞)

where g(x, t) := −α1(|x|, t)u1(x, t)u2(x, t). By our assumptions, g ≡ 0 on

∂B × (0,∞).

Let (z, 0) ∈ ω(u) with z 6≡ 0. The radial symmetry of z will follow

from [25, Theorem 2.2] once we have proved that

i) The functions u1(·, t) : B → R with t ≥ 1 are equicontinuous.

ii) lim
t→∞
‖g‖LN+1(B×(t , t+1)) = 0.

iii) lim inf
t→∞

u(x, t) > 0 for all x ∈ B.

The claim i) follows easily from our assumptions and Lemma 2.9. For

the claims i) and ii), suppose for the moment that

if 0 ∈ ω(ui) for some i = 1, 2, then ω(ui) = {0}. (5.62)

Then since (z, 0) ∈ ω(u) we have by (5.62) that u2(·, t)→ 0 as t→∞, and

claim ii) follows since α1 and u1 are uniformly bounded.

Moreover, since z 6≡ 0, (5.62) implies that

0 6∈ ω(u1). (5.63)
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Now, note that ui satisfies

(ui)t −∆ui − ciui = 0 in B × (0,∞),

ui = 0 on ∂B × (0,∞)

with ci ∈ L∞(B × (0,∞)) given by

ci(x, t) := ai(t)ui(x, t)− bi(t)− αi(|x|, t)uj(x, t)

for i, j = 1, 2, with i 6= j.

Then, by Corollary 5.12 with k = 1, there are C ≥ 1 and ϑ > 0 such

that

C ≥ ui(x, τ + t)

‖ui(·, τ)‖L∞(B)
≥ C−1 dist(x, ∂B)ϑ (5.64)

for all x ∈ B, t ∈ [−1, 1], τ ≥ 2, and i = 1, 2.

Therefore, by (5.64) and (5.63), we have that

lim inf
t→∞

u1(x, t) ≥ C−1 dist(x, ∂B)ϑ lim inf
t→∞

‖u1(·, t)‖L∞(B) > 0

for all x ∈ B. Therefore the iii) follows.

Thus, it only remains to prove that (5.62) holds. We show this claim for

i = 2 and the same arguments hold for i = 1. Indeed, let tn →∞ as n→∞
be an increasing sequence such that t1 > 1 and (u1(·, tn), u2(·, tn)) → (z, 0)

in C0(B)× C0(B) as n→∞.
By making C bigger, we may assume that

‖a2‖L∞(0,∞) ≤ C. (5.65)

Since u2(·, tn)→ 0 in C0(B) as n→∞, there is n̄ ∈ N such that

‖u2(·, tn̄)‖L∞(B) ≤
b∗

2C2
. (5.66)

Then, by (5.64), we have that

‖u2‖L∞(B×[tn̄,tn̄+1)] ≤ C‖u2(·, tn̄)‖L∞(B)) ≤
b∗
2C

. (5.67)

Moreover, since α2u1 ≥ 0 in B × (0,∞), we have by (5.65), (5.66), and

(5.67) that

(u2)t −∆u2 ≤ (C‖u2‖L∞(B×[tn̄,tn̄+1)] − b∗)u2 ≤ −
b∗
2
u2
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in B × [tn̄, tn̄ + 1]. Then the parabolic maximum principle yields that

‖u2(·, tn̄ + 1)‖L∞(B) ≤ e−
b∗
2 ‖u2(·, tn̄)‖L∞(B)) <

b∗
2C2

.

Therefore, by (5.64),

‖u2‖L∞(B×[tn̄+1,tn̄+2]) ≤ C‖u2(·, tn̄ + 1)‖L∞(B)) <
b∗
2C

.

Arguing as before we get that

(u2)t −∆u2 ≤ −
b∗
2
u2 in B × [tn̄ + 1, tn̄ + 2].

Thus

‖u2(·, tn̄ + 2)‖L∞(B) ≤ e−
b∗
2 ‖u2(·, tn̄ + 1)‖L∞(B)) <

b∗
2C2

.

Repeating this process indefinitely we obtain that

(u2)t −∆u2 ≤ −
b∗
2
u2 in B × [tn̄,∞).

Therefore

lim
t→∞
‖u2(·, t)‖L∞(B) ≤ lim

t→∞
e−

b∗
2

(t−tn̄)‖u2(·, tn̄)‖L∞(B)) = 0.

Then ω(u2) = {0} and this ends the proof.
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Zusammenfassung

In dieser Arbeit studieren wir die Symmetrieeigenschaften von Lösungen

von verschiedenen elliptischen und parabolischen Gleichungen und Syste-

men. Von nun an sei B eine Kugel oder ein Annulus in RN , N ≥ 2. Wir ar-

beiten mit einer besonderen Art von Symmetrie, welche geblätterte Schwarz-

Symmetrie genannt wird. Wir sagen, dass eine Funktion u ∈ C(B) geblättert

Schwarz-symmetrisch bezüglich eines Vektors p ∈ SN−1 ist, wenn u axial-

symmetrisch bezüglich der Achse Rp und nichtwachsend in dem Polarwinkel

θ := arccos( x
|x| · p) ∈ [0, π] ist.

Sei

IB := {|x| : x ∈ B}, B(e) := {x ∈ B : x · e > 0},
σe : B → B; x 7→ σe(x) := x− 2(x · e)e.

Das folgende Resultat ist ein hinreichendes Kriterium für asymptotis-

che Symmetrie von Lösungen von Reaktionsdiffusions-Gleichungen unter

Dirichlet-Randbedingungen.

Satz 1. Sei u ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞)) eine klassische Lösung

von
ut = ∆u+ f(t, |x|, u), x ∈ B, t > 0,

u(x, t) = 0, x ∈ ∂B, t > 0,

u(x, 0) = u0(x), x ∈ B,
(5.68)

wobei

(f1) f : [0,∞)× IB ×R→ R, (t, r, u) 7→ f(t, r, u) ist stetig in t, r und lokal

Lipschitz in u, gleichmäßig bezüglich t und r, d.h. für alle K > 0 gibt

es L = L(K) > 0 derart, dass

|f(t, r, u1)− f(t, r, u2)| ≤ L|u1 − u2|

für alle (t, r) ∈ [0,∞)× IB und u1, u2 ∈ [−K,K].

(f2) f(·, ·, 0) ist beschränkt auf [0,∞)× IB.

I
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(U1) Es gibt e ∈ SN−1 mit u0 ≥ u0 ◦ σe und u0 6≡ u0 ◦ σe in B(e).

(U2) ‖u‖L∞(B×(0,∞)) <∞.

Dann gibt es ein p ∈ SN−1 derart, dass u asymptotisch geblättert Schwarz-

symmetrisch bezüglich p ist, d.h. alle Elemente in

ω(u) = {z ∈ C(B) : ‖u(·, tn)− z‖L∞(B) → 0 für eine Folge tn →∞}

sind geblättert Schwarz-symmetrisch bezüglich p ∈ SN−1.

Unmittelbar folgt für das elliptische und das parabolische zeitperiodische

Problem das folgende

Korollar 2. (i) Sei f : IB ×R→ R, (r, u) 7→ f(r, u) stetig in r ∈ IB und

lokal Lipschitz in u, gleichmäßig bezüglich r. Ferner sei u ∈ C2(B)

eine klassische Lösung des elliptischen Problems

−∆u = f(|x|, u) in B,

u(x) = 0 auf ∂B

derart, dass (U1) für u anstelle von u0 gilt. Dann ist u geblättert

Schwarz-symmetrisch bzgl. eines Vektors p ∈ SN−1.

(ii) Angenommen, f : [0,∞)× IB × R→ R erfülle (f1) und sei periodisch

in t, d.h. es gibt T > 0 mit f(t + T, r, u) = f(t, r, u) für alle t ≥ 0,

r ∈ IB und u ∈ R. Ferner sei u ∈ C2,1(B × (0,∞)) ∩ C(B × [0,∞))

eine T -periodische Lösung von (5.68), d.h., u(x, t + T ) = u(x, t) für

alle x ∈ B und t ≥ 0, für die (U1) gilt. Dann ist u(·, t) geblättert

Schwarz-symmetrisch bzgl. eines Vektors p ∈ SN−1 für alle Zeiten

t ∈ [0,∞).

Alle nachstehenden Sätze in dieser Zusammenfassung haben ähnliche

Korollare für das entsprechende elliptische und zeitperiodische parabolische

Problem.

Unser nächstes Ergebnis behandelt nichtlineare parabolische Probleme

mit Neumann Randbedingungen.

Satz 3. Sei u ∈ C2,1(B × (0,∞))∩ (B × [0,∞)) eine klassische Lösung von

ut − µ(|x|, t)∆u = f(t, |x|, u), x ∈ B, t > 0,

∂νu = 0, x ∈ ∂B, t > 0,

u(x, 0) = u0(x), x ∈ B,

wobei
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(µ) µ ∈ C1(IB × (0,∞)) und es gibt Konstanten µ∗ ≥ µ∗ > 0 derart, dass

‖µi‖C1(IB×(0,∞)) ≤ µ∗ und µi(r, t) ≥ µ∗ für alle r ∈ IB und t > 0.

Ferner seien die Voraussetzungen (f1), (f2), (U1) und (U2) aus Satz 1 erfüllt,

dann gibt es ein p ∈ SN−1 derart, dass jedes Element z ∈ ω(u) geblättert

Schwarz-symmetrisch bzgl. p ∈ SN−1 ist.

Wir betonen, dass dieses Ergebnis, wie auch Satz 1 nicht nur für positive

Lösungen gilt. Die folgenden Resultate sind parabolischen Systemen gewid-

met. Wir betrachten zunächst ein kompetitives System unter Neumann-

Randbedingungen. Hier ν ist der außere Normalenvektor.

Satz 4. Sei u1, u2 ∈ C2,1(B × (0,∞))∩C(B × [0,∞)) nicht-negative Funk-

tionen derart, dass u = (u1, u2) eine Lösung von

(ui)t − µi(|x|, t)∆ui = fi(t, |x|, ui)− αi(|x|, t)u1u2, x ∈ B, t > 0,

∂νui = 0, x ∈ ∂B, t > 0,

ui(x, 0) = ui0(x), x ∈ B,

ist, wobei

(h1) für i = 1, 2, ist die Funktion fi : [0,∞) × IB × [0,∞) lokal Lipschitz

stetig in ui gleichmäßich bzgl. r und t, d.h.,

sup
r∈IB , t>0,
v,v̄∈K, v 6=v̄

|fi(t, r, v)− fi(t, r, v̄)|
|v − v̄|

<∞

für jede kompakte Teilmenge K ⊂ [0,∞). Ferner gilt fi(t, r, 0) = 0 für

alle r ∈ IB und t > 0.

(h2) µi ∈ C2,1(IB × (0,∞)) und es gibt Konstanten µ∗ ≥ µ∗ > 0 derart,

dass ‖µi‖C2,1(IB×(0,∞)) ≤ µ∗ und µi(r, t) ≥ µ∗ für alle r ∈ IB, t > 0

und i = 1, 2.

(h3) αi ∈ L∞(IB × (0,∞)) und es gibt Konstanten α∗ ≥ α∗ > 0 derart,

dass α∗ ≤ αi(r, t) ≤ α∗ für alle r ∈ IB, t > 0 und i = 1, 2.

(h4) ‖ui‖L∞(B×(0,∞)) <∞ für i = 1, 2,

(h5) u1
0 ≥ u1

0 ◦ σe, u2
0 ≤ u2

0 ◦ σe in B(e) für einen e ∈ SN−1 mit ui0 6≡ ui0 ◦ σe
für i = 1, 2.

Dann gibt es p ∈ SN−1 derart, dass für alle (z1, z2) ∈ ω(u), z1 geblättert

Schwarz-symmetrisch bzgl. p ist, und z2 geblättert Schwarz-symmetrisch

bzgl. −p ist.
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Das nächste Ergebnis charakterisiert die asymptotische Gestalt von

Lösungen von kooperativen Systemen von n Gleichungen.

Satz 5. Sei J := {1, 2, . . . , n} für ein n ∈ N und für jedes i ∈ J sei ui ∈
C2,1(B × (0,∞)) ∩C(B × [0,∞)) derart, dass u = (u1, . . . , un) eine Lösung

von
(ui)t = ∆ui + Fi(t, |x|, u), x ∈ B, t > 0,

∂νui = 0, x ∈ ∂B, t > 0,

ui(x, 0) = ui0(x), x ∈ B,

ist, wobei

(A1) Für jedes i ∈ J, ist die Funktion Fi : [0,∞) × IB × Rn → R lokal

Lipschitz in u, gleichmäßig bzgl. r und t, d.h., für jede kompakte

Teilmenge K ⊂ Rn gibt es ein C(K) = C > 0 mit

sup
r∈IB , t>0,
v,v̄∈K, v 6=v̄

|Fi(t, r, v)− Fi(t, r, v̄)|
|v − v̄|

< C.

Ferner gilt max
i∈J

sup
r∈IB ,t>0

|Fi(t, r, 0)| <∞.

(A2) Für alle i, j ∈ J, i 6= j gilt ∂Fi(t, r, u)/∂uj ≥ 0 für alle t ∈ [0,∞),

r ∈ IB und u ∈ Rn, für welche die Ableitung existiert.

(A3) Für jedes M > 0 gibt es eine Konstante σ = σ(M) > 0 derart, dass für

jede Wahl von nichtleeren Teilmengen I1, I2 ⊂ J, mit I1 ∩ I2 = ∅ und

I1
⋃
I2 = J, es i ∈ I1 und j ∈ I2 gibt derart, dass ∂Fi(t, r, u)/∂uj ≥ σ

für alle r ∈ IB, t ∈ [0,∞), u ∈ Rn, für die |u| ≤M und die Ableitung

existiert.

(A4) Es gibt ein e ∈ SN−1 derart, dass ui0 6≡ ui0 ◦ σe und ui0(x) ≥ ui0(σe(x))

für alle x ∈ B(e) und i ∈ J.

Ferner gelte

max
i∈J
‖ui‖L∞(B×(0,∞)) <∞.

Dann gibt es ein p ∈ SN−1 derart, dass z geblättert Schwarz symmetrisch

bzgl. p ∈ SN−1 für alle z ∈
n⋃
i=1

ω(ui) ist.

Das folgende Resultat ist einer Klasse von kubischen kompetitiven Sys-

temen gewidmet.
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Satz 6. Seien λi, γi und αi positive Konstanten und u1, u2 ∈ C2,1(B ×
(0,∞)) ∩ C(B × [0,∞)) nichtnegative Funktionen derart, dass u = (u1, u2)

eine Lösung von

(u1)t −∆u1 = λ1u1 + γ1u
3
1 − α1u1u

2
2 in B × (0,∞),

(u2)t −∆u2 = λ2u2 + γ2u
3
2 − α2u

2
1u2 in B × (0,∞),

∂νu1 = ∂νu2 = 0 auf ∂B × (0,∞),

ui(x, 0) = ui0(x) ≥ 0 für x ∈ B, i = 1, 2,

ist, und (h4) und (h5) aus Satz 4 erfüllt. Dann gibt es p ∈ SN−1 derart,

dass für alle (z1, z2) ∈ ω(u1, u2), z1 geblättert Schwarz-symmetrisch bzgl. p

und z2 geblättert Schwarz-symmetrisch bzgl. −p ist.

Wir beweisen ähnliche Sätze auch für Dirichlet-Randbedingungen. Ins-

besondere haben wir folgendes

Satz 7. Seien u1, u2 ∈ C2,1(B×(0,∞))∩C(B× [0,∞)) nichtnegative Funk-

tionen derart, dass u = (u1, u2) eine Lösung von

(ui)t − µi(|x|, t)∆ui = fi(t, |x|, ui)− αi(|x|, t)u1u2, x ∈ B, t > 0,

ui(x, t) = 0, x ∈ ∂B, t > 0,

ui(x, 0) = ui0(x), x ∈ B,

für i = 1, 2 ist, wobei

(h1)D für i = 1, 2, ist die Funktion fi : [0,∞)× IB × [0,∞)→ R, (t, r, v) 7→
fi(t, r, v) stetig differenzierbar in v. Ferner sind fi und ∂vfi Hölder

stetig in t und r für alle v ∈ [0,∞), und lokal Lipschitz stetig in v

gleichmäßig bzgl. t und r. D.h., es gibt γ > 0 derart, dass für jede

h ∈ {fi, ∂vfi : i = 1, 2},

h(·, ·, v) ∈ Cγ,γ/2(B × (0,∞)) für alle v ∈ [0,∞)

und

sup
r∈IB ,t>0,
v,v̄∈K,v 6=v̄

|h(t, r, v)− h(t, r, v̄)|
|v − v̄|

<∞,

für jede kompakte Teilmenge K ⊂ [0,∞). Ferner gilt fi(t, r, 0) = 0 für

alle r ∈ IB, t > 0, und i ∈ {1, 2},

(h2)D Es gibt α∗, α∗, und β derart, dass αi ∈ Cβ,β/2(IB × (0,∞)) und

α∗ ≤ αi(r, t) ≤ α∗ für alle r ∈ IB, t > 0, und i ∈ {1, 2},
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und die Annahme (h5) aus Satz 4 erfüllt ist. Dann gibt es p ∈ SN−1 derart,

dass für alle (z1, z2) ∈ ω(u1, u2), z1 geblättert Schwarz-symmetrisch bzgl. p

und z2 geblättert Schwarz-symmetrisch bzgl. −p ist.

Für die Beweise dieser Ergebnisse wird eine neue Variante der Moving-

Plane bzw. Rotating-Plane Methode entwickelt, welche die Ideen früherer

Varianten verbindet und weiterentwickelt.

Für autonome Systeme können wir asymptotische radiale Symmetrie in

Spezialfällen beweisen.

Satz 8. Seien u1, u2 ∈ C2,1(B × (0,∞)) ∩C(B × [0,∞)) ∩ L∞(B × (0,∞))

nichtnegative Funktionen derart, dass u = (u1, u2) eine Lösung von

(ui)t −∆ui = fi(ui)− αi(|x|, t)u1u2 in B × (0,∞),

ui = 0 auf ∂B × (0,∞),

ui(x, 0) = ui0(x) ≥ 0 für alle x ∈ B, i = 1, 2,

ist, wobei u0,i ∈ C0(B), u0,i 6≡ 0, αi ∈ L∞(IB × (0,∞)),

( E1 ) fi ∈ C1([0,∞)) strikt konkav in [0,∞), fi(0) = 0 und fi(s) → −∞
für s→∞, für i = 1, 2.

( E2 ) f ′i(0) > λ, wobei λ > 0 der erste Eigenwert des Laplace-Operators in

B mit Dirichlet-Randbedingungen ist.

Sei (z1, z2) ∈ ω(u1, u2) derart, dass zi 6≡ 0 und zj ≡ 0 für i, j ∈ J. Dann ist

zi radialsymmetrisch. Ferner ist zi ∈ H1
0 (B) ∩ C(B) die eindeutige positive

schwache Lösung des elliptischen Problems −∆ϕ = fi(ϕ) in B.

Der Beweis von Satz 8 benutzt Stabilitätseigenschaften von autonomen

Problemen mit konvexen Nichtlinearitäten und einige Abschätzungen für

Quotienten von Lösungen von linearen Problemen.

Der Satz 8 benötigt keine Annahme bzgl. des Vorzeichens von α1 und

α2. Deswegen kann man auch kooperative, kompetitive und Räuber - Beute

Modelle mit Dirichlet-Randbedingungen betrachten, wie z.B.

(u1)t −∆u1 = a1u1 − b1u2
1 − α1(x, t)u1u2 in B × (0,∞),

(u2)t −∆u2 = a2u2 − b2u2
2 + α2(x, t)u1u2 in B × (0,∞),

ui = 0 auf ∂B × (0,∞),

ui(x, 0) = u0,i(x) für alle x ∈ B, i = 1, 2.

wobei u0,1 , u0,2 ∈ C0(B) nicht identisch Null sind, a1 > λ1, a2 > λ b1 > 0,

b2 > 0 und α1, α2 ∈ L∞(B × (0,∞)) nichtnegative Funktionen sind.
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2013 “Asymptotic partial symmetry of elliptic and parabolic nonlinear prob-
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