Foliated Schwarz symmetry in nonautonomous Lotka-Volterra parabolic systems

Alberto Saldaña De Fuentes

Séminaire $A^{N}{ }_{E D P}$ Analyse non linéaire et EDP.

Joint work with Tobias Weth.

September 26, 2014.

Model Problem

Let $B \subset \mathbb{R}^{N}, N \geq 2$, be a ball or an annulus and consider the nonautonomous Lotka-Volterra system

$$
\begin{array}{ll}
\left(u_{1}\right)_{t}-\Delta u_{1}=a_{1}(t) u_{1}-b_{1}(t) u_{1}^{2}-\alpha_{1}(t) u_{1} u_{2} & \text { in } B \times(0, \infty), \\
\left(u_{2}\right)_{t}-\Delta u_{2}=a_{2}(t) u_{2}-b_{2}(t) u_{2}^{2}-\alpha_{2}(t) u_{1} u_{2} & \text { in } B \times(0, \infty),
\end{array}
$$

where $a_{i}, b_{i}, \alpha_{i} i=1,2$ are regular bounded nonnegative functions. Assume
$\partial_{\nu} u_{1}=\partial_{\nu} u_{2}=0$ on $\partial B \times(0, \infty)$ (Neumann boundary conditions),
or $u_{1}=u_{2}=0$ on $\partial B \times(0, \infty)$ (Dirichlet boundary conditions).
This system is used to model the competition between two different species, and takes into account birth, saturation, and aggressiveness (or capacity to carry food) rates, which may change according to the season.

Initial profile and asymptotic behavior

$$
\begin{aligned}
\left(u_{1}\right)_{t}-\Delta u_{1} & =a_{1}(t) u_{1}-b_{1}(t) u_{1}^{2}-\alpha_{1}(t) u_{1} u_{2} & & \text { in } B \times(0, \infty), \\
\left(u_{2}\right)_{t}-\Delta u_{2} & =a_{2}(t) u_{2}-b_{2}(t) u_{2}^{2}-\alpha_{2}(t) u_{1} u_{2} & & \text { in } B \times(0, \infty), \\
u_{1} & =u_{2}=0 & & \text { on } \partial B \times(0, \infty) \\
u_{1}(x, 0) & =u_{0,1}(x) \geq 0, u_{2}(x, 0)=u_{0,2}(x) \geq 0 & & \text { for } x \in B .
\end{aligned}
$$

Initial profile and asymptotic behavior

$$
\begin{aligned}
\left(u_{1}\right)_{t}-\Delta u_{1} & =a_{1}(t) u_{1}-b_{1}(t) u_{1}^{2}-\alpha_{1}(t) u_{1} u_{2} & & \text { in } B \times(0, \infty), \\
\left(u_{2}\right)_{t}-\Delta u_{2} & =a_{2}(t) u_{2}-b_{2}(t) u_{2}^{2}-\alpha_{2}(t) u_{1} u_{2} & & \text { in } B \times(0, \infty), \\
u_{1} & =u_{2}=0 & & \text { on } \partial B \times(0, \infty) \\
u_{1}(x, 0) & =u_{0,1}(x) \geq 0, u_{2}(x, 0)=u_{0,2}(x) \geq 0 & & \text { for } x \in B .
\end{aligned}
$$

Can we always expect a reduction of complexity?

Theorem (A.S., T. Weth, 2014)
Let $k \in \mathbb{N}$. Then there are $\varepsilon, \lambda>0$ satisfying the following. For $B:=\left\{x \in \mathbb{R}^{2}: 1-\varepsilon<|x|<1\right\} \subset \mathbb{R}^{2}$, the system

$$
\begin{aligned}
-\Delta u_{1}=\lambda u_{1}-u_{1} u_{2} & \text { in } B \\
-\Delta u_{2}=\lambda u_{2}-u_{1} u_{2} & \text { in } B \\
\partial_{\nu} u_{1}=\partial_{\nu} u_{2}=0 & \text { on } \partial B,
\end{aligned}
$$

admits a positive classical solution $\left(u_{1}, u_{2}\right)$ such that the angular derivatives $\frac{\partial u_{1}}{\partial \underline{\theta}}$ and $\frac{\partial u_{2}}{\partial \theta}$ change sign at least k times on every circle contained in \bar{B}.

A theorem from P. Polàčik (2007)

Let $B \subset \mathbb{R}^{N}$ be a ball and let u be a positive bounded classical solution of

$$
\begin{aligned}
u_{t}-\Delta u & =f(t, u) \quad \text { in } B \times(0, \infty), \\
u(x, 0) & =u_{0}(x) \quad \text { for } x \in B
\end{aligned}
$$

satisfying Dirichlet boundary conditions, where f satisfy some regularity assumptions. Then u is asymptotically radially symmetric and nonincreasing in the radial variable, that is, all the elements of $\omega(u):=\left\{z \in C(\bar{B}): \lim _{n \rightarrow \infty}\left\|u\left(\cdot, t_{n}\right)-z\right\|_{L^{\infty}(B)}=0\right.$ for some $\left.t_{n} \rightarrow \infty\right\}$ are radially symmetric and nonincreasing in the radial variable.

What about:

- Neumann boundary conditions.
- Annular domains.
- Sign changing solutions.
- Competitive systems.

We look for a particular partial symmetry.

Definition (Foliated Schwarz symmetry)

We say that a function $u \in C(B)$ is foliated Schwarz symmetric with respect to some unit vector $p \in \mathbb{S}^{N-1}:=\left\{e \in \mathbb{R}^{N}:|e|=1\right\}$, if u is axially symmetric with respect to the axis $\mathbb{R} p$ and nonincreasing in the polar angle $\theta:=\arccos \left(\frac{x}{|x|} \cdot p\right) \in[0, \pi]$.

An assumption on the initial profile

For $e \in \mathbb{S}^{N-1}$ define

$$
\begin{aligned}
& B(e):=\{x \in B: x \cdot e>0\}, \\
& \sigma_{e}: \bar{B} \rightarrow \bar{B}, \\
& x \mapsto \sigma_{e}(x):=x-2(x \cdot e) e .
\end{aligned}
$$

(U0) There is $e \in \mathbb{S}^{N-1}$ such that $u_{0,1}(x) \geq u_{0,1}\left(\sigma_{e}(x)\right) \quad$ and $\quad u_{0,2}(x) \leq u_{0,2}\left(\sigma_{e}(x)\right) \quad$ for $x \in B(e)$, and $u_{0,1}, u_{0,2}$ are not invariant with respect to σ_{e}, that is $u_{0,1} \not \equiv u_{0,1} \circ \sigma_{e}$ and $u_{0,2} \not \equiv u_{0,2} \circ \sigma_{e}$ in B.

An assumption on the initial profile

(U0) There is $e \in \mathbb{S}^{N-1}$ such that $u_{0,1}(x) \geq u_{0,1}\left(\sigma_{e}(x)\right) \quad$ and $\quad u_{0,2}(x) \leq u_{0,2}\left(\sigma_{e}(x)\right) \quad$ for $x \in B(e)$, and $u_{0,1}, u_{0,2}$ are not invariant with respect to σ_{e}.

Omega limit set

We study the asymptotic (in time) symmetries in terms of the omega limit set.

$$
\begin{aligned}
\omega\left(u_{1}, u_{2}\right):= & \left\{\left(z_{1}, z_{2}\right) \in C(\bar{B}) \times C(\bar{B}): \text { there is } t_{n} \rightarrow \infty\right. \text { with } \\
& \left.\left\|u_{1}\left(\cdot, t_{n}\right)-z_{1}\right\|_{L^{\infty}(B)}+\left\|u_{2}\left(\cdot, t_{n}\right)-z_{2}\right\|_{L^{\infty}(B)} \rightarrow 0\right\} .
\end{aligned}
$$

If $\left(u_{1}, u_{2}\right)$ is a bounded classical solution of the Lotka-Volterra system (with Dirichlet or Neumann boundary conditions) then the set $\omega\left(u_{1}, u_{2}\right)$ is nonempty, connected and compact. This is proved using interior and boundary parabolic Hölder estimates in an standard way.

Theorem (A.S., T. Weth, 2014)

Let $u_{1}, u_{2} \in C^{2,1}(\bar{B} \times(0, \infty)) \cap C(\bar{B} \times[0, \infty))$ be bounded nonnegative functions such that $\left(u_{1}, u_{2}\right)$ solves

$$
\begin{array}{ll}
\left(u_{1}\right)_{t}-\Delta u_{1}=a_{1}(t) u_{1}-b_{1}(t) u_{1}^{2}-\alpha_{1}(t) u_{1} u_{2} \quad \text { in } B \times(0, \infty), \\
\left(u_{2}\right)_{t}-\Delta u_{2}=a_{2}(t) u_{2}-b_{2}(t) u_{2}^{2}-\alpha_{2}(t) u_{1} u_{2} \quad \text { in } B \times(0, \infty),
\end{array}
$$

satisfying Neumann or Dirichlet boundary conditions, where a_{i}, b_{i}, α_{i} are nonnegative uniformly bounded Hölder functions and $\inf _{t>0} \alpha_{i}(t)>0$ for $i=1,2$. Further, assume that
(U0) there is $e \in \mathbb{S}^{N-1}$ such that

$$
u_{0,1}(x) \geq u_{0,1}\left(\sigma_{e}(x)\right), u_{0,2}(x) \leq u_{0,2}\left(\sigma_{e}(x)\right) \text { for all } x \in B(e)
$$ and $u_{0,1}, u_{0,2}$ are not invariant with respect to σ_{e}.

Theorem (Continuation...)

Then, there is $p \in \mathbb{S}^{N-1}$ such that every element $\left(z_{1}, z_{2}\right) \in \omega\left(u_{1}, u_{2}\right)$ has the property that z_{1} is foliated Schwarz symmetric with respect to p and z_{2} is foliated Schwarz symmetric with respect to $-p$.

Other competition problems

The previous result extends to these other problems.

- More general nonlinearities:

$$
\begin{aligned}
& \left(u_{1}\right)_{t}-\mu(|x|, t) \Delta u_{1}=f_{1}\left(t,|x|, u_{1}\right)-\alpha_{1}(|x|, t) u_{1} u_{2}, \\
& \left(u_{2}\right)_{t}-\mu(|x|, t) \Delta u_{2}=f_{2}\left(t,|x|, u_{2}\right)-\alpha_{2}(|x|, t) u_{1} u_{2},
\end{aligned}
$$

- Systems with cubic coupling:

$$
\begin{aligned}
& \left(u_{1}\right)_{t}-\Delta u_{1}=\lambda_{1} u_{1}+\gamma_{1} u_{1}^{3}-\alpha_{1} u_{1} u_{2}^{2}, \\
& \left(u_{2}\right)_{t}-\Delta u_{2}=\lambda_{1} u_{2}+\gamma_{1} u_{2}^{3}-\alpha_{2} u_{1}^{2} u_{2},
\end{aligned}
$$

Cooperative Systems

Theorem (A.S., T. Weth, 2014)
Let $u_{1}, u_{2} \in C^{2,1}(\bar{B} \times(0, \infty)) \cap C(\bar{B} \times[0, \infty))$ be bounded nonnegative functions such that $\left(u_{1}, u_{2}\right)$ solves

$$
\begin{array}{ll}
\left(u_{1}\right)_{t}-\Delta u_{1}=a_{1}(t) u_{1}-b_{1}(t) u_{1}^{2}+\alpha_{1}(t) u_{1} u_{2} & \text { in } B \times(0, \infty), \\
\left(u_{2}\right)_{t}-\Delta u_{2}=a_{2}(t) u_{2}-b_{2}(t) u_{2}^{2}+\alpha_{2}(t) u_{1} u_{2} & \text { in } B \times(0, \infty),
\end{array}
$$

satisfying Neumann or Dirichlet boundary conditions, where a_{i}, b_{i}, α_{i} are nonnegative uniformly bounded Hölder functions and $\inf _{t>0} \alpha_{i}(t)>0$ for $i=1,2$. Further, assume that
$(U 0)^{\prime}$ there is $e \in S$ such that

$$
\begin{aligned}
& u_{0,1}(x) \geq u_{0,1}\left(\sigma_{e}(x)\right), u_{0,2}(x) \geq u_{0,2}\left(\sigma_{e}(x)\right) \text { for all } x \in B(e) \\
& \text { and } u_{0,1}, u_{0,2} \text { are not invariant with respect to } \sigma_{e} .
\end{aligned}
$$

Theorem (Continuation...)

Then, there is $p \in \mathbb{S}^{N-1}$ such that every element $\left(z_{1}, z_{2}\right) \in \omega\left(u_{1}, u_{2}\right)$ has the property that z_{1} and z_{2} are foliated Schwarz symmetric with respect to p.

This result extends to irreducible cooperative systems of n-equations where also sign changing solutions can be considered.

Proof via a "Parabolic rotating plane method":

The strategy for the proof consists of three main steps:

1. Symmetry characterization.
2. Linearization and initialization of the method.
3. Perturbation and conclusion.

We explain these steps by focusing on bounded classical solutions of the following semilinear problem.

$$
\begin{aligned}
u_{t}-\Delta u & =f(t,|x|, u) & & \text { in } B \times(0, \infty), \\
\partial_{\nu} u & =0 & & \text { on } \partial B \times(0, \infty), \\
u(x, 0) & =u_{0}(x) & & \text { for } x \in B,
\end{aligned}
$$

where f is locally Lipschitz continuous in u uniformly with respect to t and $|x|$. We show that all elements of $\omega(u)$ are foliated Schwarz symmetric. This result is also new.

Symmetry characterization

Theorem (A.S., T. Weth, 2012)
Let $u \in C(B \times(0, \infty))$ and define
$\mathcal{N}:=\left\{e \in \mathbb{S}^{N-1}: \begin{array}{l}\text { there is some } T>0 \text { such that } \\ u(x, t) \geq u\left(\sigma_{e}(x), t\right) \text { for all } x \in B(e), t \geq T\end{array}\right\}$
Suppose that
(i) \mathcal{N} is nonempty and relatively open in \mathbb{S}^{N-1};
(ii) for every $e \in \partial \mathcal{N}$ we have that

$$
\limsup _{t \rightarrow \infty}\left\|u(\cdot, t)-u\left(\sigma_{e}(\cdot), t\right)\right\|_{L^{\infty}(B)}=0
$$

that is, u is asymptotically invariant with respect to σ_{e}.
Then there is $p \in \mathbb{S}^{N-1}$ such that every $z \in \omega(u)$ is foliated Schwarz symmetric with respect to p.

Linearization...

For $e \in \mathbb{S}^{N-1}$ define $u^{e}: \bar{B} \times(0, \infty) \rightarrow \mathbb{R}$ by

$$
u^{e}(x, t):=u(x, t)-u\left(\sigma_{e}(x), t\right)
$$

Then

$$
\begin{aligned}
u_{t}^{e}-\Delta u^{e} & =c^{e}(x, t) u^{e} & & \text { in } B(e) \times(0, \\
u^{e} & =0 & & \text { on }[\partial B(e) \backslash \partial E \\
\partial_{\nu} u^{e} & =0 & & \text { on }[\partial B(e) \cap \partial \\
u^{e}(x, 0) & =u_{0}(x)-u_{0}\left(\sigma_{e}(x)\right) & & \text { for } x \in B(e),
\end{aligned}
$$

where $c^{e} \in L^{\infty}(B \times(0, \infty))$ is given by

$$
c^{e}(x, t):=\frac{f(t,|x|, u(x, t))-f\left(t,|x|, u\left(\sigma_{e}(x), t\right)\right)}{u^{e}(x, t)}
$$

...and initialization of the method

If $e \in \mathbb{S}^{N-1}$ is such that $u_{0} \geq u_{0} \circ \sigma_{e}$ in $B(e)$ and u_{0} is not invariant under σ_{e}-analog of assumption (U0) -, then

$$
\begin{aligned}
u_{t}^{e}-\Delta u^{e} & =c^{e}(x, t) u^{e} & & \text { in } B(e) \times(0, \infty), \\
u^{e} & =0 & & \text { on }[\partial B(e) \backslash \partial B] \times(0, \infty), \\
\partial_{\nu} u^{e} & =0 & & \text { on }[\partial B(e) \cap \partial B] \times(0, \infty), \\
u^{e}(x, 0) & \geq 0, \not \equiv 0 & & \text { for } x \in B(e),
\end{aligned}
$$

and therefore, by the maximum principle and the Hopf lemma,

$$
u^{e}>0 \quad \text { in } B(e) \times(0, \infty)
$$

In particular, the set \mathcal{N} is nonempty.

Perturbation \& conclusion

Lemma

If $u^{e}>0$ in $B(e) \times[T, \infty)$ for some $e \in \mathbb{S}^{N-1}$ and $T>0$ then $\left(P_{e, \varepsilon}\right)$ there is $\varepsilon>0$ such that $u^{e^{\prime}}>0$ in $B\left(e^{\prime}\right) \times[T+1, \infty)$ for all $e^{\prime} \in \mathbb{S}^{N-1}$ with $\left|e-e^{\prime}\right|<\varepsilon$.
In particular, \mathcal{N} is relatively open.
Lemma
If $e \in \overline{\mathcal{N}}$ and $\limsup _{t \rightarrow \infty}\left\|u^{e}(\cdot, t)\right\|_{L^{\infty}(B(e))}>0$ then $\left(P_{e, \varepsilon}\right)$ holds for some $T>0$. In particular, for every $e \in \partial \mathcal{N}$ we have that $\limsup _{t \rightarrow \infty}\left\|u^{e}(\cdot, t)\right\|_{L^{\infty}(B(e))}=0$.
$t \rightarrow \infty$

The proof makes use of different forms of maximum principles and a new quantitative Harnack-Hopf type principle.

Harnack-Hopf type principle

Theorem (A.S., T. Weth, 2014)
Let $B_{+}:=B\left(e_{N}\right), I:=(0,1)$, and $v \in C^{2,1}\left(\overline{B_{+} \times I}\right)$ satisfy

$$
\begin{aligned}
& v_{t}-\Delta v-c v \geq 0 \\
& \text { in } B_{+} \times I, \\
& \frac{\partial v}{\partial \nu}=0 \\
& \text { on }\left[\partial B_{+} \cap \partial B\right] \times I, \\
& v=0 \\
& v(x, 0) \geq 0 \\
& \text { on }\left[\partial B_{+} \backslash \partial B\right] \times I, \\
& x \in B_{+},
\end{aligned}
$$

where $|c| \leq M$ for some $M>0$. Then $v \geq 0$ in $B_{+} \times 1$. Moreover, if $v(\cdot, 0) \not \equiv 0$ in B_{+}, then

$$
v>0 \text { in } B_{+} \times I \quad \text { and } \quad \frac{\partial v}{\partial e_{N}}>0 \text { on }\left[\partial B_{+} \backslash \partial B\right] \times I
$$

Theorem (Continuation...)
Furthermore, for every $\delta_{1}>0, \delta_{2} \in\left(0, \frac{1}{4}\right]$, there exist $\kappa>0$ and $p>0$ depending only on $\delta_{1}, \delta_{2}, B$, and M such that

$$
v(x, t) \geq x_{N} \kappa\left(\int_{Q\left(\delta_{1}, \delta_{2}\right)} v^{p} d(x, t)\right)^{\frac{1}{p}}
$$

for all $x \in B_{+}$and $t \in\left[3 \delta_{2}, 4 \delta_{2}\right]$, where

$$
Q\left(\delta_{1}, \delta_{2}\right):=\left\{(x, t): x \in B_{+}, x_{N} \geq \delta_{1}, t \in\left[\delta_{2}, 2 \delta_{2}\right]\right\}
$$

Competitive Neumann systems

Let $u_{1}^{e}, u_{2}^{e}: \bar{B} \times(0, \infty) \rightarrow \mathbb{R}$ be given by

$$
\begin{aligned}
u_{1}^{e}(x, t) & :=u_{1}(x, t)-u_{1}\left(\sigma_{e}(x), t\right) \\
u_{2}^{e}(x, t) & :=u_{2}\left(\sigma_{e}(x), t\right)-u_{2}(x, t)
\end{aligned}
$$

We thus obtain the system

$$
\begin{aligned}
& \left(u_{1}^{e}\right)_{t}-\Delta u_{1}^{e}-c_{1}^{e} u_{1}^{e}=\alpha_{1} u_{1} u_{2}^{e} \\
& \left(u_{2}^{e}\right)_{t}-\Delta u_{2}^{e}-c_{2}^{e} u_{2}^{e}=\alpha_{2} u_{2} u_{1}^{e} \quad \text { in } B(e) \times(0, \infty)
\end{aligned}
$$

for some coefficients c_{1}^{e}, c_{2}^{e}, together with the boundary conditions

$$
\begin{aligned}
& \frac{\partial u_{i}^{e}}{\partial \nu}=0 \text { on }[B(e) \cap \partial B] \times(0, \infty), \quad u_{i}^{e}=0 \text { on }[B(e) \backslash \partial B] \times(0, \infty), \\
& \mathrm{i}=1,2
\end{aligned}
$$

Let

$$
\mathcal{N}:=\left\{e \in \mathbb{S}^{N-1}: \begin{array}{c}
\text { there is some } T>0 \text { such that } \\
u_{1}^{e} \geq 0, u_{2}^{e} \geq 0 \text { in } B(e) \times[T, \infty)
\end{array}\right\}
$$

A further complication appear with the possible occurrence of the so-called semi-trivial limit profiles, that is, elements of $\omega\left(u_{1}, u_{2}\right)$ of the form $(z, 0)$ or $(0, z)$. This difficulty was circumvented using a new normalization technique in the proof of a perturbation result.

The occurrence and qualitative properties of semi-trivial limit profiles are active research topics.

Competitive Dirichlet systems

The linearization, the statements of the perturbation Lemmas, and the definition of \mathcal{N} are the same as in the Neumann case, but the Harnack- Hopf type Lemma does not hold anymore. Instead we use a parabolic version of Serrin's boundary corner point Lemma.

Theorem (A.S. 2014)
Let $B_{+}:=B\left(e_{N}\right), I:=[0,1], \beta_{0}, k>0$ and $v \in C^{2,1}\left(\overline{B_{+}} \times I\right)$ be a nonegative function satisfying $\|v\|_{L^{\infty}\left(B_{+} \times\left(\frac{1}{7}, \frac{4}{7}\right)\right)} \geq k$, $\|v\|_{C^{2,1}}+\|c\|_{L^{\infty}} \leq \beta_{0}$ and $v_{t}-\Delta v-c v \geq 0$ in $B_{+} \times I$ with
Dirichlet boundary conditions.

Theorem (Continuation...)
Then there are $\delta, \varepsilon>0$ depending only on β_{0}, k, and B such that

$$
\begin{aligned}
v(x, 1) \geq x_{N} \varepsilon & & \text { for } x \in A_{1}, \\
\frac{\partial^{2} v(x, 1)}{\partial s^{2}}>\varepsilon & & \text { for } x \in A_{2}(\text { corner points) } \\
\frac{\partial v}{\partial \nu}(x, 1)>\varepsilon & & \text { for } x \in A_{3} .
\end{aligned}
$$

where $s=\nu+e_{N}, \nu$ is the inwards unit normal vector field on ∂B, and

$$
\begin{aligned}
A_{1} & :=\left\{x \in \overline{B_{+}}: \operatorname{dist}(x, \partial B) \geq \delta\right\} \\
A_{2} & :=\left\{x \in \overline{B_{+}}: \operatorname{dist}\left(x, H\left(e_{N}\right) \cap \partial B\right) \leq \delta\right\} \\
A_{3} & :=\overline{B_{+}} \backslash\left(A_{1} \cup A_{2}\right) \\
H\left(e_{N}\right) & :=\left\{x \in \mathbb{R}^{N}: x \cdot e_{N}=0\right\} .
\end{aligned}
$$

Some open questions:

- What can be said for competitive systems of three or more equations?
- Under which conditions can these results be extended to equations in unbounded domains?
- Is there an analogous result for predator-prey models?

Further symmetry characterization: Radial symmetry of semi-trivial limit profiles

Theorem (A.S. 2014)
Let $u_{1}, u_{2} \in C^{2,1}(\bar{B} \times(0, \infty)) \cap C(\bar{B} \times[0, \infty))$ be nonnegative bounded functions such that $u=\left(u_{1}, u_{2}\right)$ is a classical solution of

$$
\begin{aligned}
\left(u_{1}\right)_{t}-\Delta u_{1} & =a_{1} u_{1}-u_{1}^{2}-\alpha_{1}(x, t) u_{1} u_{2} & & \text { in } B \times(0, \infty), \\
\left(u_{2}\right)_{t}-\Delta u_{2} & =a_{2} u_{2}-u_{2}^{2}+\alpha_{2}(x, t) u_{1} u_{2} & & \text { in } B \times(0, \infty), \\
u_{i} & =0 & & \text { on } \partial B \times(0, \infty), \\
u_{i}(x, 0) & =u_{0, i}(x) & & \text { for all } x \in B, i=1,2,
\end{aligned}
$$

where a_{1}, a_{2} are larger than the first Dirichlet eigenvalue of B, $u_{0,1}, u_{0,2} \in C_{0}(B)$ are not identically zero, and α_{1}, α_{2} are bounded functions.

Further symmetry characterization: Radial symmetry of semi-trivial limit profiles

Theorem (Continuation...)
If $(z, 0) \in \omega(u)$ then z is a positive radially symmetric function and it is the unique solution of the elliptic problem $-\Delta z=a_{1} z-z^{2}$ in
B, with Dirichlet boundary conditions. The analogous conclusion holds if $(0, z) \in \omega(u)$.

Thank you!

Fully nonlinear scalar equations

Theorem

Let u be a bounded classical solution of

$$
\begin{aligned}
u_{t}(x, t) & =F\left(t, x, u, \nabla u, D^{2} u\right) & & \text { in } B \times(0, \infty) \\
u(x, 0) & =u_{0}(x) & & \text { for } x \in B
\end{aligned}
$$

satisfying Dirichlet boundary conditions, where F is assumed to satisfy some reflection invariance, regularity, and ellipticity assumptions; and there is $e \in \mathbb{S}^{N-1}$ such that $u_{0} \geq u_{0} \circ \sigma_{e}$ in $B(e)$ and u_{0} is not invariant with respect to σ_{e}. Then, there is $p \in \mathbb{S}^{N-1}$ such that all elements of $\omega(u)$ are foliated Schwarz symmetric with respect to p. Here

$$
\omega(u):=\left\{z \in C(\bar{B}):\left\|u\left(\cdot, t_{n}\right)-z\right\|_{L^{\infty}(B)} \rightarrow 0 \text { for some } t_{n} \rightarrow \infty\right\}
$$

Theorem

Let $J:=\{1, \ldots, n\}$ for some $n \in \mathbb{N}$ and let $u=\left(u_{1}, \ldots, u_{n}\right)$ with $u_{i} \in C^{2,1}(\bar{B} \times(0, \infty)) \cap C(\bar{B} \times[0, \infty))$ be a bounded solution of

$$
\begin{aligned}
\left(u_{i}\right)_{t} & =\Delta u_{i}+F_{i}(t,|x|, u) & & \text { in } B \times(0, \infty) \\
u_{i}(x, 0) & =u_{0, i}(x) & & \text { for all } x \in B, i \in J
\end{aligned}
$$

satisfying Neumann boundary conditions, where the following holds.
(A1) For each $i \in J$ the function $F_{i}:[0, \infty) \times I_{B} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$; $(t, r, v) \mapsto F_{i}(t, r, v)$ is locally Lipschitz in v uniformly with respect to r and t. Moreover, $\max _{i \in J} \sup _{r \in I_{B}, t>0}\left|F_{i}(t, r, 0)\right|<\infty$.
(A2) For every $i, j \in J, i \neq j$, one has that $\partial F_{i}(t, r, u) / \partial u_{j} \geq 0$ for all $t \in[0, \infty), r \in I_{B}$, and $u \in \mathbb{R}^{n}$ such that the derivative exists.

Theorem

Continuation...
(A3) For each M there is a constant $\sigma=\sigma(M)>0$ such that the following holds: for every nonempty subsets $I_{1}, I_{2} \subset J$ with $I_{1} \cap I_{2}=\emptyset$ and $I_{1} \bigcup I_{2}=J$, there are $i \in I_{1}$ and $j \in I_{2}$ such that $\partial F_{i}(t, r, u) / \partial u_{j} \geq \sigma$ for all $r \in I_{B}, t \in[0, \infty)$, and $u \in \mathbb{R}^{n}$ with $|u| \leq M$, such that the derivative exists.
(A4) There is $e \in \mathbb{S}^{N-1}$ such that $u_{0, i} \geq u_{0, i} \circ \sigma_{e}$ and $u_{0, i}$ is not invariant with respect to σ_{e} for $i \in J$.
Then there is some $p \in \mathbb{S}^{N-1}$ such that all elements of $\bigcup_{i=1}^{n} \omega\left(u_{i}\right)$ are foliated Schwarz symmetric with respect to p.

Harnack-Hopf type principle

Let $a, b \in \mathbb{R}, a<b, I:=(a, b), B_{+}:=\left\{x \in \bar{B}: x_{N}>0\right\}$. Suppose that $v \in C^{2,1}\left(\overline{B_{+}} \times I\right) \cap C\left(\overline{B_{+} \times I}\right)$ satisfies

$$
\begin{aligned}
v_{t}-\mu \Delta v-c v & \geq 0 & & \text { in } B_{+}^{\circ} \times I \\
\frac{\partial v}{\partial \nu} & =0 & & \text { on } \Sigma_{2} \times I \\
v & =0 & & \text { on } \Sigma_{1} \times I \\
v(x, a) & \geq 0 & & \text { for } x \in B_{+}
\end{aligned}
$$

where

$$
\frac{1}{M} \leq \mu(x, t) \leq M \quad \text { and } \quad|c(x, t)| \leq M \quad \text { for }(x, t) \in B_{+} \times I
$$

with some positive constant $M>0$. Then $v \geq 0$ in $B_{+} \times(a, b)$. Moreover, if $v(\cdot, a) \not \equiv 0$ in B_{+}, then

$$
v>0 \text { in } B_{+} \times I \quad \text { and } \quad \frac{\partial v}{\partial e_{N}}>0 \text { on } \Sigma_{1} \times I .
$$

Furthermore, for every $\delta_{1}>0, \delta_{2} \in\left(0, \frac{b-a}{4}\right]$, there exist $\kappa>0$ and $p>0$ depending only on $\delta_{1}, \delta_{2}, B$, and M such that

$$
\begin{equation*}
v(x, t) \geq x_{N} \kappa\left(\int_{Q\left(\delta_{1}, \delta_{2}\right)} v^{p} d(x, t)\right)^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

for all $x \in B_{+}$and $t \in\left[a+3 \delta_{2}, a+4 \delta_{2}\right]$. where

$$
Q\left(\delta_{1}, \delta_{2}\right):=\left\{(x, t): x \in B_{+}, x_{N} \geq \delta_{1}, a+\delta_{2} \leq t \leq a+2 \delta_{2}\right\}
$$

