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Let A be a finite dimensional algebra over an algebraically closed field k. The
derived category of the category modA of (left-)modules over A is denoted by Db(A).
For few algebras A, the description of Db(A) is known. For example, for A = kQ an
hereditary algebra of finite or tame type, the description of Db(A) is well-known [12],
in case A is a tubular algebra, the indecomposable objects of Db(A) were described
in [13].

A useful tool for describing the derived category Db(A) is the repetitive category
Â (see [12]). If A has finite global dimension, then Db(A) is triangle equivalent to
mod Â, the quotient of mod Â by the maps factorizing through projective Â-modules.
Following [10], we say that A is derived-tame if gldim A < ∞ and the category Â is
tame. We recall that a k-category B is said to be tame if each factor by a cofinite set
of objects is tame. We give examples in section 1.

If gldim A < ∞, the homological bilinear form is given for the classes [X] and [Y ]
of the modules X and Y in the Grothendieck group K0(A) of A, by 〈[X], [Y ]〉A =
∞∑
i=0

(−1)idimkExti
A(X, Y ). The associated quadratic form χ

A
is called the Euler form

of A.

A basic algebra A of the form A = kQ/I is a tree algebra if the underlying graph
of Q is a tree. A tree algebra A always has finite global dimension. It has been
conjectured in [10], that a tree algebra A is derived-tame if and only if χ

A
is non-

negative. The aim of this note is to show the following partial result.

Theorem. Let A be a tree algebra containing a convex subcategory which is derived
equivalent to some hereditary algebra of type Ep, Ẽp (p = 6, 7, 8) or to a tubular
algebra. Then A is derived-tame if and only if χ

A
is non-negative. Moreover, in this

case, the algebra A itself is derived equivalent to some hereditary algebra of type Eq,
Ẽq (q = 6, 7, 8) or a tubular algebra.

We present the proof of the theorem in section 2. In section 1 we recall some
concepts and give examples. In section 3 we present the list of all tree algebras which
are derived equivalent to E6.

Part of this work was done during a visit of the second named author to Mexico.
We acknowledge support of DAAD, Germany and DGAPA, UNAM.

1
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1. Derived-tame algebras.

1.1. Let A be a basic algebra of the form A = kQ/I, where Q is a connected finite
quiver and I an admissible ideal of the path algebra kQ. We consider A as a k-
category where objects are the vertices Q0 of Q and in which the space of maps
A(x, y) from x to y is eyAex, where ex denotes the primitive idempotent associated
to the vertex x.

The repetitive category Â is the k-category with objects Q0×Z (denoted by s[i], for
s ∈ Q0 and i ∈ Z) and the only possible non-zero morphism spaces are Â(r[i], s[i]) =
A(r, s) × {i} and Â(r[i], s[i + 1]) = DA(s, r) × {i}, where D = Homk(−, k) denotes
the usual duality.

1.2. Let F : Db(A) → Db(B) be an equivalence of triangulated categories. Then
there is an induced isomorphism f : K0(A) → K0(B) such that f([X ·]) = [FX·] for
any object X · ∈ Db(A), where [X·] =

∑
i∈Z

(−1)i[X i] ∈ K0(A). Moreover, f is an

isometry. In particular, χ
A

is non-negative if and only if χ
B

is, and, in this case,
corank χ

A
= corank χ

B
.

In [10], it was shown that B is derived-tame if so A is. Examples of derived-tame
algebras are the following:

(a) [2] A = kQ is a representation-finite hereditary algebra (hence Q is of type
An, Dn or Ep for p = 6, 7, 8). In this case, χ

A
is positive definite.

(b) [2, 4] A = kQ is a tame hereditary algebra (hence Q is of type Ãn, D̃n or Ẽp,
for p = 6, 7, 8). In this case χ

A
is non-negative with corank χ

A
= 1.

(c) [4] A is a tubular algebra in the sense of Ringel [14]. In this case, χ
A

is
non-negative with corank χ

A
= 2.

(d) [10] Let P (n, s) be the algebra associated to the poset
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with n vertices. In this case, χ
A

is non-negative with corank χ
A

= s − 1.
The above list is complete for algebras with small corank as shown in the following:

Theorem [3] Let A be a tree algebra such that χ
A

is non-negative with corank χ
A
≤ 2.

Then A is derived equivalent to one of the examples (a), (b), (c) or (d). In particular,
A is derived-tame.

1.3. Given the k-category A = kQ/I, we say that B is a convex subcategory of A if
B = kQ′/I ′ where Q′ is a path-closed subquiver of Q and I ′ = I ∩kQ′. The following
technical result will be useful. We denote χ

A
(v, w) = 〈v, w〉A + 〈w, v〉A.
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Proposition. [10] Let A = kQ/I be a tree algebra. Suppose that A contains a convex
subcategory C which is derived equivalent to a tame hereditary algebra k∆. Let 0 6=
v ∈ K0(C) with χ

C
(v) = 0 be such that χ

A
(v, es) 6= 0 for some vertex s of Q. Then

A is not derived-tame.

1.4. Let A = kQ/I be as above. We recall that the one-point extension A[M ]
of A by the module M is the category with objects Q0 ∪ {s} and morphism spaces
A[M ](s, x) = M(x) for x 6= s, A[M ](s, s) = k and such that A is a convex subcategory.

If F : Db(A) → Db(B) is a derived equivalence such that F (M [0]) = N [0] for
modules M ∈ mod A and N ∈ modB, then by [7], we get a derived equivalence
F̂ : Db(A[M ]) → Db(B[N ]) which is an extension of F .

We shall recall that for a derived tubular algebra A, any one-point extension
B = A[M ] with an indecomposable A-module M has Euler form χ

B
indefinite, see

[3].

1.5. We recall from [6] that any non-negative connected unit form q (for example, q =
χ

A
as above) has an associated Dynkin graph Dyn (q). If B is a convex subcategory

of the connected category A, and χ
A

is non-negative, then χ
B

is non-negative and
Dyn (χ

B
) ≤ Dyn (χ

A
), where

Am ≤ An ≤ Dn ≤ Dp for m ≤ n ≤ p;
Dp ≤ Ep ≤ Eq for 6 ≤ p ≤ q ≤ 8.

Remarks. [5] (a) If an algebra A is derived equivalent to Eq or Ẽq (q = 6, 7, 8), then
Dyn (χ

A
) = Eq. If A is derived tubular with more than 6 vertices then Dyn (χ

A
) = Ep

for some p = 6, 7, 8.
(b) If an algebra A is derived tubular with 6 vertices, then A is not a tree algebra.
(c) If A = P (n, s) then Dyn (χ

A
) = Dn−s.

1.6. The following Lemmas will be useful in the forthcoming.

Lemma 1 Let A be a connected and directed algebra with non-negative Euler form
χ

A
. Then there exists a full subcategory B of A with positive Euler form χ

B
such that

Dyn (χ
A
) = Dyn (χ

B
).

Proof: Let CA be the Cartan matrix of A. Recall that χ
A

is the quadratic form
associated to C−1

A . Denote by χ∗

A
the quadratic form associated to CA. Note that

χ∗

A
and χ

A
are equivalent forms. By [6], there exists a restriction q of χ∗

A
which is

positive and such that Dyn (χ∗

A
) = Dyn (q). Clearly, we have q = χ∗

B
, if B denotes

the full subcategory of A given by the vertices of q. Hence the result. ut

Lemma 2 Let q be a positive unit form of Dynkin-type Ep for some p = 6, 7 or 8.
Then q admits a restriction of Dynkin type E6.
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Proof: The proof is obtained by a case by case checking (using a computer program)
of the whole list of positive unit forms of Dynkin type E7 and E8. ut

Corollary. Let A be an algebra derived equivalent to a hereditary algebra of type
Ep for some p = 6, 7 or 8. Then A contains a full subcategory B which is derived
equivalent to a hereditary algebra of type E6.

Proof: By Lemma 2, there exists a full subcategory B for which the Euler form has
Dynkin-type E6. Since mod A is cycle-finite, hence so is mod B. Thus by [1], B is
derived equivalent to a hereditary algebra of Dynkin type, of extended Dynkin type
or to a tubular algebra. By the properties of χ

B
, the algebra B must thus be derived

equivalent to a hereditary algebra of type E6.
ut

2. The theorem and consequences.

2.1. Proposition. Let A be a tree algebra with non-negative Euler form. Then the
following assertions are equivalent.

(i) A is derived equivalent to some Eq or Ẽq (q = 6, 7, 8) or to a tubular algebra.

(ii) A contains a convex subcategory E which is derived equivalent to some Ep or
Ẽp (p = 6, 7, 8) or to a tubular algebra.

(iii) A contains a full subcategory which is derived equivalent to E6 and corank χ
A
≤

2.

Proof: Clearly (i) implies (ii). So assume now (ii). By (1.5), Dyn (χ
A
) ≥ Ep, which

implies Dyn (χ
A
) = Eq for some q = 6, 7 or 8. Now, if corank χ

A
≤ 2, then (1.2)

applies and A is derived equivalent to an algebra of the desired type or to P (n, s) for
some 2 ≤ s ≤ 3 and n. But A = P (n, s) is impossible, since Dyn (χ

P (n,s)
) = Dn−s.

Assume corank χ
A

> 2 and choose B a maximal connected convex subcategory
of A with corank χ

B
= 2 with E contained in B. As above B is a derived tubular

algebra and since B is properly contained in A, there is a one-point extension B[M ]
with an indecomposable B-module M contained convexely in A. By (1.4), the Euler
form χ

B[M]
is not non-negative, a contradiction. This shows (i).

Now, assume (iii). By (1.5), Dyn (χ
A
) ≥ E6, hence Dyn (χ

A
) = Ep for some

p = 6, 7 or 8. Thus by (1.2), assertion (i) holds. It remains to show that (i) implies
(iii). Clearly we have corank χ

A
≤ 2. By Lemma 1, there exists a full subcategory

B such that χ
B

is positive and Dyn (χ
B
) = Ep. By [1], the derived categrory Db(A)

is cycle-finite and hence so is Db(B). Again by [1], B is derived equivalent to a
hereditary algebra of Dynkin type or extended Dynkin type or to a tubular algebra.
Since χ

B
is positive of Dynkin type Ep, B has to be derived equivalent to Ep. Thus

(iii) follows by Corollary 1.6. ut
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2.2. Proof of the theorem. Let E be a convex subcategory of A which is derived
equivalent to some Ep or Ẽp (p = 6, 7, 8) or to a tubular algebra. If χ

A
is non-negative,

by (2.1) and (1.2), A is a derived-tame (of the desired form). Hence we only need to
show that in case A is derived-tame, the form χ

A
is non-negative.

Assume A is derived-tame and χ
A

is not non-negative. Let B be a maximal
connected convex subcategory of A containing E such that χ

B
is non-negative. Then

by (2.1), corank χ
B
≤ 2 and B is derived equivalent to some Eq or Ẽq (q = 6, 7, 8) or

to a tubular algebra. Moreover, there is a one-point extension B[M ] which is convex
in A. Let M = radPa for the new source a of the quiver of B[M ]. We distinguish
several cases.

If B is derived tubular, by [4] we get a vector 0 6= v ∈ K0(B) with χ
B
(v) = 0 and

0 6= 〈v, [M ]〉A = χ
A
(v, ea). Hence (1.3) implies that A is not derived-tame.

Assume that B is derived equivalent to Ẽq (q = 6, 7, 8), say F : Db(B) → Db(H)
is an equivalence of triangulated categories, where H is a hereditary algebra of type
Ẽq. Since the indecomposable modules of Db(H) are shifts X[i] (i ∈ Z) of H-modules
X, we may assume that F (M [0]) = N [0] for an indecomposable H-module N . Then
(1.4) yields an equivalence F̂ : Db(B[M ]) → Db(H[N ]). The maximality assumption
for B implies that χ

B[M]
is not non-negative and therefore χ

H[N]
is not non-negative.

Therefore by [9], either H[N ] is wild or N is preinjective (and [N ]H is wild). In any
case, H[N ] is not derived-tame and hence B[M ] (and A) is not derived-tame.

Finally, assume that B is derived equivalent to H a hereditary algebra of type
Eq (q = 6, 7, 8). As above B[M ] is derived equivalent to some H[N ] with N an
indecomposable H-module. Since H is a hereditary representation-finite algebra,
then clearly H[N ] is a tilted algebra of type ∆ (since the Auslander-Reiten quiver of
H[N ] has a slice). Again χ

H[N]
is not non-negative, which means that ∆ is of wild

type. Since H[N ] and k∆ are derived-equivalent, then H[N ] is not derived-tame.
Again this implies that A is not derived-tame. ut

2.3. As a consequence we obtain a result shown with a more involved proof in [11].
We recall that the Tits form qA: K0(A) → Z is given by

qA(v) =
2∑

i=0

(−1)i


 ∑

x,y∈Q0

v(x)v(y)dimkExti
A(Sx, Sy)


 ,

where Sx denotes the simple module associated to the vertex x ∈ Q0.

Theorem [11]. Let A be a tree algebra satisfying the hypothesis:

(a) qA is non-negative with a sincere positive isotropic vector;

(b) A contains a convex subcategory tilted of type E6.
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Then A is tame concealed or tubular.

Proof: As observed in [11], hypothesis (a) implies that gldim A ≤ 2 and therefore
qA = χ

A
is non-negative. The main theorem implies that A is derived equivalent to a

hereditary algebra of type Ẽp (p = 6, 7, 8) or to a tubular algebra. In [4] it was shown
that the existence of a sincere isotropic root yields the result. ut

2.4. In the paper [11] it was conjectured that any sincere tree algebra A with qA

weakly non-negative and containing a convex subcategory tilted of type E6 should
be tame of polynomial growth. The conjecture is false as shown by the following
example.

Let A = kQ/I be the algebra given by the quiver

Q :

r r-r
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with I generated by γ1βα1, γ3βα3, γ2βα1, γ3βα2. Consider the convex subcategories
C and B of A given by the quivers (with relations indicated)

C :
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The algebra C is tilted of type E6, while B is pg-critical and hence A cannot be
tame of polynomial growth. Since B is sincere and A is the one-point coextension
[P1]B, then A is sincere. Finally, A is tame since it is a full subcategory of the tame
category B̂ associated to the derived-tame algebra B, in particular showing that qA

is weakly non-negative [9].

3. The list of tree algebras which are derived equivalent to E6.

Each picture represents a class of algebras which is obtained in the following way:
edges without orientation may be oriented in either way and one may change the
orientation of all arrows simultaneously. In this way, the list shows 208 non-isomorphic
algebras.

1)
r r r r r r- - - -

2)
r r r r r r- - - - -

3)
r r r r r r- - -
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4)
r r r r r r- - - -

5)
r r r r r r- - - - -

6)
r r r r r r- - - - -

7)
r r r r r r- - - - -

8)
r r r r r r- - - - -

9)
r r r r

r

r

- - -
JJ



�

10)
r r r r

r

r

- - -
JĴ



�
11)

r r r r

r

r

- -
JĴ



�
12)

r r r r

r

r

- - -
JĴ



�

13)
r r r r

r

r

- - -
JJ



�
14)

r r r r

r

r

- -
JĴ



�
15)

r r r r

r

r

- - -
JĴ



�

16)
r r r r

r

r

- - -
JĴ



�
17)

r r r r

r

r

- -
6

?

18)
r r r r

r

r

-
6

19)
r r r r

r

r

-
6

20)
r r r r

r

r

- �
6 21)

r r r r

r

r

- - �

?

22)
r r r r

r

r

- - �
6 23)

r r r r

r

r

- - �
6

?

24)
r r r r

r

r

�-

?

6

25)
r r r r

r

r

- - �

?

6 26)
r r r r

r

r

�- -

?

6 27)
r

r

r

r

r

r

QQ
QQ

��
��

28)
r

r

r

r

r

r

QQ
QQ

��3
��3 29)

r

r

r

r

r

r

QQs
QQs

��3
��3 30)

r

r

r

r

r

r

QQs
QQs

��+
��+

31)
r

r

r

r

r

r

QQs
QQ

��3
��

?

32)
r

r

r

r

r

r

QQs
QQs

��3
��

?

33)
r

r

r

r

r

r

QQs
QQ

��3
��3

?
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34)
r

r

r

r

r

r

QQs
QQ

��3
��3

?

35)
r

r

r

r

r

r

QQs
QQs

��3
�� 36)

r

r

r

r

r

r

QQs
QQs

��3
��

?

37)
r

r

r

r

r

r

QQs
QQ

��3
��3

?

38)
r

r

r

r

r

r

QQs
QQs

��3
��3

?

39)
r

r

r

r

r

r

QQs
QQs

��3
��3

40)
r

r

r

r

r

r

QQs
QQs

��3
��3

?

41)
r

r

r

r

r

r

QQs
QQs

��3
��3

?

42)
r

r

r

r

r

r

QQs
QQs

��3
��3

?

43)
r

r

r

r

r

r

QQs
QQs

��3
��3 44)

r

r

r

r

r

r

QQs
QQ

��+
��

?

45)
r

r

r

r

r

r

QQs
QQs

��+
��

?

46)
r

r

r

r

r

r

QQs
QQs

��+
��+

??

47)
r

r

r

r

r

r

QQs
QQs

��+
��+

?

48)
r

r r

r r

r

XXz��9


�JĴ

49)
r

r r

r r

r

XXz��9
?



�JĴ
50)

r

r r

r r

r

XXz��9
?



�JĴ
51)

r r

r

r

r

r

-
JJ



�





JĴ

52)
r r

r

r

r

r

-
JJ



�



�

JĴ
53)

r r

r

r

r

r

-
JJ



�



�

JĴ
54)

r r

r

r

r

r

-
JĴ



�



�

JĴ

Remark. The above list and the list of positive unit forms of type E6, E7 or E8

calculated using a C++-program may be obtained writing to the first named author.
This list may also be calculated using the CREP program, see [8].
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