On the shape of solutions to the Extended Fisher-Kolmogorov equation

Alberto Saldaña (joint work with Denis Bonheure and Juraj Földes)

Karlsruhe, December 1 2015

Consider the Allen-Cahn equation

$$-\Delta u = u - u^3 \qquad \text{ in } \mathbb{R}$$

- This is a model for phase-transition.
- ► Solutions to the 1-D problem are fully classified in terms of the energy $E = -\frac{1}{2}(u')^2 + \frac{1}{4}(1-u^2)^2$.

Consider the (EFK) equation

$$\Delta^2 u - \beta \Delta u = u - u^3 \quad \text{in } \Omega,$$

$$u = \Delta u = 0 \quad \text{on } \partial \Omega.$$

Solutions of (EFK) are critical points of the energy

$$J(u) = \int_{\Omega} \frac{|\Delta u|^2}{2} + \beta \frac{|\nabla u|^2}{2} + \frac{u^4}{4} - \frac{u^2}{2} dx$$

Theorem (Existence)

Let $\beta > 0$ and $\Omega \subset \mathbb{R}^N$ with $N \ge 1$ be a smooth bounded domain or a hyperrectangle. If $\lambda_1^2 + \beta \lambda_1 \ge 1$, then $u \equiv 0$ is the unique weak solution of (EFK). If

$$\lambda_1^2 + \beta \lambda_1 < 1 \,, \tag{1}$$

then,

- 1. there is $\varepsilon > 0$ such that (EFK) admits for each $\beta \in (\bar{\beta} \varepsilon, \bar{\beta})$ a positive classical solution u, where $\bar{\beta} = \frac{1-\lambda_1^2}{\lambda_1}$.
- 2. For each $\beta \geq \frac{\sqrt{8}}{(\sqrt{27}-2)^{1/2}}$ there is a positive classical solution u of (EFK) such that $\|u\|_{L^{\infty}(\Omega)} \leq \frac{1}{\beta^2} (\frac{4+\beta^2}{3})^{\frac{3}{2}}$ and $\Delta u < \frac{\beta}{2}u$ in Ω .
- For every β ≥ √8 there exists a unique positive solution u of (EFK). Moreover, this solution is strictly stable and satisfies ||u||_{L∞(Ω)} ≤ 1.

Bifurcation branch

Radial solutions of (EFK) in $\Omega = B_{240.483}(0) \subset \mathbb{R}^2$.

- Solutions are bounded by 1 only for $\beta >> 0$
- Solutions are monotone only for $\beta >> 0$.
- For $\beta \approx 0$, the maximum is close to the boundary.

Bifurcation branch

Continuation of the branch.

- Positivity is lost along the branch.
- The branch goes back to positive values of β .
- For $\beta \approx 0$, the solution oscillates around 1.

Other bifurcation branch for $\Omega = (0, 2\pi)$

Numerical approximation in squares

Numerical approximation in annuli

 β small

 β large.

Theorem (Stability of positive solutions)

Let $\partial \Omega$ *be of class* $C^{1,1}$ *and* $\beta \geq \sqrt{8}$ *. Then any positive solution of* (3) *is strictly stable.*

Theorem (Symmetry of stable solutions)

Let Ω be a ball or an annulus and let u be a stable solution of (3) with $\beta > \sqrt{12} - 2\lambda_1$ such that $||u||_{L^{\infty}(\Omega)} \leq 1$. Then u is a radial function.

Proposition (Symmetry of positive solutions)

Let $\beta \geq \sqrt{8}$ and let $\Omega \subset \mathbb{R}^N$ be a hyperrectangle or a bounded smooth domain which is convex and symmetric in the e_1 -direction. Then, any positive solution of (3) satisfies

 $u(x_1, x_2, \dots, x_N) = u(-x_1, x_2, \dots, x_N) \quad \text{for all } x = (x_1, \dots, x_N) \in \Omega,$ $\partial_{x_1} u(x) < 0 \quad \text{for all } x \in \Omega \text{ such that } x_1 > 0.$

GLOBAL MINIMIZERS

Theorem (Positivity and symmetry of some minimizers)

Let Ω be a ball or an annulus, (1) hold, and let $u \in H$ be a global radial minimizer of (??) with $||u||_{L^{\infty}(\Omega)} \leq 1$. Then $\partial_r u$ does not change sign if Ω is a ball and $\partial_r u$ changes sign exactly once if Ω is an annulus.

Corollary

Let Ω be a ball or an annulus, $\beta > \sqrt{12} - 2\lambda_1$, (1) hold, and let u be a global minimizer of (??) in H. Then u is radial and does not change sign in Ω . Moreover, $\partial_r u$ does not change sign if Ω is a ball while $\partial_r u$ changes sign exactly once if Ω is an annulus.

$$\gamma \Delta^2 u - \Delta u = u - u^3 \qquad \text{in } \Omega, u = \Delta u = 0 \qquad \text{on } \partial\Omega,$$
(2)

when $\gamma \rightarrow 0$.

Theorem (Convergence to second order equation)

Let $\Omega \subset \mathbb{R}^N$ be a smooth bounded domain with the first Dirichlet eigenvalue $\lambda_1 < 1$. Let $\gamma \ge 0$ and u_{γ} be a global minimizer in H of

$$\int_{\Omega} \left(\gamma \frac{|\Delta u|^2}{2} + \frac{|\nabla u|^2}{2} + \frac{u^4}{4} - \frac{u^2}{2} \right) \, dx. \tag{3}$$

There is an open neighborhood of 0 such that, for all $\gamma \in I \cap [0, 1]$: u_{γ} is the unique global minimizer in H and $u_{\gamma} > 0$ in Ω . Moreover, the function $I \to C^4(\Omega)$; $\gamma \mapsto u_{\gamma}$ is continuous and u_0 is the global minimizer of (3) in $H^1_0(\Omega)$ with $\gamma = 0$.

Lemma (A priori bounds for classical solutions)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $\beta > 0, f : \mathbb{R} \to \mathbb{R}$ satisfying f(0) = 0, and let $u \in C^4(\Omega) \cap C_0(\overline{\Omega})$ be a solution of $\Delta^2 u - \beta \Delta u = f(u)$ in Ω such that $\Delta u \in C_0(\overline{\Omega})$. Set $\overline{u} := \max_{\overline{\Omega}} u$, $\underline{u} := \min_{\overline{\Omega}} u$, and $g : \mathbb{R} \to \mathbb{R}$ given by $g(s) := \frac{4}{\beta^2} f(s) + s$. Then

$$\overline{u} \le \max_{[\underline{u},\overline{u}]} g$$
 and $\underline{u} \ge \min_{[\underline{u},\overline{u}]} g.$ (4)

Moreover,

1. If $\overline{u} \leq \max_{[0,\overline{u}]} g$ and f < 0 in $(1,\infty)$, then $\overline{u} \leq \max_{[0,1]} g$. 2. If $\underline{u} \geq \min_{[\underline{u},0]} g$ and f > 0 in $(-\infty, -1)$, then $\underline{u} \geq \min_{[-1,0]} g$.

Lemma (Truncation Lemma)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $\beta > 0, f : \mathbb{R} \to \mathbb{R}$ be given by

$$f(s) := \begin{cases} -\frac{\beta^2}{4}s & \text{if } s < 0, \\ s - s^3 & \text{if } s \in [0, C_\beta], \\ C_\beta - C_\beta^3 = -\frac{\beta^2}{4}C_\beta & \text{if } s > C_\beta, \end{cases}$$
(5)

and let u be a classical solution of

$$\Delta^2 u - \beta \Delta u = f(u) \qquad in \ \Omega, u = \Delta u = 0 \qquad on \ \partial\Omega.$$
(6)

Then $0 \le u \le M_{\beta}$. Moreover, if $\beta \ge \sqrt{8}$, then $u \le 1$. In particular, if $\beta \ge K_0$, then u is a classical solution of (3).

Theorem (Variational Argument)

Let $\beta > 0$ and $\Omega \subset \mathbb{R}^N$ with $N \ge 1$ be a smooth bounded domain or a hyperrectangle. If $\lambda_1^2 + \beta \lambda_1 \ge 1$, then $u \equiv 0$ is the unique weak solution of (3). If $\lambda_1^2 + \beta \lambda_1 < 1$, then for $\beta \ge \frac{\sqrt{8}}{(\sqrt{27}-2)^{1/2}}$ there is a positive classical solution u of (3) such that $||u||_{L^{\infty}(\Omega)} \le \frac{1}{\beta^2} (\frac{4+\beta^2}{3})^{\frac{3}{2}}$ and $\Delta u < \frac{\beta}{2}u$ in Ω . Additionally, if $\beta \ge \sqrt{8}$ then $||u||_{L^{\infty}(\Omega)} \le 1$ and u is the unique positive solution of (3).

Lemma (A priori estimates for classical solutions)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain, $\beta > 0$, and let u be a classical solution of (3).

- i) If u is nonnegative in Ω , then $||u||_{L^{\infty}(\Omega)} \leq M_{\beta}$.
- ii) If $\beta \geq \sqrt{8}$ and u is nonnegative in Ω , then $||u||_{L^{\infty}(\Omega)} \leq 1$.
- iii) If $\beta \geq \sqrt{8}$ and $\|u\|_{L^{\infty}(\Omega)} < \sqrt{\frac{\beta^2}{2} + 1}$, then $\|u\|_{L^{\infty}(\Omega)} \leq 1$.

Proposition (A priori estimates for minimizers)

Let v be a global minimizer of (3) in H. Then

$$\|v\|_{L^{\infty}(\Omega)} \leq \frac{\sqrt{4+\beta^2}}{2} \quad \text{if } \beta \geq \sqrt{\frac{8}{\sqrt{27}-2}} \quad \text{and}$$
$$\|v\|_{L^{\infty}(\Omega)} \leq 1 \qquad \text{if } \beta \geq \sqrt{8}.$$

Theorem (Bifurcation argument)

Let $\Omega \subset \mathbb{R}^N$, $N \ge 1$ be a smooth bounded domain or a hyperrectangle. If the first Dirichlet eigenvalue $\lambda_1 < 1$, then there is $\varepsilon > 0$ such that (3) admits a positive solution $u_\beta \in C^{4,\alpha}(\Omega)$ for all $\beta \in (\bar{\beta} - \varepsilon, \bar{\beta})$, where

$$\bar{\beta} = \frac{1 - \lambda_1^2}{\lambda_1}$$

Additionally, if $\bar{\beta} \ge \sqrt{8}$ and Ω is of class C^1 , then (3) admits a unique positive solution u_β such that $||u_\beta||_{L^{\infty}(\Omega)} \le 1$ for all $\beta \in [\sqrt{8}, \bar{\beta})$.

A saddle-solution in \mathbb{R}^2 for the Extended Allen-Cahn

Theorem (Saddle-solution)

If $\beta \ge \sqrt{\frac{8}{\sqrt{27}-2}}$, there exists a saddle-solution in the plane, i.e. u s.t. $u(x,y)xy \ge 0.$

Moreover $||u||_{L^{\infty}(\Omega)} \leq 1$ if $\beta > 2\sqrt{2}$.

A saddle-solution in \mathbb{R}^2 for the Extended Allen-Cahn

- ▶ we use the global minimizers on a sequence of squares and let (a quarter of) the squares go to ℝ⁺ × ℝ⁺.
- we have a control from below using the minimality so that the sequence of solutions do not converge to 0.
- when β ≥ √8, the profile is monotone (in each quarter) and the limit is ±1 on the diagonals.
- for smaller value of β, the profile starts monotonically and the limit is ±1 on the diagonals.