On the shape of solutions to the Extended Fisher-Kolmogorov equation

Alberto Saldaña
( joint work with Denis Bonheure and Juraj Földes )

Karlsruhe, December 12015

## Introduction

Consider the Allen-Cahn equation

$$
-\Delta u=u-u^{3} \quad \text { in } \mathbb{R}
$$

- This is a model for phase-transition.
- Solutions to the 1-D problem are fully classified in terms of the energy $E=-\frac{1}{2}\left(u^{\prime}\right)^{2}+\frac{1}{4}\left(1-u^{2}\right)^{2}$.


## The Extended Fisher-Kolmogorov equation

Consider the (EFK) equation

$$
\begin{aligned}
\Delta^{2} u-\beta \Delta u & =u-u^{3} & & \text { in } \Omega \\
u=\Delta u & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Solutions of (EFK) are critical points of the energy

$$
J(u)=\int_{\Omega} \frac{|\Delta u|^{2}}{2}+\beta \frac{|\nabla u|^{2}}{2}+\frac{u^{4}}{4}-\frac{u^{2}}{2} d x
$$

## The Extended Fisher-Kolmogorov equation

## Theorem (Existence)

Let $\beta>0$ and $\Omega \subset \mathbb{R}^{N}$ with $N \geq 1$ be a smooth bounded domain or a hyperrectangle. If $\lambda_{1}^{2}+\beta \lambda_{1} \geq 1$, then $u \equiv 0$ is the unique weak solution of (EFK). If

$$
\begin{equation*}
\lambda_{1}^{2}+\beta \lambda_{1}<1 \tag{1}
\end{equation*}
$$

then,

1. there is $\varepsilon>0$ such that (EFK) admits for each $\beta \in(\bar{\beta}-\varepsilon, \bar{\beta}) a$ positive classical solution $u$, where $\bar{\beta}=\frac{1-\lambda_{1}^{2}}{\lambda_{1}}$.
2. For each $\beta \geq \frac{\sqrt{8}}{(\sqrt{27}-2)^{1 / 2}}$ there is a positive classical solution $u$ of (EFK) such that $\|u\|_{L^{\infty}(\Omega)} \leq \frac{1}{\beta^{2}}\left(\frac{4+\beta^{2}}{3}\right)^{\frac{3}{2}}$ and $\Delta u<\frac{\beta}{2} u$ in $\Omega$.
3. For every $\beta \geq \sqrt{8}$ there exists a unique positive solution $u$ of (EFK). Moreover, this solution is strictly stable and satisfies $\|u\|_{L^{\infty}(\Omega)} \leq 1$.

## Bifurcation branch

Radial solutions of $(\mathrm{EFK})$ in $\Omega=B_{240.483}(0) \subset \mathbb{R}^{2}$.


- Solutions are bounded by 1 only for $\beta \gg 0$
- Solutions are monotone only for $\beta \gg 0$.
- For $\beta \approx 0$, the maximum is close to the boundary.


## Bifurcation branch

Continuation of the branch.


- Positivity is lost along the branch.
- The branch goes back to positive values of $\beta$.
- For $\beta \approx 0$, the solution oscillates around 1 .


## Other bifurcation branch for $\Omega=(0,2 \pi)$

## Numerical approximation in squares



## Numerical approximation in annuli



## The Extended Fisher-Kolmogorov equation

## Theorem (Stability of positive solutions)

Let $\partial \Omega$ be of class $C^{1,1}$ and $\beta \geq \sqrt{8}$. Then any positive solution of (3) is strictly stable.

## Theorem (Symmetry of stable solutions)

Let $\Omega$ be a ball or an annulus and let $u$ be a stable solution of (3) with $\beta>\sqrt{12}-2 \lambda_{1}$ such that $\|u\|_{L^{\infty}(\Omega)} \leq 1$. Then $u$ is a radial function.

## Proposition (Symmetry of positive solutions)

Let $\beta \geq \sqrt{8}$ and let $\Omega \subset \mathbb{R}^{N}$ be a hyperrectangle or a bounded smooth domain which is convex and symmetric in the $e_{1}$-direction. Then, any positive solution of (3) satisfies
$u\left(x_{1}, x_{2}, \ldots, x_{N}\right)=u\left(-x_{1}, x_{2}, \ldots, x_{N}\right) \quad$ for all $x=\left(x_{1}, \ldots, x_{N}\right) \in \Omega$,
$\partial_{x_{1}} u(x)<0 \quad$ for all $x \in \Omega$ such that $x_{1}>0$.

## The Extended Fisher-Kolmogorov equation

## GLOBAL MINIMIZERS

## Theorem (Positivity and symmetry of some minimizers)

Let $\Omega$ be a ball or an annulus, (1) hold, and let $u \in H$ be a global radial minimizer of (??) with $\|u\|_{L^{\infty}(\Omega)} \leq 1$. Then $\partial_{r} u$ does not change sign if $\Omega$ is a ball and $\partial_{r} u$ changes sign exactly once if $\Omega$ is an annulus.

## Corollary

Let $\Omega$ be a ball or an annulus, $\beta>\sqrt{12}-2 \lambda_{1}$, (1) hold, and let $u$ be a global minimizer of (??) in $H$. Then $u$ is radial and does not change sign in $\Omega$. Moreover, $\partial_{r} u$ does not change sign if $\Omega$ is a ball while $\partial_{r} u$ changes sign exactly once if $\Omega$ is an annulus.

## The Extended Fisher-Kolmogorov equation

$$
\begin{align*}
\gamma \Delta^{2} u-\Delta u & =u-u^{3} & & \text { in } \Omega,  \tag{2}\\
u=\Delta u & =0 & & \text { on } \partial \Omega,
\end{align*}
$$

when $\gamma \rightarrow 0$.

## Theorem (Convergence to second order equation)

Let $\Omega \subset \mathbb{R}^{N}$ be a smooth bounded domain with the first Dirichlet eigenvalue $\lambda_{1}<1$. Let $\gamma \geq 0$ and $u_{\gamma}$ be a global minimizer in $H$ of

$$
\begin{equation*}
\int_{\Omega}\left(\gamma \frac{|\Delta u|^{2}}{2}+\frac{|\nabla u|^{2}}{2}+\frac{u^{4}}{4}-\frac{u^{2}}{2}\right) d x \tag{3}
\end{equation*}
$$

There is an open neighborhood of 0 such that, for all $\gamma \in I \cap[0,1]$ : $u_{\gamma}$ is the unique global minimizer in $H$ and $u_{\gamma}>0$ in $\Omega$. Moreover, the function $I \rightarrow C^{4}(\Omega) ; \gamma \mapsto u_{\gamma}$ is continuous and $u_{0}$ is the global minimizer of (3) in $H_{0}^{1}(\Omega)$ with $\gamma=0$.

## The Extended Fisher-Kolmogorov equation

## Lemma (A priori bounds for classical solutions)

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain, $\beta>0, f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(0)=0$, and let $u \in C^{4}(\Omega) \cap C_{0}(\bar{\Omega})$ be a solution of $\Delta^{2} u-\beta \Delta u=f(u)$ in $\Omega$ such that $\Delta u \in C_{0}(\bar{\Omega})$. Set $\bar{u}:=\max _{\bar{\Omega}} u$, $\underline{u}:=\min _{\bar{\Omega}} u$, and $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(s):=\frac{4}{\beta^{2}} f(s)+s$. Then

$$
\begin{equation*}
\bar{u} \leq \max _{[\underline{u}, \bar{u}]} g \quad \text { and } \quad \underline{u} \geq \min _{[\underline{u}, \bar{u}]} g . \tag{4}
\end{equation*}
$$

Moreover,

1. If $\bar{u} \leq \max _{[0, \bar{u}]} g$ and $f<0$ in $(1, \infty)$, then $\bar{u} \leq \max _{[0,1]} g$.
2. If $\underline{u} \geq \min _{[\underline{u}, 0]} g$ and $f>0$ in $(-\infty,-1)$, then $\underline{u} \geq \min _{[-1,0]} g$.

## The Extended Fisher-Kolmogorov equation

## Lemma (Truncation Lemma)

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain, $\beta>0, f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(s):= \begin{cases}-\frac{\beta^{2}}{4} s & \text { if } s<0,  \tag{5}\\ s-s^{3} & \text { if } s \in\left[0, C_{\beta}\right] \\ C_{\beta}-C_{\beta}^{3}=-\frac{\beta^{2}}{4} C_{\beta} & \text { if } s>C_{\beta},\end{cases}
$$

and let $u$ be a classical solution of

$$
\begin{align*}
\Delta^{2} u-\beta \Delta u & =f(u) & & \text { in } \Omega,  \tag{6}\\
u=\Delta u & =0 & & \text { on } \partial \Omega .
\end{align*}
$$

Then $0 \leq u \leq M_{\beta}$. Moreover, if $\beta \geq \sqrt{8}$, then $u \leq 1$. In particular, if $\beta \geq K_{0}$, then $u$ is a classical solution of (3).

## The Extended Fisher-Kolmogorov equation

## Theorem (Variational Argument)

Let $\beta>0$ and $\Omega \subset \mathbb{R}^{N}$ with $N \geq 1$ be a smooth bounded domain or a hyperrectangle. If $\lambda_{1}^{2}+\beta \lambda_{1} \geq 1$, then $u \equiv 0$ is the unique weak solution of (3). If $\lambda_{1}^{2}+\beta \lambda_{1}<1$, then for $\beta \geq \frac{\sqrt{8}}{(\sqrt{27}-2)^{1 / 2}}$ there is a positive classical solution $u$ of (3) such that $\|u\|_{L^{\infty}(\Omega)} \leq \frac{1}{\beta^{2}}\left(\frac{4+\beta^{2}}{3}\right)^{\frac{3}{2}}$ and $\Delta u<\frac{\beta}{2} u$ in $\Omega$. Additionally, if $\beta \geq \sqrt{8}$ then $\|u\|_{L^{\infty}(\Omega)} \leq 1$ and $u$ is the unique positive solution of (3).

## The Extended Fisher-Kolmogorov equation

## Lemma (A priori estimates for classical solutions)

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain, $\beta>0$, and let $u$ be a classical solution of (3).
i) If $u$ is nonnegative in $\Omega$, then $\|u\|_{L^{\infty}(\Omega)} \leq M_{\beta}$.
ii) If $\beta \geq \sqrt{8}$ and $u$ is nonnegative in $\Omega$, then $\|u\|_{L^{\infty}(\Omega)} \leq 1$.
iii) If $\beta \geq \sqrt{8}$ and $\|u\|_{L^{\infty}(\Omega)}<\sqrt{\frac{\beta^{2}}{2}+1}$, then $\|u\|_{L^{\infty}(\Omega)} \leq 1$.

## The Extended Fisher-Kolmogorov equation

## Proposition (A priori estimates for minimizers)

Let v be a global minimizer of (3) in H. Then

$$
\begin{array}{ll}
\|v\|_{L^{\infty}(\Omega)} \leq \frac{\sqrt{4+\beta^{2}}}{2} & \text { if } \beta \geq \sqrt{\frac{8}{\sqrt{27}-2}} \text { and } \\
\|v\|_{L^{\infty}(\Omega)} \leq 1 & \text { if } \beta \geq \sqrt{8} .
\end{array}
$$

## The Extended Fisher-Kolmogorov equation

## Theorem (Bifurcation argument)

Let $\Omega \subset \mathbb{R}^{N}, N \geq 1$ be a smooth bounded domain or a hyperrectangle. If the first Dirichlet eigenvalue $\lambda_{1}<1$, then there is $\varepsilon>0$ such that (3) admits a positive solution $u_{\beta} \in C^{4, \alpha}(\Omega)$ for all $\beta \in(\bar{\beta}-\varepsilon, \bar{\beta})$, where

$$
\bar{\beta}=\frac{1-\lambda_{1}^{2}}{\lambda_{1}}
$$

Additionally, if $\bar{\beta} \geq \sqrt{8}$ and $\Omega$ is of class $C^{1}$, then (3) admits a unique positive solution $u_{\beta}$ such that $\left\|u_{\beta}\right\|_{L^{\infty}(\Omega)} \leq 1$ for all $\beta \in[\sqrt{8}, \bar{\beta})$.

## A saddle-solution in $\mathbb{R}^{2}$ for the Extended Allen-Cahn



## Theorem (Saddle-solution)

If $\beta \geq \sqrt{\frac{8}{\sqrt{27}-2}}$, there exists a saddle-solution in the plane, i.e. $u$ s.t.

$$
u(x, y) x y \geq 0
$$

Moreover $\|u\|_{L^{\infty}(\Omega)} \leq 1$ if $\beta>2 \sqrt{2}$.

## A saddle-solution in $\mathbb{R}^{2}$ for the Extended Allen-Cahn

- we use the global minimizers on a sequence of squares and let (a quarter of) the squares go to $\mathbb{R}^{+} \times \mathbb{R}^{+}$.
- we have a control from below using the minimality so that the sequence of solutions do not converge to 0 .
- when $\beta \geq \sqrt{8}$, the profile is monotone (in each quarter) and the limit is $\pm 1$ on the diagonals.
- for smaller value of $\beta$, the profile starts monotonically and the limit is $\pm 1$ on the diagonals.

