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Derived Canonical Algebras as One-Point Extensions
Michael Barot and Helmut Lenzing

ABSTRACT. Canonical algebras have been intensively studied, see for example
[12], [3] and [11] among many others. We are interested in the question when
a one-point extension of a finite-dimensional algebra ¥ by a X-module M
is derived canonical, i.e. derived equivalent to a canonical algebra. We give
necessary conditions on the algebra ¥ and the module M. If the canonical
algebra associated with ¥ is tame the conditions are even sufficient.

As a further result we obtain that, if 3 is derived canonical then the one-point
extension of X by M is derived canonical again if and only if M is derived
simple, i.e. M is indecomposable and belongs to the mouth of a tube in the
bounded derived category of Y-modules.

1. Prerequisites

We work over an algebraically closed base field k. By algebra we mean always a
basic, finite dimensional k-algebra and by module we mean finitely generated right
module. For an algebra ¥ we denote by mod ¥ the category of ¥-modules.

An algebra ¥ which is derived equivalent to a canonical algebra will be called de-
rived canonical. This terminology replaces the less suggestive term quasi-canonical
used in [10]. For each derived canonical algebra there exists a weighted projective
line X = X(p, A) such that the (bounded) derived category D® (¥) of mod ¥ is equiv-
alent to the_(bounded) derived category of coh X, the category of coherent sheaves
over X, see [3]. Two derived canonical algebras are derived equivalent if and only if
their associated weighted projective lines are isomorphic, see [4] and [10] for further
details. Quite important information on X, the weight type p = (p1,...,pt), can
already be read from the Coxeter polynomial of ¥ which has the shape
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Note that, if ¢ < 3, then X is completely determined by its weight type. The genus
of X, hence of ¥, defined by

1
gx =gs =1+ 3 <(t —2p—— — - — £> , where p = Lem.(p1,...,pt),
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determines the representation type of coh X and of the canonical algebra A associ-
ated with X see [3]: for gx < 1 both cohX and A are tame, whereas coh X and A
are wild if gx > 1. If gx = 1 the algebra A is tubular, see [12, 10]. This happens if
and only if the weight type is — up to permutation — one of (2,2,2,2), (3,3,3),
(2,4,4) or (2,3,6). Note, in this context, that passing from the canonical algebra
A to a derived equivalent algebra ¥ may simplify the representation type.

For a hereditary category C like cohX or mod H, H hereditary, the derived
category D?(C) = V/,,c; C[n], the additive closure of the union of all C[n]’s, is
known as well as C. Here, each C[n] is a copy of C with objects written X|[n],
X € C, and morphisms are given by

Hompe ¢y (X[m],Y[n]) = Extg™ " (X,Y).
Note that we have natural identifications for the Grothendieck-groups
Ko(X) = Ko(2) = Ko(D* (),

and that the identifications preserve the Euler forms given on classes of Y-modules
(coherent sheaves, objects from the derived category, respectively) by the formula

(X1,IY]) = > (~1)'dimyHom(X, Yi]).

1=—00

Let A be an algebra of finite global dimension. We recall from [5] that the
bounded derived category D? (A) of finite dimensional A-modules has Auslander-
Reiten triangles. We say that an indecomposable A-module M is derived peripheral
if the “middle term” E of the Auslander-Reiten triangle TM — E — M — 7M|1]
is indecomposable. An indecomposable A-module M is further called derived sim-
ple or also derived simple regular, if M is derived peripheral and 7-periodic for
the Auslander-Reiten translation 7 of D? (4). Moreover, still assuming that M is
indecomposable, we call M derived quasi-simple if M is derived peripheral and lies
in a component of the form ZA, in D (A).

Assuming that ¥ is derived canonical, it follows from [3, 11] and [10] that M is
derived simple if and only if there exists a self-equivalence ¢ of D® () = D’ (coh X)
and a simple sheaf S on X such that M = ¢(S). For g5, # 1 the situation simplifies,
and we may choose ¢ to be a translation functor X — X{n].

Assuming that the algebra X is derived equivalent to a wild hereditary algebra
H, a ¥-module M is derived quasi-simple if and only if there exists an integer n
such that M|n] is a regular H-module of quasi-length one.

For a representation-finite connected hereditary algebra H we fix an identifi-
cation of the Auslander-Reiten quiver of D (H) with the translation quiver ZA of
the Dynkin diagram A attached to H. Relative to such an identification we define
the derived type of an indecomposable Y-module, with ¥ derived equivalent to H,
as the vertex v of A such that M belongs to the 7-orbit of v in ZA.

2. Derived canonical one-point extensions

Given an algebra ¥ and a Y-module M, we will consider the one-point sink
extension or just sink extension [M]X which is given as
Y 0]

[M]% = [M k
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with the corresponding matrix operations. Dually we define the one-point source
extension or just source extension L[M] (they are also called one-point coextension
and one-point extension in the literature).

We are now going to investigate when a one-point extension is derived canonical.
Since an algebra is derived canonical if and only if its opposite algebra is it suffices
to investigate under which conditions a sink extension [M]Y is derived canonical.

We need to introduce some notation for the special case where ¥ is derived
equivalent to k[A,], i.e. ¥ is a branch with n points, see [8, 1]. In this case, the
indecomposable objects in the derived category D’ (X) form a single Auslander-
Reiten component of type ZA,,. A slice S in D?(X) is called a (p, q)-slice if in the
quiver of S, there are p arrows pointing upwards and the remaining n —p —1=g¢q
arrows point downwards.

/N

In the above figure, we have marked a (1, 4)-slice, and the two peripheral objects
belonging to that slice.

Back in the general situation, where we consider the sink extension [M]X,
we denote by M the indecomposable projective module corresponding to the sink
vertex of X = [M]Y, thus the radical of M is just M. We view mod ¥ as the full
exact subcategory of mod ¥ consisting of all ¥-modules X with Homi(ﬁ, X)=0.
The inclusion mod ¥ C mod ¥ induces an inclusion D? () ¢ D? (¥). In particular,
identifying modules with stalk complexes in the corresponding derived category,
mod ¥ and mod ¥ become full subcategories of D? (X2).

THEOREM 1. Let ¥ be an algebra and M a X-module. Assume that ¥ = [M]%
is derived canonical. Then M is the middle term of the Auslander-Reiten triangle
™ — M — M — 7MJl] in D®(X) associated with the projective module M
attached to the sink vertex of 3.

If further ¥ = %1 X - -+ X Xy is the decomposition of ¥ into connected algebras,
and M = M X --- x My is the corresponding decomposition of M into X;-modules
M;, then s < 4 and exactly one of the following cases happens:

1. a. X is derived equivalent to k[Ag) and M = M’ & M" is the direct sum
of two indecomposable modules M’ and M" forming the periphery of
a(p—1,q—1)-slice, £ =p+q— 1, of the component ZA, of D® (X).
Conversely, for each such choice for ¥ and M the sink extension [M]%X
is derived canonical of weight type (p,q).
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[ weight type([M]X) [ hereditary type of [M]Z | derived type of (3, M)
(p, q) o4 —0—0---0—
(2,2,2) >D< E
(272771) >D<—o—©©—<< E—OD—<
(2,3,3) I —
(27 374) D—O—O—b‘%‘—‘—@—@ —o0—0
(27 3, 5) D<—0—I—o—o—<>—o—c O—I—o—o—o—o—o

Table 1: Choices for (3;, M;)
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b. Each %; is derived equivalent to a representation-finite connected he-
reditary algebra H;, and each M; is an indecomposable Y;-module,
where the Dynkin types for the X;’s and the derived types for the M;’s
are listed in the table below.

Conwersely, for each choice of (X, M) conforming to the table, the
sink extension [M]X is derived canonical with the type given by the
first column of the table.

2. X = X1 X X9, where X1 # 0 is derived canonical and Xo is derived equivalent
to a hereditary algebra of type Ay, 0 < €. Moreover, M, is derived simple
over X1, and — if 3o is non-zero — the Yo-module My is derived peripheral.

Conversely, for each such choice of (3, M), the sink extension [M]X is
derived canonical of weight type (p1,...,pi—1,pt +£), if L1 has weight type
(p1,...,pt) and My has T-period p; in the derived category.

3. ¥ =34 X X9, where X1 # 0 is derived equivalent to a connected wild hered-
itary algebra H, and X9 is derived equivalent to a hereditary algebra of type
Ay, 0 < £ < 5. Moreover, the ¥1-module My is derived quasi-simple, and —
if Yo is non-zero — the Yo-module Mo is derived peripheral.

Concerning statement 3 it is an interesting open question when the sink exten-
sion [M]X of a wild hereditary algebra ¥ by a regular quasi-simple module M is
derived canonical. The problem is related to the question when sink and source
extension algebras are quasi-tilted [6].

PROOF. The first assertion is proved in [2]. Next we show that the conditions
listed in 1, 2 and 3 are necessary, and exhaust all possible cases. Since X is derived
canonical, there is a weighted projective line X such that ¥ can be realized as a
tilting complex in the derived category D?(C), where C = cohX, i.e. ¥ is a full
subcategory of D? (C) consisting of indecomposable objects ¥;, j = 1,...,n + 1,
which satisfy the condition

Homyy, (5, 5j[m]) = 0 for all m € Z\ {0} and all i,j =1,...,n+1

and generate D’ (C) as a triangulated category. In the present setting this latter
condition is satisfied if and only if n + 1 equals the rank of Ko(C).

We denote by M the indecomposable object ¥,, 1 corresponding to the coexten-
sion vertex, and by ¥ the full subcategory consisting of X1, ..., %,. By translation
we may moreover assume that M lies in C. Notice that M is an exceptional object
of C, i.e. has trivial endomorphism ring and no self-extensions. Let H = M% denote
the perpendicular category

H ={X €C|Homg(M,X)=0=Ext:(M,X)}
of M formed in C, and let D = Méb @ denote the perpendicular category
D= {X € D" (€) | Homyp, @) (7, X[m]) = 0 for all m € Z}

of M formed in the derived category D? (C). It is easily checked that 7 is an abelian
hereditary category, and that D =/, ., H[n]. Moreover, ¥ is a tilting complex in
D.

The structure of H is given as follows:

Case (i): If M has finite length n, then M lies in an exceptional tube and
‘H = C x mod H, where C = coh X for a weighted projective line of a weight type
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dominated by the weight type of X and where H = k[l — 2 — --- — n — 1]. This
follows from [4, Thm. 9.5] invoking an argument of Strauff [13]. The figure below
shows the relevant part of the component of D? (C) containing M:

Here, the indecomposable H-modules form the subwing with “top” Ms. According
to the decomposition D? (H) = D’ (C) x D (mod H), the algebra . decomposes
into two connected algebras X1 and X5, where ¥ is a tilting complex in D? (C) and
¥, is a tilting complex in D? (mod H). Note that M, is derived peripheral over H,
hence over Y.

Further the object M; at the top of the figure is a simple object in C, and
therefore M7 becomes a derived simple ¥;-module. This proves the first part of
the statement 2.

Case (ii): M is an exceptional vector bundle in coh X. Here, it follows from
[7] that H is equivalent to a module category over a (not necessarily connected)
hereditary algebra. For a more complete analysis, we need to distinguish the various
representation types for C = coh X:

1. X has genus < 1, i.e. the weight type A = (p, q,7) is of Dynkin type. Here
the vector bundles form one component of type ZA, where A is the ex-
tended Dynkin diagram corresponding to A. To calculate the perpendicular
category of M in D’ (X) we choose a slice H of ZA such that M becomes
a sink in H, which is a tilting object of C whose endomorphism ring, here
identified with H, is a tame hereditary algebra. Since D® (C) = D® (mod H),
the perpendicular category of M in Db (5) equals the derived category of
M 47 This category Miodﬁ is equivalent to the module category of
a not necessarily connected hereditary algebra H, whose indecomposable
objects consist of the objects of the slice H different from M. The aris-
ing cases for H are listed in the table. Moreover, the almost-split sequence
0—7M — M — M — 0 in C, obtained from the first assertion, yields the
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derived types of the M;, M = @;_, M;, as marked in the table. Since

S
Mz = D? (M,,477) = D (mod H) = [[ D” (mod H;)
i=1
the tilting complex ¥ decomposes into s connected pieces ¥;, where each X;
as a tilting complex in D? (mod H;) is derived-equivalent to H;. This shows
the first part of statement 1.

2. X has genus one. By an automorphism of the derived category we can in this
case achieve that M has finite length, see [10]. The assertion thus reduces
to case (i).

3. X has genus > 1. In this case, M belongs to a component of C having type
ZAo [11], and it is known that the quasi-length ¢ of M is at most 5 [loc.

cit.]. Invoking arguments of [13], it further follows from [7] that M@L is
equivalent to the product of mod Ag_1, where 4y = k[l — -+ — £ — 1],
with the module category mod H over a connected wild hereditary algebra
H. Accordingly ¥ decomposes into a product X1 X 3o, where X7 is connected
and derived wild hereditary, and where X5 is derived equivalent to A,_1, i.e.
a branch in the sense of [8, 1]. Following arguments of [13] and [9] it follows
moreover that M is derived quasi-simple and M5 is derived peripheral. This
proves the first part of the statement 3.

Now we show the second part of the statements 1 and 2. So, first let X be
derived equivalent to k[A,] and M = M’ @ M" a ¥-module such that M’ and
M" are indecomposable and form the periphery of a (p — 1,q — 1)-slice S of the
component ZA, of D? (¥), where p and ¢ are such that £ = p+ ¢ — 1. By the first
statement of the theorem, we have that S & M is a tilting complex in D’ ([M]X)
with endomorphism algebra isomorphic to k[A,]. Thus [M]% is derived canonical.

With the same argument we show that [M]X is derived canonical, when ¥ =
Yy x - xYsgand M = My x --- x M, where }J; is derived hereditary and M; is
an indecomposable ¥;-module (j = 1,...,s) such that the pair (X, M) is listed in
Table 1.

Let now X = 31 X Y5, where Y1 is derived canonical and X5 is derived equivalent
to k[A,] for some ¢ > 0. Further let M = M; X Ms, where M is derived simple
and, if [ > 0, then let My be deriphed peripheral. Let X(p,A) be the weighted
projective line associated to Y1, where p = (p1,...,pt) is its weight type. Let X
be the weighted projective line with weight type (p1,...,pt—1,pt + ¢) and with the
same parameter sequence A as X. We fix an indecomposable sheaf E of length ¢+ 1
concentrated at \;, and form the perpendicular category H = E-+ of E'in C = coh X.
Then H = C x mod H, where C = cohX and H = k[l — -+ — {]. Moreover, the
middle term of the almost-split sequence 0 — 7F — S & My — E — 0 decomposes
into a simple sheaf S in C, concentrated at A; and in the indecomposable projective-
injective H-module M,. Next, we realize ¥; as a tilting complex in D? (C) so that,
by means of the identification D° (¥;) = D (C) the module M; corresponds to the
simple sheaf S. Further, we realize the branch Y5 as a tilting complex in D® (H)
such that, in the identification D® (¥y) = DP (H), the H-module M, becomes a
(derived peripheral) module over ¥5. Following [2], it is easily checked that E
together with ¥; and X5 forms a tilting complex in D (coh X) with endomorphism
algebra 3 = [M; x M3]3. Hence Y is derived canonical of type X.

This completes the proof of the Theorem. O
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In Theorem 1 we have seen that the request for an algebra ¥ to admit a
derived canonical source or sink extension is very restrictive for ¥ and for the
“extension module” M. The information is even more specific if we start the
extension procedure with a derived canonical algebra .

COROLLARY 1. Let ¥ be derived canonical, and let M be a finite dimensional
not necessarily indecomposable X-module.

Then the sink extension [M]X is derived canonical if and only if M is derived
sitmple, in particular indecomposable.

PROOF. By Theorem 1, we only need to show that the condition is necessary.
So let us assume that [M]X is derived canonical. As a derived canonical algebra ¥ is
connected, hence Theorem 1 implies that M is derived simple. This uses that a wild
hereditary or a representation-finite hereditary algebra is never derived equivalent
to a canonical algebra since wild hereditary algebras always have spectral radius
greater one and representation-finite hereditary algebras do not admit 1 as a root
of their Coxeter polynomial, while canonical algebras have spectral radius one, and
1 is a root of their Coxeter polynomial. Thus cases 1 and 3 of Theorem 1 will not
occur. O

We now consider the case where a branch B is attached to the extension vertex
of [M]%, see [1] for definitions. We denote by [B, M|% the resulting algebra.

COROLLARY 2. Let ¥ be a derived canonical algebra, M a X-module and B a
branch.
Then [B, M|% is derived canonical if and only if M is derived simple.

PROOF. First let ¥ = [B, M]¥ be derived canonical. Clearly, 3 is derived
equivalent to & = [B', M]%, where B’ denotes the linearly ordered branch with
its sink « as root point. Thus we may identify Y with the algebra [M x P,](¥ x
B’), where P, denotes the projective indecomposable associated to the point «.
Therefore, we may apply Corollary 1. Once again, only the case 2 remains possible,
and we infer that M is a derived simple ¥-module.

The converse is covered by Theorem 1, part 2. O

2.1. Criteria for derived canonical algebras. Theorem 1 provides us with
a necessary condition for an algebra ¥ to be derived canonical. So we might use
this in order to prove that certain algebras are not derived canonical. We shall
exhibit this in an example. Let A,, be the algebra given by the linear bound quiver
with n > 8 vertices

T xT xT
e ———> e —— e ———>

which satisfies the n—6 relations 7 = 0. It is not difficult to check that Ag, A10 and
Ajq; are derived canonical of weight type (2,3,5), (2,3,6) and (2, 3,7), respectively.
Also the Coxeter polynomial of Asy has canonical type (2,7,14). However, the
algebra Ass is not derived canonical.

Using Theorem 1, this can be seen as follows: First, we write Ao as a sink
extension of the algebra Aoy by a module M over Ay, thus Ass = [M]As;. By Theo-
rem 1, it suffices to show that Asq is neither derived equivalent to a representation-
finite hereditary algebra, nor derived canonical, nor derived equivalent to a wild
hereditary algebra:
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Introducing the polynomials
T —1
V=7,
T-1

the Coxeter polynomial C(As;) of Asp is seen to be (T — 1)2VoV7VgVy/Vy. In
particular, C(As) is not of canonical type and hence As; is not derived canonical.
Since all roots of C(Az;) lie on the unit circle in the complex plane and further 1
is a root of C(Aa1), the algebra As; cannot be derived equivalent to a hereditary
algebra which is wild or representation-finite.
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