On fractional Figher-order powers of the Laplacian.
(joint work with Nicola Abatangelo and Sven Jarohs)

Satellite Conference on $\mathcal{N o n l i n e a r ~ P a r t i a l ~ D i f f e r e n t i a l ~ E q u a t i o n s , ~}$ Fortaleza-Brazil \mid July 26, 2018.

This ends the proof.
Alberto Saldaña

Consider the problem

$$
\left\{\begin{aligned}
-\Delta u & =u-u^{3} & & \text { in } Q:=[0,10] \times[0,10] \\
u & =0 & & \text { on } \partial Q .
\end{aligned}\right.
$$

\mathcal{A} positive solution

- exists,
- is unique,
- is bounded by 1,
- is stable,
- is symmetric,
- is monotone,
- achieves its maximum at the origin.

On the other hand, consider the problem

$$
\left\{\begin{aligned}
\Delta^{2} u=u-u^{3} & \text { in } Q:=[0,10] \times[0,10] \\
\Delta u=u=0 & \text { or } \partial_{v} u=u=0 \quad \text { on } \partial Q
\end{aligned}\right.
$$

Positive solutions

- can be approximated numerically,
- uniqueness is not known,
- are not bounded by 1,
- stability is not known,
- symmetry probably folds, but is not clear due to the many oscillations at $\{u=1\}$,
- are not monotone,
- achieve their maximum close to the
 corners and not at the origin.

Similar things happen in annuli.

$$
-u^{\prime \prime}=u-u^{3} \quad v s \quad u^{\prime \prime \prime \prime}=u-u^{3} \quad \text { in } \mathbb{R}
$$

$-\Delta$

Δ^{2}

Pictures taken from: L.A. Peletier and W.C. Troy. Spatial patterns.

Even on linear problems there are important differences

$$
\begin{gathered}
\left\{\begin{array}{cc}
-\Delta u=f>0 & \text { in } E:=\left\{x^{2}+25 y^{2}<1\right\}, \\
u=0 & \text { on } \partial E .
\end{array}\right. \\
\left\{\begin{array}{cc}
(-\Delta)^{2} u=f>0 & \text { in } E:=\left\{x^{2}+25 y^{2}<1\right\}, \\
\partial_{v} u=u=0 & \text { on } \partial E .
\end{array} \Longrightarrow u>0 \text { in } E,\right. \\
\text { (Shapiro-Tegmark, 1994) }
\end{gathered}
$$

How does this happen?

Let us look at the intermediate powers of the Laplacian: $(-\Delta)^{s}$ fors $\in(1,2)$.

Some fractional questions:

- If u_{s} is the solution of $(-\Delta)^{s} u_{s}=f+6 . c .$, is $s \mapsto u_{s}$ continuous in some sense?
- If $(-\Delta)^{2}$ requires two boundary conditions for well-posedness and $-\Delta$ only one, what happens with the extra boundary condition as $s \searrow 1$?
- Are solutions increasingly "bad"as s $\nearrow 2$ or is it essentially the same for any $s>1$?
- Is the Green function for $(-\Delta)^{s}$ in the ellipse $E=\left\{x^{2}+25 y^{2}<1\right\}$ sign-changing for all $s>1$?

Pointwise evaluation of $(-\Delta)^{s}$ for $s \in(1,2)$

Let $N \in \mathbb{N}, s \in(0,2)$, then

$$
(-\Delta)^{s} u(x):=c_{N, s} \int_{\mathbb{R}^{N}} \frac{u(x+2 y)-4 u(x+y)+6 u(x)-4 u(x-y)+u(x-2 y)}{|y|^{N+2 s}} d y .
$$

\mathscr{H} ere $c_{N, s}>0$ is a normalization constant such that $\mathscr{F}\left((-\Delta)^{s} u\right)=|\xi|^{2 s} \mathscr{F} u$.

In particular, for a suitable (fixed) function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$,

$$
\lim _{s \not 2}(-\Delta)^{s} u(x)=(-\Delta)^{2} u(x) \quad \text { and } \quad \lim _{s \searrow 1}(-\Delta)^{s} u(x)=-\Delta u(x)
$$

Intuition:

$$
\lim _{t \rightarrow 0} \frac{f(0)-f(t)}{t}=f^{\prime}(0), \quad \lim _{t \rightarrow 0} \frac{f(2 t)-4 f(t)+6 f(0)-4 f(-t)+f(-2 t)}{t^{4}}=f^{\prime \prime \prime \prime}(0)
$$

Nontiomogeneous linear problems in a ball $B:=\{|x|<1\}$

Let $s \in(1,2)$,

$$
\begin{aligned}
& (-\Delta)^{s} u(x):=c_{N, s} \int_{\mathbb{R}^{N}} \frac{u(x+2 y)-4 u(x+y)+6 u(x)-4 u(x-y)+u(x-2 y)}{|y|^{N+2 s}} d y . \\
& \left\{\begin{aligned}
-\Delta u=f & \text { in } B, \\
u=g & \text { on } \partial B .
\end{aligned}\right. \\
& \left\{\begin{aligned}
\Delta^{2} u=f & \text { in } B, \\
u=h & \text { on } \partial B, \\
-\partial_{v} u=g & \text { on } \partial B .
\end{aligned}\right.
\end{aligned}
$$

Note that: $\quad 2-s \in(0,1)$,

$$
\begin{array}{rlrl}
(-\Delta)^{s} u & =f & \text { in } B, \\
u & =v & \text { on } \mathbb{R}^{N} \backslash B, \\
\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u(x) & =h(z) & & \text { for } z \in \partial B, \\
\lim _{x \rightarrow z}-\partial_{V}\left[\left(\left(1-|x|^{2}\right)^{2-s} u(x)\right)\right] & =g(z) & & \text { for } z \in \partial B .
\end{array}
$$

The Green function, $s \in(1,2)$

$$
\begin{aligned}
(-\Delta)^{s} u & =f
\end{aligned} \quad \text { in } B, ~ 子 \begin{aligned}
& \text { on } \mathbb{R}^{N} \backslash B,
\end{aligned}
$$

$$
\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u(x)=0 \quad \text { for } z \in \partial B,
$$

$$
\lim _{x \rightarrow z}-\partial_{\nu}\left(\left(1-|x|^{2}\right)^{2-s} u(x)\right)=0 \quad \text { for } z \in \partial B
$$

The unique solution is

$$
u(x)=\int_{B} G_{s}(x, y) f(y) d y \quad(\text { note that } u>0 \text { iff }>0)
$$

where (Dipierro-Grunau, 2016), (Abatangelo, Jarohs, S., 2016)

$$
G_{s}(x, y)=k_{N, s}|x-y|^{2 s-N} \int_{0}^{\frac{\left(1-|x|^{2}\right)_{+}\left(1-|y|^{2}\right)_{+}}{|x-y|^{2}}} \frac{t^{s-1}}{(t+1)^{\frac{N}{2}}} d t, \quad x, y \in \mathbb{R}^{N}, \quad x \neq y
$$

The nonlocal Poisson Kernel, $s \in(1,2)$

$$
\begin{aligned}
& (-\Delta)^{s} u=0 \quad \text { in } B, \\
& u=v \quad \text { on } \mathbb{R}^{N} \backslash B,
\end{aligned}
$$

$$
\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u(x)=0 \quad \text { for } z \in \partial B
$$

$\lim _{x \rightarrow z}-\partial_{v}\left(\left(1-|x|^{2}\right)^{2-s} u(x)\right)=0 \quad$ for $z \in \partial B$.

The unique solution is

$$
u(x)=\int_{\mathbb{R}^{N} \backslash B} \Gamma_{s}(x, y) v(y) d y
$$

(note that $u<0$ ifv >0),
where (Abatangelo, Jarohs, S. 2017)

$$
\Gamma_{s}(x, y)=(-1) \gamma_{N, s} \frac{\left(1-|x|^{2}\right)_{+}^{s}}{\left(|y|^{2}-1\right)^{s}|x-y|^{N}} \quad \text { for } x \in \mathbb{R}^{N}, y \in \mathbb{R}^{N} \backslash \bar{B}
$$

The boundary Poisson Kernels, $s \in(1,2)$

$$
\begin{aligned}
(-\Delta)^{s} u=0 & \text { in } B \\
u & =0 \\
& \text { on } \mathbb{R}^{N} \backslash B
\end{aligned}
$$

$\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u(x)=h(z) \quad$ for $z \in \partial B$,
$\lim _{x \rightarrow z}-\partial_{v}\left(\left(1-|x|^{2}\right)^{2-s} u(x)\right)=0 \quad$ for $z \in \partial B$.

The unique solution is

$$
\left.u(x)=\int_{\partial B} E_{0, s}(x, z) h(z) d z \quad \text { (note that } u>0 \text { ifh }>0 \text { and } N \leq 4\right)
$$

where (Abatangelo, Jarohs, S. 2017)

$$
E_{0, s}(x, z)=\frac{1}{4 \omega_{N}} \frac{\left(1-|x|^{2}\right)^{s}}{|x-z|^{N+2}}\left(N\left(1-|x|^{2}\right)+(4-N)|x-z|^{2}\right) \quad \text { for } x \in \mathbb{R}^{N}, y \in \partial B
$$

The boundary Poisson Kernels, $s \in(1,2)$

$$
\begin{aligned}
&(-\Delta)^{s} u=0 \\
& \text { in } B, \\
& u=0 \\
& \text { on } \mathbb{R}^{N} \backslash B
\end{aligned}
$$

$$
\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u(x)=0 \quad \text { for } z \in \partial B
$$

$$
\lim _{x \rightarrow z}-\partial_{v}\left(\left(1-|x|^{2}\right)^{2-s} u(x)\right)=g(z) \quad \text { for } z \in \partial B
$$

The unique solution is

$$
u(x)=\int_{\partial B} E_{1, s}(x, z) g(z) d z
$$

(note that $u>0$ if $g>0$),
where (Abatangelo, Jarohs, S. 2017)

$$
E_{1, s}(x, z)=\frac{1}{\omega_{N}} \frac{\left(1-|x|^{2}\right)^{s}}{|x-z|^{N}} \quad \text { for } x \in \mathbb{R}^{N}, y \in \partial B
$$

Some previous results

$s \in \mathbb{N}$:
Green function: Green (1828), Boggio (1905).
Poisson Kernels: Poisson (1820), Lauricella-Volterra (1896), Edenhofer (1974).
$s \in(0,1):$
Green function: Blumental-Getoor-Ray (1961).
Nonlocal Poisson Kernel: Riesz (1937).
Boundary Poisson kernel: Bogdan (1999).

Applications: Representation formulas, $s \in(1,2)$

Theorem (Abatangelo, Jarohs, S. 2017)
Let $r>1$ and $u \in \mathscr{L}_{s}^{1} \cap C^{2 s+\alpha}(B)(2 s+\alpha \notin \mathbb{N})$ be such that

$$
\left(1-|x|^{2}\right)^{2-s} u \in C^{1+\alpha}(\bar{B}), \quad(-\Delta)^{s} u \in C^{\alpha}(\bar{B}), \quad \text { and } \quad u=0 \quad \text { in } B_{r} \backslash \bar{B} .
$$

Then, for $x \in B$,

$$
\begin{aligned}
u(x)= & \int_{B} G_{s}(x, y)(-\Delta)^{s} u(y) d y+\int_{\mathbb{R}^{N} \backslash \bar{B}} \Gamma_{s}(x, y) u(y) d y \\
& +\int_{\partial B} E_{0, s}(x, \theta) D^{s-2} u(\theta) d \theta+\int_{\partial B} E_{1, s}(x, \theta) D^{s-1} u(\theta) d \theta .
\end{aligned}
$$

$$
\begin{gathered}
D^{s-2} u(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u(x), \quad D^{s-1} u(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u(x)\right] \\
\mathscr{L}_{s}^{1}:=\left\{u \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} \frac{|u(x)|}{1+|x|^{N+2 s}} d x<\infty\right\} .
\end{gathered}
$$

Applications: Characterization ofs -harmonic functions, $s \in(1,2)$

\mathcal{A} function is s-farmonic in B if $(-\Delta)^{s} u=0$ in B.
Theorem (Abatangelo, Jarofis, S. 2017)
If $u \in C^{2 s+\alpha}(B)$ is s-harmonic in $B,\left(1-|x|^{2}\right)^{2-s} u \in C^{m+\alpha}(\bar{B})$, and $u=0$ in $\mathbb{R}^{N} \backslash \bar{B}$, then

$$
u(x)=\int_{\partial B} \frac{\left(1-|x|^{2}\right)_{+}^{s-1}}{|x-\theta|^{N}} g_{0}(\theta)+\frac{\left(1-|x|^{2}\right)_{+}^{s}}{|x-\theta|^{N}} g_{1}(\theta) d \theta
$$

for some uniquefy determined functions $g_{0}, g_{1} \in C(\partial B)$. In particular,

$$
(-\Delta)^{s} u=0 \quad \text { in } B \quad \text { implies that } \quad(-\Delta)^{s+t}\left(\left(1-|x|^{2}\right)^{t} u\right)=0 \quad \text { in } B .
$$

for all $t>1-s$.

Applications: Higher-order fractional \mathcal{H} opf Lemma, $s \in(1,2)$

Theorem (Abatangelo, Jarohs, S. 2017)
Let $f \in C^{\alpha}(\bar{B}) \backslash\{0\}, \alpha \in(0,1)$ be nonnegative and let $u \in \mathscr{H}_{0}^{s}(B)$ be the unique weak solution of

$$
(-\Delta)^{s} u=f \ngtr 0 \quad \text { in } B \quad \text { with } \quad u=0 \quad \text { on } \mathbb{R}^{N} \backslash \bar{B} .
$$

Then,

$$
\lim _{x \rightarrow z} \frac{u(x)}{\left(1-|x|^{2}\right)^{s}}=m_{s} \int_{B} \frac{\left(1-|y|^{2}\right)^{s}}{|y-z|^{N}} f(y) d y>0 \quad \text { for alf } z \in \partial B
$$

\mathcal{A} sign-changing Green function for $s \in(1,2)$

Theorem (Abatangelo, Jarofs, S. 2017)
Let Ω be the union of two disjoint open balls. If G_{Ω}^{s} denotes the Green function of $(-\Delta)^{s}$ in Ω, then G_{Ω}^{s} changes sign.

$$
\text { In } 1 \mathcal{D}: \Omega=(0,1) \cup(2,3), G_{\Omega}^{s}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \text {, }
$$

for $s \in(1,2)$

Sign-changing solutions for $s \in(1,2)$

Theorem (Abatangelo, Iarofs, S. 2016)

Let Ω be the union of two disjoint balls. There is a positive $f \in C^{\infty}(\Omega) \backslash\{0\}$ such that the unique solution of

$$
(-\Delta)^{s} u=f \geqslant 0 \quad \text { in } \Omega, \quad u=0 \quad \text { in } \mathbb{R} \backslash \Omega, \quad D^{s-2} u=D^{s-1} u=0 \quad \text { on } \partial \Omega
$$

changes sign in Ω.

Note: If $N \geq 2$, the two balls can be joined by a thin tube.

What ifs $\nearrow 2 ?$

$$
\begin{gathered}
D^{s-2} u_{s}(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u_{s}(x), \quad D^{s-1} u_{s}(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u_{s}(x)\right] \\
\left\{\begin{aligned}
(-\Delta)^{s} u_{s}=1 & \quad \text { in } B, \\
u_{s}=0 & \text { on } \mathbb{R}^{N} \backslash B, \\
D^{s-1} u_{s}(z)=0 & \text { for } z \in \partial B, \\
D^{s-2} u_{s}(z)=0 & \text { for } z \in \partial B .
\end{aligned}\right. \\
\left\{\begin{aligned}
-u^{2} u_{2}=1 & \text { in } B, \\
-\partial_{v} u_{2}=0 & \text { on } \partial B,
\end{aligned} \quad \text { - the (normalized) } u_{s}\right. \text { approximates the } \\
u_{2}=0 \quad \text { on } \partial B .
\end{gathered}
$$

What ifs $\nearrow 2 ?$

$$
\begin{aligned}
& D^{s-2} u_{s}(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u_{s}(x), \quad D^{s-1} u_{s}(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u_{s}(x)\right] \\
& \left\{\begin{array}{rc}
(-\Delta)^{s} u_{s}=0 & \text { in } B, \\
u_{s}=v & \text { on } \mathbb{R}^{N} \backslash B, \\
D^{s-1} u_{s}(z)=0 & \text { for } z \in \partial B, \\
D^{s-2} u_{s}(z) & =0
\end{array} \quad \text { for } z \in \partial B .\right. \\
& \left\{\begin{aligned}
\Delta^{2} u_{2}=0 & \text { in } B, \\
-\partial_{v} u_{2}=0 & \text { on } \partial B, \\
u_{2}=0 & \text { on } \partial B .
\end{aligned}\right. \\
& \text { - } u_{s} \text { goes uniformly to } 0 \text { (note that } v=0 \text { close } \\
& \text { to } \partial B \text {). }
\end{aligned}
$$

What ifs $\nearrow 2 ?$

$$
\begin{aligned}
& D^{s-2} u_{s}(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u_{s}(x), \quad D^{s-1} u_{s}(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u_{s}(x)\right] \\
& \left\{\begin{array}{rc}
(-\Delta)^{s} u_{s}=0 & \text { in } B, \\
u_{s}=0 & \text { on } \mathbb{R}^{N} \backslash B, \\
D^{s-1} u_{s}(z)=1 & \text { for } z \in \partial B, \\
D^{s-2} u_{s}(z)=0 & \text { for } z \in \partial B .
\end{array}\right. \\
& \left\{\begin{aligned}
\Delta^{2} u_{2}=0 & \text { in } B, \\
-\partial_{v} u_{2}=1 & \text { on } \partial B, \\
u_{2}=0 & \text { on } \partial B .
\end{aligned}\right.
\end{aligned}
$$

- u_{s} goes uniformly to u_{2} "from above"..

What ifs $\nearrow 2 ?$

$$
\begin{aligned}
& D^{s-2} u_{s}(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u_{s}(x), \quad D^{s-1} u_{s}(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u_{s}(x)\right] \\
& \left\{\begin{array}{rr}
(-\Delta)^{s} u_{s}=0 & \text { in } B, \\
u_{s}=0 & \text { on } \mathbb{R}^{N} \backslash B, \\
D^{s-1} u_{s}(z)=0 & \text { for } z \in \partial B, \\
D^{s-2} u_{s}(z)=1 & \text { for } z \in \partial B .
\end{array}\right. \\
& u_{2} \equiv 1 \\
& -1.0 \\
& \text { - } u_{s} \text { goes uniformly to } 1 \text { in compact sets of } \\
& (-1,1) \text { "from above". }
\end{aligned}
$$

What ifs $\searrow 1$?

$$
\begin{array}{cl}
D^{s-2} u_{s}(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u_{s}(x), & D^{s-1} u_{s}(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u_{s}(x)\right] \\
\left\{\begin{aligned}
(-\Delta)^{s} u_{s}=1 & \text { in } B, \\
u_{s}=0 & \text { on } \mathbb{R}^{N} \backslash B, \\
D^{s-1} u_{s}(z)=0 & \text { for } z \in \partial B, \\
D^{s-2} u_{s}(z)=0 & \text { for } z \in \partial B .
\end{aligned}\right. \\
\left\{\begin{aligned}
-\Delta u_{1}=1 & \text { in } B,
\end{aligned}\right. \\
u_{1}=0 & \text { on } \partial B .
\end{array} \begin{array}{ll}
& \text { - The (normalized) } u_{s} \text { approximates the } \\
\text { (normalized) } u_{1} \text { "from below". }
\end{array}
$$

What ifs $\searrow 1$?

$$
\begin{aligned}
& D^{s-2} u_{s}(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u_{s}(x), \\
& \left\{\begin{aligned}
(-\Delta)^{s} u_{s}=0 & D^{s-1} u_{s}(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u_{s}(x)\right] \\
u_{s}=v & \text { on } \mathbb{R}^{N} \backslash B, \\
D^{s-1} u_{s}(z)=0 & \text { for } z \in \partial B, \\
D^{s-2} u_{s}(z)=0 & \text { for } z \in \partial B .
\end{aligned}\right. \\
& \left\{\begin{aligned}
-\Delta u_{1}=0 & \text { in } B, \\
u_{1}=0 & \text { on } \partial B .
\end{aligned}\right.
\end{aligned}
$$

- u_{s} goes uniformly to 0 .

What ifs $\searrow 1$?

$$
\begin{gathered}
D^{s-2} u_{s}(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u_{s}(x) \\
\left\{\begin{aligned}
(-\Delta)^{s} u_{s}=0 & \text { in } B, \\
u_{s}=0 & \text { on } \mathbb{R}^{N} \backslash B, \\
D^{s-1} u_{s}(z)=1 & \text { for } z \in \partial B, \\
D^{s-2} u_{s}(z)=0 & \text { for } z \in \partial B .
\end{aligned}\right. \\
\left\{\begin{aligned}
-\Delta u_{1}=0 & \text { in } B, \\
u_{1}=1 & \text { on } \partial B .
\end{aligned}\right.
\end{gathered}
$$

$$
D^{s-1} u_{s}(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u_{s}(x)\right]
$$

What ifs $\searrow 1 ?$

$$
D^{s-2} u_{s}(z):=\lim _{x \rightarrow z}\left(1-|x|^{2}\right)^{2-s} u_{s}(x)
$$

$$
D^{s-1} u_{s}(z):=\lim _{x \rightarrow z}-\partial_{v}\left[\left(1-|x|^{2}\right)^{2-s} u_{s}(x)\right]
$$

$$
\left\{\begin{array}{rlr}
(-\Delta)^{s} u_{s}=0 & \text { in } B, \\
u_{s}=0 & & \text { on } \mathbb{R}^{N} \backslash B, \\
D^{s-1} u_{s}(z) & =0 & \text { for } z \in \partial B, \\
D^{s-2} u_{s}(z) & =1 & \\
\text { for } z \in \partial B .
\end{array}\right.
$$

$u_{s}(x)=\left(1-|x|^{2}\right)^{s-2} \rightarrow\left(1-|x|^{2}\right)^{-1}$.

$\mathcal{B} u t$, for $N=1$,
$\partial_{x x}\left(1-x^{2}\right)^{-1}=\frac{1}{(x+1)^{3}}-\frac{1}{(x-1)^{3}} \neq 0 . \quad u_{s}$ converges to $\left(1-x^{2}\right)^{-1}$, wfich is

- not integrable,
- not harmonic.

Some fractional questions (revisited):

- If u_{s} is the solution of $(-\Delta)^{s} u_{s}=f+6 . c .$, is $s \mapsto u_{s}$ continuous in some sense?
- If $(-\Delta)^{2}$ requires two boundary conditions for well-posedness and $-\Delta$ only one, what happens with the extra boundary condition as $s \searrow 1$?
- Are solutions increasingly "bad"as s $\nearrow 2$ or is it essentially the same for any $s>1$?
- Is the Green function for $(-\Delta)^{s}$ in the ellipse $E=\left\{x^{2}+25 y^{2}<1\right\}$ sign-changing for all $s>1$?

Some extensions: Generals >0

Let $s \in(0, n), n \in \mathbb{N}$, then

$$
(-\Delta)^{s} u(x):=c_{N, s, n} \int_{\mathbb{R}^{N}} \frac{\sum_{k=-n}^{n}(-1)^{k}\binom{2 n}{n-k} u(x+k y)}{|y|^{N+2 s}} d y
$$

In the ball, the Green function G_{s} and the nonlocal Poisson Kernel Γ_{s} fave the same formula, whereas

$$
E_{k, s}(x, \theta)=\frac{1}{\omega_{N}}\left(1-|x|^{2}\right)_{+}^{s} D^{m-k} \zeta_{x}(\theta), \quad \text { where } \quad \zeta_{x}(y):=\frac{|y|^{N-2}}{|x-y|^{N}}
$$

and

$$
\begin{equation*}
D^{k+\sigma-1} u(z):=\frac{(-1)^{k}}{k!} \lim _{x \rightarrow z} \frac{\partial^{k}}{\partial\left(|x|^{2}\right)^{k}}\left[\left(1-|x|^{2}\right)^{1-\sigma} u(x)\right] \quad \text { for } z \in \partial B \tag{1}
\end{equation*}
$$

Some extensions: The halfspace

Let

$$
\kappa x:=2 \frac{x+e_{1}}{\left|x+e_{1}\right|^{2}}-e_{1}, \quad K_{s} u(x):=\left|x+e_{1}\right|^{2 s-N} u(\kappa x)
$$

Then
$(-\Delta)^{s}\left(K_{s} u\right)(x)=2^{2 s} \frac{K_{s}\left((-\Delta)^{s} u\right)(x)}{\left|x+e_{1}\right|^{4 s}}, \quad$ i.e., $\quad(-\Delta)^{s}\left(\frac{u \circ \kappa(x)}{\left|x+e_{1}\right|^{N-2 s}}\right)=2^{2 s} \frac{(-\Delta)^{s} u(\kappa x)}{\left|x+e_{1}\right|^{N+2 s}}$.
Then $\kappa(B)=\mathbb{R}_{+}^{N}:=\left\{x_{1}>0\right\}$ and
u is s-harmonic in B if and only if $K_{s} u$ is s-farmonic in \mathbb{R}_{+}^{N}.

Some extensions: The halfspace

For $s=m+\sigma:$

$$
\begin{aligned}
D^{k+\sigma-1} u(z) & :=\frac{1}{k!} \lim _{x_{1} \rightarrow 0^{+}} \partial_{1}^{k}\left[x_{1}^{1-\sigma} u(x)\right], \quad k \in\{0,1, \ldots, m\} \\
\Gamma_{s}(x, y) & :=(-1)^{m} \gamma_{N, s} \frac{\left(x_{1}\right)_{+}^{s}}{\left(-y_{1}\right)^{s}|x-y|^{N}} \\
G_{s}(x, y) & :=k_{N, s}|x-y|^{2 s-N} \int_{0}^{\frac{4 x_{1}^{+} y_{1}^{+}}{|x-y|^{2}}} \frac{v^{s-1}}{(v+1)^{\frac{N}{2}}} d v \\
E_{k, s}(x, y) & :=\sum_{i=0}^{\left\lfloor\frac{m-k}{2}\right\rfloor} \alpha_{N, s, i} \frac{\left(x_{1}\right)_{+}^{s+m-k-2 i}}{|y-x|^{N+2(m-k-i)}}
\end{aligned}
$$

For $k \in\{0, \ldots, 2 m+1\}, x_{1}^{k+\sigma-1}$ is s-farmonic in \mathbb{R}_{+}^{N} (note that $x_{1}^{\sigma-1}$ is singular). (joint work with \mathcal{N}. Abatangelo, S. Dipierro, $\mathcal{M} . \mathcal{M} . \mathcal{F a l l}$, and S. Jarohs)

(Muito obrigado!
 $)^{s}$

- N. Abatangelo, S. Jarofis, and A. S. Positive powers of the Laplacian: From fypersingular integrals to Goundary value problems. Comm. Pure Appl. Anal.
- N. Abatangelo, S. Jarofis, and \mathcal{A}. S. On the loss of maximum principles for figher-order fractional Laplacians. Proc. Amer. Math. Soc.
- N. Abatangelo, S. Jarofs, and \mathfrak{A}. S. Green function and Martin Kernel for figher-order fractional Laplacians in balls. Nonlinear Analysis.
- N. Abatangelo, S. Jarofis, and A. S. Integral representation of sofutions to figher-order fractional Dirichlet problems on balls. Comm. Contemp. Math.
- N. Abatangelo, S. Dipierro, M.M. F. Fall, S. Iarofs, A.S., Positive powers of the Laplacian in the falf-space under Dirichlet boundary conditions, submitted, available on arXiv.

