Derived Canonical Algebras as One-Point Extensions

Michael Barot and Helmut Lenzing

ABSTRACT. Canonical algebras have been intensively studied, see for example [12], [3] and [11] among many others. We are interested in the question when a one-point extension of a finite-dimensional algebra Σ by a Σ -module M is derived canonical, i.e. derived equivalent to a canonical algebra. We give necessary conditions on the algebra Σ and the module M. If the canonical algebra associated with Σ is tame the conditions are even sufficient. As a further result we obtain that, if Σ is derived canonical then the one-point extension of Σ by M is derived canonical again if and only if M is derived simple, i.e. M is indecomposable and belongs to the mouth of a tube in the

1. Prerequisites

We work over an algebraically closed base field k. By algebra we mean always a basic, finite dimensional k-algebra and by module we mean finitely generated right module. For an algebra Σ we denote by mod Σ the category of Σ -modules.

An algebra Σ which is derived equivalent to a canonical algebra will be called *derived canonical*. This terminology replaces the less suggestive term quasi-canonical used in [10]. For each derived canonical algebra there exists a weighted projective line $\mathbb{X} = \mathbb{X}(\underline{p}, \underline{\lambda})$ such that the (bounded) derived category $D^b(\Sigma)$ of mod Σ is equivalent to the (bounded) derived category of coh \mathbb{X} , the category of coherent sheaves over \mathbb{X} , see [3]. Two derived canonical algebras are derived equivalent if and only if their associated weighted projective lines are isomorphic, see [4] and [10] for further details. Quite important information on \mathbb{X} , the weight type $\underline{p} = (p_1, \ldots, p_t)$, can already be read from the Coxeter polynomial of Σ which has the shape

$$(T-1)^2 \cdot \prod_{i=1}^t \frac{T^{p_i} - 1}{T-1}.$$

Note that, if $t \leq 3$, then X is completely determined by its weight type. The genus of X, hence of Σ , defined by

$$g_{\mathbb{X}} = g_{\Sigma} := 1 + \frac{1}{2} \left((t-2)p - \frac{p}{p_1} - \dots - \frac{p}{p_t} \right), \text{ where } p = \text{l.c.m.}(p_1, \dots, p_t),$$

1991 Mathematics Subject Classification. 16G20,16E30.

bounded derived category of Σ -modules.

The first author gratefully acknowledges support from University of Paderborn and PADEP, UNAM.

©0000 (copyright holder)

determines the representation type of $\operatorname{coh} \mathbb{X}$ and of the canonical algebra Λ associated with \mathbb{X} , see [3]: for $g_{\mathbb{X}} \leq 1$ both $\operatorname{coh} \mathbb{X}$ and Λ are tame, whereas $\operatorname{coh} \mathbb{X}$ and Λ are wild if $g_{\mathbb{X}} > 1$. If $g_{\mathbb{X}} = 1$ the algebra Λ is *tubular*, see [12, 10]. This happens if and only if the weight type is — up to permutation — one of (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6). Note, in this context, that passing from the canonical algebra Λ to a derived equivalent algebra Σ may simplify the representation type.

For a hereditary category \mathcal{C} like $\operatorname{coh} X$ or $\operatorname{mod} H$, H hereditary, the derived category $\operatorname{D}^{b}(\mathcal{C}) = \bigvee_{n \in \mathbb{Z}} \mathcal{C}[n]$, the additive closure of the union of all $\mathcal{C}[n]$'s, is known as well as \mathcal{C} . Here, each $\mathcal{C}[n]$ is a copy of \mathcal{C} with objects written X[n], $X \in \mathcal{C}$, and morphisms are given by

$$\operatorname{Hom}_{\operatorname{D}^{b}(\mathcal{C})}(X[m], Y[n]) = \operatorname{Ext}_{\mathcal{C}}^{n-m}(X, Y)$$

Note that we have natural identifications for the Grothendieck-groups

$$\mathbf{K}_{0}(\mathbb{X}) = \mathbf{K}_{0}(\Sigma) = \mathbf{K}_{0}(\mathbf{D}^{b}(\Sigma)),$$

and that the identifications preserve the *Euler forms* given on classes of Σ -modules (coherent sheaves, objects from the derived category, respectively) by the formula

$$\langle [X], [Y] \rangle = \sum_{i=-\infty}^{\infty} (-1)^{i} \dim_{k} \operatorname{Hom}(X, Y[i]).$$

Let A be an algebra of finite global dimension. We recall from [5] that the bounded derived category $D^b(A)$ of finite dimensional A-modules has Auslander-Reiten triangles. We say that an indecomposable A-module M is derived peripheral if the "middle term" E of the Auslander-Reiten triangle $\tau M \to E \to M \to \tau M[1]$ is indecomposable. An indecomposable A-module M is further called derived simple or also derived simple regular, if M is derived peripheral and τ -periodic for the Auslander-Reiten translation τ of $D^b(A)$. Moreover, still assuming that M is indecomposable, we call M derived quasi-simple if M is derived peripheral and lies in a component of the form $\mathbb{Z}\mathbb{A}_{\infty}$ in $D^b(A)$.

Assuming that Σ is derived canonical, it follows from [3, 11] and [10] that M is derived simple if and only if there exists a self-equivalence φ of $D^b(\Sigma) = D^b(\operatorname{coh} \mathbb{X})$ and a simple sheaf S on \mathbb{X} such that $M = \varphi(S)$. For $g_{\Sigma} \neq 1$ the situation simplifies, and we may choose φ to be a translation functor $X \mapsto X[n]$.

Assuming that the algebra Σ is derived equivalent to a wild hereditary algebra H, a Σ -module M is derived quasi-simple if and only if there exists an integer n such that M[n] is a regular H-module of quasi-length one.

For a representation-finite connected hereditary algebra H we fix an identification of the Auslander-Reiten quiver of $D^b(H)$ with the translation quiver $\mathbb{Z}\Delta$ of the Dynkin diagram Δ attached to H. Relative to such an identification we define the *derived type* of an indecomposable Σ -module, with Σ derived equivalent to H, as the vertex v of Δ such that M belongs to the τ -orbit of v in $\mathbb{Z}\Delta$.

2. Derived canonical one-point extensions

Given an algebra Σ and a Σ -module M, we will consider the *one-point sink* extension or just sink extension $[M]\Sigma$ which is given as

$$[M]\Sigma = \begin{bmatrix} \Sigma & 0\\ M & k \end{bmatrix}$$

with the corresponding matrix operations. Dually we define the one-point source extension or just source extension $\Sigma[M]$ (they are also called one-point coextension and one-point extension in the literature).

We are now going to investigate when a one-point extension is derived canonical. Since an algebra is derived canonical if and only if its opposite algebra is it suffices to investigate under which conditions a sink extension $[M]\Sigma$ is derived canonical.

We need to introduce some notation for the special case where Σ is derived equivalent to $k[\mathbb{A}_n]$, i.e. Σ is a branch with n points, see [8, 1]. In this case, the indecomposable objects in the derived category $D^b(\Sigma)$ form a single Auslander-Reiten component of type $\mathbb{Z}\mathbb{A}_n$. A slice S in $D^b(\Sigma)$ is called a (p,q)-slice if in the quiver of S, there are p arrows pointing upwards and the remaining n - p - 1 = qarrows point downwards.

In the above figure, we have marked a (1, 4)-slice, and the two peripheral objects belonging to that slice.

Back in the general situation, where we consider the sink extension $[M]\Sigma$, we denote by \overline{M} the indecomposable projective module corresponding to the sink vertex of $\overline{\Sigma} = [M]\Sigma$, thus the radical of \overline{M} is just M. We view mod Σ as the full exact subcategory of mod $\overline{\Sigma}$ consisting of all $\overline{\Sigma}$ -modules X with $\operatorname{Hom}_{\overline{\Sigma}}(\overline{M}, X) = 0$. The inclusion mod $\Sigma \subset \operatorname{mod} \overline{\Sigma}$ induces an inclusion $D^b(\Sigma) \subset D^b(\overline{\Sigma})$. In particular, identifying modules with stalk complexes in the corresponding derived category, mod Σ and mod $\overline{\Sigma}$ become full subcategories of $D^b(\overline{\Sigma})$.

THEOREM 1. Let Σ be an algebra and M a Σ -module. Assume that $\overline{\Sigma} = [M]\Sigma$ is derived canonical. Then M is the middle term of the Auslander-Reiten triangle $\tau \overline{M} \to M \to \overline{M} \to \tau \overline{M}[1]$ in $D^b(\overline{\Sigma})$ associated with the projective module \overline{M} attached to the sink vertex of $\overline{\Sigma}$.

If further $\Sigma = \Sigma_1 \times \cdots \times \Sigma_s$ is the decomposition of Σ into connected algebras, and $M = M_1 \times \cdots \times M_s$ is the corresponding decomposition of M into Σ_i -modules M_i , then $s \leq 4$ and exactly one of the following cases happens:

1. a. Σ is derived equivalent to $k[\mathbb{A}_{\ell}]$ and $M = M' \oplus M''$ is the direct sum of two indecomposable modules M' and M'' forming the periphery of a (p-1, q-1)-slice, $\ell = p + q - 1$, of the component $\mathbb{Z}\mathbb{A}_{\ell}$ of $D^b(\Sigma)$. Conversely, for each such choice for Σ and M the sink extension $[M]\Sigma$ is derived canonical of weight type (p, q).

M. BAROT AND H. LENZING

weight type($[M]\Sigma$)	hereditary type of $[M]\Sigma$	derived type of (Σ, M)
(p,q)		•
(2, 2, 2)	X	•
(2, 2, n)		••••••
		·
		•~
(2, 3, 3)		
	● →□ ← → □ → □ → □ → □ → □ → □ → □ → □ → □ →	•
		~
(2, 3, 4)		
		•
		•
		0-0-0-0-0-0
(2, 3, 5)		
	●→□< ●	•
	└╺──°── ╸ │	•
	╺━╍━╍━╍━━	┝━━━━━━━━━━━━━━━━━
L		L

Table 1: Choices for (Σ_i, M_i)

4

b. Each Σ_i is derived equivalent to a representation-finite connected hereditary algebra H_i , and each M_i is an indecomposable Σ_i -module, where the Dynkin types for the Σ_i 's and the derived types for the M_i 's are listed in the table below.

Conversely, for each choice of (Σ, M) conforming to the table, the sink extension $[M]\Sigma$ is derived canonical with the type given by the first column of the table.

- 2. $\Sigma = \Sigma_1 \times \Sigma_2$, where $\Sigma_1 \neq 0$ is derived canonical and Σ_2 is derived equivalent to a hereditary algebra of type \mathbb{A}_{ℓ} , $0 \leq \ell$. Moreover, M_1 is derived simple over Σ_1 , and - if Σ_2 is non-zero - the Σ_2 -module M_2 is derived peripheral. Conversely, for each such choice of (Σ, M) , the sink extension $[M]\Sigma$ is derived canonical of weight type $(p_1, \ldots, p_{t-1}, p_t + \ell)$, if Σ_1 has weight type (p_1, \ldots, p_t) and M_1 has τ -period p_t in the derived category.
- 3. $\Sigma = \Sigma_1 \times \Sigma_2$, where $\Sigma_1 \neq 0$ is derived equivalent to a connected wild hereditary algebra H, and Σ_2 is derived equivalent to a hereditary algebra of type $\mathbb{A}_{\ell}, 0 \leq \ell \leq 5$. Moreover, the Σ_1 -module M_1 is derived quasi-simple, and if Σ_2 is non-zero — the Σ_2 -module M_2 is derived peripheral.

Concerning statement 3 it is an interesting open question when the sink extension $[M]\Sigma$ of a wild hereditary algebra Σ by a regular quasi-simple module M is derived canonical. The problem is related to the question when sink and source extension algebras are quasi-tilted [6].

PROOF. The first assertion is proved in [2]. Next we show that the conditions listed in 1, 2 and 3 are necessary, and exhaust all possible cases. Since $\overline{\Sigma}$ is derived canonical, there is a weighted projective line $\overline{\mathbb{X}}$ such that $\overline{\Sigma}$ can be realized as a *tilting complex* in the derived category $D^b(\overline{\mathcal{C}})$, where $\overline{\mathcal{C}} = \operatorname{coh} \overline{\mathbb{X}}$, i.e. $\overline{\Sigma}$ is a full subcategory of $D^b(\overline{\mathcal{C}})$ consisting of indecomposable objects $\overline{\Sigma}_j$, $j = 1, \ldots, n+1$, which satisfy the condition

 $\operatorname{Hom}_{\mathbb{D}^b(\overline{C})}(\overline{\Sigma}_i, \overline{\Sigma}_j[m]) = 0 \text{ for all } m \in \mathbb{Z} \setminus \{0\} \text{ and all } i, j = 1, \dots, n+1$

and generate $D^{b}(\overline{C})$ as a triangulated category. In the present setting this latter condition is satisfied if and only if n + 1 equals the rank of $K_0(\overline{C})$.

We denote by \overline{M} the indecomposable object $\overline{\Sigma}_{n+1}$ corresponding to the coextension vertex, and by Σ the full subcategory consisting of $\overline{\Sigma}_1, \ldots, \overline{\Sigma}_n$. By translation we may moreover assume that \overline{M} lies in \overline{C} . Notice that \overline{M} is an *exceptional object* of \overline{C} , i.e. has trivial endomorphism ring and no self-extensions. Let $\mathcal{H} = \overline{M}_{\overline{C}}^{\perp}$ denote the perpendicular category

$$\mathcal{H} = \left\{ X \in \overline{\mathcal{C}} \mid \operatorname{Hom}_{\overline{\mathcal{C}}}(\overline{M}, X) = 0 = \operatorname{Ext}_{\overline{\mathcal{C}}}^{1}(\overline{M}, X) \right\}$$

of \overline{M} formed in $\overline{\mathcal{C}}$, and let $\mathcal{D} = \overline{M}_{D^{b}(\overline{\mathcal{C}})}^{\perp}$ denote the perpendicular category

$$\mathcal{D} = \left\{ X \in \mathrm{D}^{b}\left(\overline{\mathcal{C}}\right) \mid \mathrm{Hom}_{\mathrm{D}^{b}\left(\overline{\mathcal{C}}\right)}(\overline{M}, X[m]) = 0 \text{ for all } m \in \mathbb{Z} \right\}$$

of \overline{M} formed in the derived category $D^b(\overline{\mathcal{C}})$. It is easily checked that \mathcal{H} is an abelian hereditary category, and that $\mathcal{D} = \bigvee_{n \in \mathbb{Z}} \mathcal{H}[n]$. Moreover, Σ is a tilting complex in \mathcal{D} .

The structure of ${\mathcal H}$ is given as follows:

Case (i): If \overline{M} has finite length n, then \overline{M} lies in an exceptional tube and $\mathcal{H} \cong \mathcal{C} \times \mod H$, where $\mathcal{C} = \operatorname{coh} \mathbb{X}$ for a weighted projective line of a weight type

dominated by the weight type of $\overline{\mathbb{X}}$ and where $H = k[1 \to 2 \to \cdots \to n-1]$. This follows from [4, Thm. 9.5] invoking an argument of Strauß [13]. The figure below shows the relevant part of the component of $D^b(\overline{\mathcal{C}})$ containing \overline{M} :

Here, the indecomposable *H*-modules form the subwing with "top" M_2 . According to the decomposition $D^b(\mathcal{H}) = D^b(\mathcal{C}) \times D^b \pmod{H}$, the algebra Σ decomposes into two connected algebras Σ_1 and Σ_2 , where Σ_1 is a tilting complex in $D^b(\mathcal{C})$ and Σ_2 is a tilting complex in $D^b \pmod{H}$. Note that M_2 is derived peripheral over H, hence over Σ_2 .

Further the object M_1 at the top of the figure is a simple object in C, and therefore M_1 becomes a derived simple Σ_1 -module. This proves the first part of the statement 2.

Case (ii): \overline{M} is an exceptional vector bundle in $\operatorname{coh} \overline{X}$. Here, it follows from [7] that \mathcal{H} is equivalent to a module category over a (not necessarily connected) hereditary algebra. For a more complete analysis, we need to distinguish the various representation types for $\overline{\mathcal{C}} = \operatorname{coh} \overline{X}$:

1. $\overline{\mathbb{X}}$ has genus < 1, i.e. the weight type $\Delta = (p, q, r)$ is of Dynkin type. Here the vector bundles form one component of type $\mathbb{Z}\overline{\Delta}$, where $\overline{\Delta}$ is the extended Dynkin diagram corresponding to Δ . To calculate the perpendicular category of \overline{M} in $D^b(\overline{\Sigma})$ we choose a slice \overline{H} of $\mathbb{Z}\overline{\Delta}$ such that \overline{M} becomes a sink in \overline{H} , which is a tilting object of $\overline{\mathcal{C}}$ whose endomorphism ring, here identified with \overline{H} , is a tame hereditary algebra. Since $D^b(\overline{\mathcal{C}}) = D^b \pmod{\overline{H}}$, the perpendicular category of \overline{M} in $D^b(\overline{\mathcal{C}})$ equals the derived category of $\overline{M}_{\text{mod}\overline{H}}^{\perp}$. This category $\overline{M}_{\text{mod}\overline{H}}^{\perp}$ is equivalent to the module category of a not necessarily connected hereditary algebra H, whose indecomposable objects consist of the objects of the slice \overline{H} different from \overline{M} . The arising cases for H are listed in the table. Moreover, the almost-split sequence $0 \to \tau \overline{M} \to \overline{M} \to \overline{0}$ in $\overline{\mathcal{C}}$, obtained from the first assertion, yields the derived types of the M_i , $M = \bigoplus_{i=1}^s M_i$, as marked in the table. Since

$$M_{\overline{\mathcal{D}}}^{\perp} = \mathcal{D}^{b}\left(\overline{M}_{\mathrm{mod}}^{\perp}\overline{H}\right) = \mathcal{D}^{b}\left(\mathrm{mod}\,H\right) = \prod_{i=1}^{s} \mathcal{D}^{b}\left(\mathrm{mod}\,H_{i}\right)$$

the tilting complex Σ decomposes into s connected pieces Σ_i , where each Σ_i as a tilting complex in $D^b \pmod{H_i}$ is derived-equivalent to H_i . This shows the first part of statement 1.

- 2. $\overline{\mathbb{X}}$ has genus one. By an automorphism of the derived category we can in this case achieve that \overline{M} has finite length, see [10]. The assertion thus reduces to case (i).
- 3. $\overline{\mathbb{X}}$ has genus > 1. In this case, \overline{M} belongs to a component of $\overline{\mathcal{C}}$ having type $\mathbb{Z}\mathbb{A}_{\infty}$ [11], and it is known that the quasi-length ℓ of \overline{M} is at most 5 [loc. cit.]. Invoking arguments of [13], it further follows from [7] that $\overline{M}_{\overline{\mathcal{C}}}^{\perp}$ is equivalent to the product of mod $A_{\ell-1}$, where $A_{\ell-1} = k[1 \to \cdots \to \ell 1]$, with the module category mod H over a connected wild hereditary algebra H. Accordingly Σ decomposes into a product $\Sigma_1 \times \Sigma_2$, where Σ_1 is connected and derived wild hereditary, and where Σ_2 is derived equivalent to $A_{\ell-1}$, i.e. a branch in the sense of [8, 1]. Following arguments of [13] and [9] it follows moreover that M_1 is derived quasi-simple and M_2 is derived peripheral. This proves the first part of the statement 3.

Now we show the second part of the statements 1 and 2. So, first let Σ be derived equivalent to $k[\mathbb{A}_{\ell}]$ and $M = M' \oplus M''$ a Σ -module such that M' and M'' are indecomposable and form the periphery of a (p-1, q-1)-slice S of the component $\mathbb{Z}\mathbb{A}_{\ell}$ of $D^b(\Sigma)$, where p and q are such that $\ell = p + q - 1$. By the first statement of the theorem, we have that $S \oplus \overline{M}$ is a tilting complex in $D^b([M]\Sigma)$ with endomorphism algebra isomorphic to $k[\tilde{\mathbb{A}}_{\ell}]$. Thus $[M]\Sigma$ is derived canonical.

With the same argument we show that $[M]\Sigma$ is derived canonical, when $\Sigma = \Sigma_1 \times \cdots \times \Sigma_s$ and $M = M_1 \times \cdots \times M_s$ where Σ_j is derived hereditary and M_j is an indecomposable Σ_j -module $(j = 1, \ldots, s)$ such that the pair (Σ, M) is listed in Table 1.

Let now $\Sigma = \Sigma_1 \times \Sigma_2$, where Σ_1 is derived canonical and Σ_2 is derived equivalent to $k[\mathbb{A}_{\ell}]$ for some $\ell \geq 0$. Further let $M = M_1 \times M_2$, where M_1 is derived simple and, if l > 0, then let M_2 be deriphed peripheral. Let $\mathbb{X}(\underline{p}, \underline{\lambda})$ be the weighted projective line associated to Σ_1 , where $p = (p_1, \ldots, p_t)$ is its weight type. Let \overline{X} be the weighted projective line with weight type $(p_1, \ldots, p_{t-1}, p_t + \ell)$ and with the same parameter sequence $\underline{\lambda}$ as X. We fix an indecomposable sheaf E of length $\ell + 1$ concentrated at λ_t , and form the perpendicular category $\mathcal{H} = E^{\perp}$ of E in $\overline{\mathcal{C}} = \operatorname{coh} \mathbb{X}$. Then $\mathcal{H} = \mathcal{C} \times \mod H$, where $\mathcal{C} = \operatorname{coh} \mathbb{X}$ and $H = k[1 \to \cdots \to \ell]$. Moreover, the middle term of the almost-split sequence $0 \to \tau E \to S \oplus M_2 \to E \to 0$ decomposes into a simple sheaf S in C, concentrated at λ_t and in the indecomposable projectiveinjective *H*-module M_2 . Next, we realize Σ_1 as a tilting complex in $D^b(\mathcal{C})$ so that, by means of the identification $D^{b}(\Sigma_{1}) = D^{b}(\mathcal{C})$ the module M_{1} corresponds to the simple sheaf S. Further, we realize the branch Σ_2 as a tilting complex in $D^b(H)$ such that, in the identification $D^{b}(\Sigma_{2}) = D^{b}(H)$, the *H*-module M_{2} becomes a (derived peripheral) module over Σ_2 . Following [2], it is easily checked that E together with Σ_1 and Σ_2 forms a tilting complex in $D^b(\operatorname{coh} \mathbb{X})$ with endomorphism algebra $\overline{\Sigma} = [M_1 \times M_2]\Sigma$. Hence $\overline{\Sigma}$ is derived canonical of type $\overline{\mathbb{X}}$.

This completes the proof of the Theorem.

In Theorem 1 we have seen that the request for an algebra Σ to admit a derived canonical source or sink extension is very restrictive for Σ and for the "extension module" M. The information is even more specific if we start the extension procedure with a derived canonical algebra Σ .

COROLLARY 1. Let Σ be derived canonical, and let M be a finite dimensional not necessarily indecomposable Σ -module.

Then the sink extension $[M]\Sigma$ is derived canonical if and only if M is derived simple, in particular indecomposable.

PROOF. By Theorem 1, we only need to show that the condition is necessary. So let us assume that $[M]\Sigma$ is derived canonical. As a derived canonical algebra Σ is connected, hence Theorem 1 implies that \overline{M} is derived simple. This uses that a wild hereditary or a representation-finite hereditary algebra is never derived equivalent to a canonical algebra since wild hereditary algebras always have spectral radius greater one and representation-finite hereditary algebras do not admit 1 as a root of their Coxeter polynomial, while canonical algebras have spectral radius one, and 1 is a root of their Coxeter polynomial. Thus cases 1 and 3 of Theorem 1 will not occur.

We now consider the case where a branch \mathcal{B} is attached to the extension vertex of $[M]\Sigma$, see [1] for definitions. We denote by $[\mathcal{B}, M]\Sigma$ the resulting algebra.

COROLLARY 2. Let Σ be a derived canonical algebra, M a Σ -module and \mathcal{B} a branch.

Then $[\mathcal{B}, M]\Sigma$ is derived canonical if and only if M is derived simple.

PROOF. First let $\overline{\Sigma} = [\mathcal{B}, M]\Sigma$ be derived canonical. Clearly, $\overline{\Sigma}$ is derived equivalent to $\overline{\Sigma}' = [\mathcal{B}', M]\Sigma$, where \mathcal{B}' denotes the linearly ordered branch with its sink α as root point. Thus we may identify $\overline{\Sigma}'$ with the algebra $[M \times P_{\alpha}](\Sigma \times \mathcal{B}')$, where P_{α} denotes the projective indecomposable associated to the point α . Therefore, we may apply Corollary 1. Once again, only the case 2 remains possible, and we infer that M is a derived simple Σ -module.

The converse is covered by Theorem 1, part 2.

2.1. Criteria for derived canonical algebras. Theorem 1 provides us with a necessary condition for an algebra Σ to be derived canonical. So we might use this in order to prove that certain algebras are not derived canonical. We shall exhibit this in an example. Let A_n be the algebra given by the linear bound quiver with $n \geq 8$ vertices

which satisfies the n-6 relations $x^7 = 0$. It is not difficult to check that A_9 , A_10 and A_{11} are derived canonical of weight type (2,3,5), (2,3,6) and (2,3,7), respectively. Also the Coxeter polynomial of A_{22} has canonical type (2,7,14). However, the algebra A_{22} is not derived canonical.

Using Theorem 1, this can be seen as follows: First, we write A_{22} as a sink extension of the algebra A_{21} by a module M over A_{21} , thus $A_{22} = [M]A_{21}$. By Theorem 1, it suffices to show that A_{21} is neither derived equivalent to a representation-finite hereditary algebra, nor derived canonical, nor derived equivalent to a wild hereditary algebra:

Introducing the polynomials

$$V_n = \frac{T^n - 1}{T - 1},$$

the Coxeter polynomial $\mathbf{C}(A_{21})$ of A_{21} is seen to be $(T-1)^2 V_2 V_7 V_8 V_9 / V_4$. In particular, $\mathbf{C}(A_{21})$ is not of canonical type and hence A_{21} is not derived canonical. Since all roots of $\mathbf{C}(A_{21})$ lie on the unit circle in the complex plane and further 1 is a root of $\mathbf{C}(A_{21})$, the algebra A_{21} cannot be derived equivalent to a hereditary algebra which is wild or representation-finite.

References

- I. Assem and A. Skowroński: Algebras with cycle-finite derived categories. Math. Ann. 280 (1988), 441–463.
- [2] M. Barot and H. Lenzing: One-point extensions and derived equivalence. To appear.
- [3] W. Geigle and H. Lenzing: A class of weighted projective lines arising in representation theory of finite-dimensional algebras. In: Singularities, Representations of Algebras, and Vector Vector Bundles, Springer Lecture Notes in Math. 1273, Springer (1987), 265–297.
- [4] W. Geigle and H. Lenzing: Perpendicular categories with applications to representations and sheaves. J. Algebra 144 (1991), 273–343.
- [5] D. Happel: Triangulated categories in the representation theory of finite dimensional algebras. London Math. Soc, Lecture Notes Series 119 (1988).
- [6] D. Happel, I. Reiten, S. O. Smalø: Tilting in abelian categories and quasitilted algebras. Mem. Amer. Math. Soc. 575 (1996).
- [7] T. Hübner and H. Lenzing: *Categories perpendicular to exceptional bundles*. Preprint Paderborn.
- [8] B. Keller and D. Vossieck: Aisles in derived categories. Bull. Soc. Math. Belg. 40 (1988), 239–253.
- [9] O. Kerner: Stable components of wild algebras. J. Algebra 142 (1991), 37-57.
- [10] H. Lenzing and H. Meltzer: Sheaves on a weighted projective line of genus one, and representations of a tubular algebra. In: Representations of Algebras, Sixth International Conference, Ottawa 1992, CMS Conf. Proc. 14 (1993), 313–337.
- [11] H. Lenzing and J. A. de la Peña: Wild canonical algebras. Math. Z. 224, 403–425 (1997).
- [12] C. M. Ringel: Tame algebras and integral quadratic forms. Springer Lecture Notes in Math. 1099, Springer (1984).
- [13] H. Strauß: On the perpendicular category of a partial tilting module. J. Algebra 144 (1991), 43–66.

Michael Barot, Instituto de Matemáticas, UNAM, Ciudad Universitaria, México, 04510, D.F., Mexico

E-mail address: barot@gauss.matem.unam.mx

HELMUT LENZING, FACHBEREICH MATHEMATIK-INFORMATIK, UNIVERSITÄT PADERBORN, D-33095 PADERBORN, GERMANY

E-mail address: helmut@math.uni-paderborn.de