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Let A be a finite dimensional algebra over an algebraically closed field. We denote
by modA the category of finite dimensional left A-modules and by Db(A) the derived
category of modA (see for example [12] for definitions). We say that two algebras
A and B are derived equivalent if their derived categories Db(A) and Db(B) are
equivalent as triangulated categories.

An important problem in the Representation Theory of Algebras has been to char-
acterize those algebras A which are derived equivalent to well understood classes
of algebras, for instance to representation-finite hereditary algebras [11,12], to tame
hereditary algebras [11] or to tubular algebras [13,1]. The aim of this work is to
discuss the above mentioned characterizations from a computational point of view.
In particular, we present an algorithm to decide whether or not certain classes of
algebras are derived equivalent to a tubular algebra. This algorithm has been imple-
mented in a C++ program which will be available as part of the CREP package, see
[8].

Let A be an algebra as above with finite global dimension. Let K0(A)
∼

−→ Zn be its
Grothendieck group which we will consider equipped with a (non-symmetric) bilinear
form 〈−,−〉A such that for two modules X, Y ∈ modA we have,

〈[X], [Y ]〉A =
∞
∑

i=0

(−1)idimkExti
A(X, Y ).

The associated quadratic form χ
A
(v) = 〈v, v〉A is called the Euler form of A. For two

derived equivalent algebras A and B, the Euler forms χ
A

and χ
B

are equivalent.

If χ
A

is non-negative, then rad χ
A

= {v ∈ χ
A
: χ

A
(v) = 0} is a subgroup of Zn and

there is an induced positive definite form χ̄
A
: Zn/rad χ

A
→ Z (see (2.10)). The form

χ̄
A

accepts only finitely many positive roots (a root v ∈ Zn/rad χ
A
∼= Zn−s satisfies

χ̄
A
(v) = 1), see [26]. The main result behind our algorithm is the following (for the

definition of strong simple connectedness see (1.2)).

Main Theorem. Let A = kQ/I be a strongly simply connected algebra and assume
that its Grothendieck group is K0(A) ∼= Zn with n > 6. Then A is derived equivalent
to a tubular algebra if and only if the following conditions are satisfied:

(a) χ
A

is non-negative of corank χ
A

= 2;
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(b) there exists a source or a sink a of Q such that Q \ {a} is connected and the
convex subcategory B of A with vertices Q \ {a} has a non-negative Euler form
of corank one.

(c) χ
A

has 36, 63 or 120 positive roots.

We briefly describe the contents of the paper. In section 1 we recall the relevant
characterizations of derived equivalences mentioned above. In section 2 we survey
some results related to algorithmic procedures for integral quadratic forms. Moreover
we show in (2.11) (see also [19]):

Theorem. Each connected non-negative unit form q determines uniquely a Dynkin
graph ∆ such that q is Z-eqivalent to the form p∆ asociated with ∆.

Using this theorem we prove in section 3 the main result. Finally, in section 4 we
present the list of all algebras whose underlying quiver is a simple oriented line and
which are derived equivalent to a tubular algebra. This list was calculated using our
computer program.
The present work is an extended version of the report presented in the meeting ‘Com-
putational Methods for Representations of Groups and Algebras’ held in Essen in
April 1997. We thank SFB 343 Bielefeld for supporting our participation in the
meeting. The first author thankfully acknowledges support from PADEP, UNAM
and the second from DGAPA, UNAM and CONACyT.

1. Derived equivalence for algebras.

1.1. Let A be a basic, finite-dimensional k-algebra over a fixed algebraically closed
field k. It is well-known that A = kQ/I where Q is a finite quiver and I is an
admissible ideal of the path algebra kQ. We shall consider A as a spectroid, that is,
as a k-category whose objects are the vertices Q0 of Q and the space of maps from x
to y is A(x, y) = eyAex, where ex denotes the primitive idempotent associated to the
vertex x, see [9].
We assume that Q0 = {1, . . . , n} and that Q is connected and has no oriented cycle.
In particular, the global dimension of A is finite.

1.2. We recall that a vertex a ∈ Q0 is separated in A if any two different direct sum-
mands of the radical rad Pa of the indecomposable projective module Pa (= projective
cover of the simple Sa) have their supports in different connected components of the
quiver Q(x) = Q \ {y ∈ Q0: there is a path from y to x}. The algebra A is separated
if every vertex a ∈ Q0 is separated.
Finally, A is strongly simply connected if every full and convex (= path closed) sub-
category B of A is separated. See [27] for equivalent properties.
If A is representation-finite and separated, then A is strongly simply connected [7].
In any case, ‘separation’ is a condition which may be easily checked.
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1.3. A basic, finite-dimensional and hereditary algebra H is a path algebra k∆ for
∆ a finite connected quiver without oriented cycle. Recall that H is representation-
finite (resp. tame) if and only if ∆ is of Dynkin (resp. extended-Dynkin) type. In
[11] it was shown that A is derived equivalent to H if and only if A is tilting-cotilting
equivalent to H, that is, there is a sequence of algebras A = A0, A1, . . . , Am = H and
a sequence of modules Ai

T (i) (0 ≤ i < m) such that Ai+1 = EndAi
T (i) and T (i) is

either a tilting or a cotilting module. Then we may reformulate a result in [2,(5.1)]
in the following way.

Theorem. [2] Let A = kQ/I be a separated algebra. Then A is derived equivalent to
k∆ with ∆ a quiver of Dynkin type if and only if χ

A
is positive definite.

1.4. That the positivity of the Euler form is preserved by derived equivalence is a con-
sequence of the following general argument: if F : Db(A) → Db(B) is an equivalence
of triangulated categories, then there is an induced isomorphism f : K0(A) → K0(B)
such that f([X ·]) = [FX·], for any object X · ∈ Db(A), where [X·] =

∑

i∈Z(−1)i[X i] ∈
K0(A). Then f commutes with the corresponding bilinear forms (we say that f is an
isometry). In particular, χ

A
is non-negative if and only if so is χ

B
, and in this case,

corank χ
A

= corank χ
B
.

The next natural step after (1.3) is the following:

Theorem. [2,4] Let A be a strongly simply connected algebra. Then A is derived
equivalent to k∆ with ∆ of extended-Dynkin type if and only if χ

A
is non-negative

and corank χ
A

= 1.

The result is shown in [2] in case A is representation-finite and extended in [4] to the
representation-infinite situation.

1.5. Let t ≥ 3 and p = (p1, . . . , pt) be a sequence of numbers 2 ≤ pi. Consider the
following quiver Q(p):
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Let λ = (λ3, . . . , λt) be a sequence of pairwise different elements of k \ {0}. Then the
canonical algebra C(p, λ) is defined as the quotient of kQ(p) by the ideal generated
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by the relations: α(i) = α(1) + λiα
(2), i = 3, . . . , t, where α(i) = αipi

. . . αi1. Canonical
algebras have been extensively studied, see for instance [26,10]. Of particular interest
are canonical tubular algebras obtained when p = (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or
(2, 3, 6). These algebras are tame and the module category is described in [26]. The
class of tubular algebras is obtained in [26] as certain tilted algebras of canonical
tubular algebras.

We say that A is derived tubular if it is derived equivalent to a canonical tubular
algebra. In this case χ

A
is non-negative and corank χ

A
= 2.

1.6. The Tits form qA: Zn → Z of A is obtained as a ‘truncation’ of χ
A

in the

following way: qA(v) =
2
∑

i=0
(−1)i ∑

a,b∈Q0

v(a)v(b)dimkExti
A(Sa, Sb). We recall that for a

representation-finite algebra A, the Tits form is weakly positive (that is, qA(v) > 0
for 0 /= v ∈ Nn). If A is separated, the converse holds [5]. Meanwhile, for a tame
algebra, the Tits form is weakly non-negative (that is, qA(v) ≥ 0 for v ∈ Nn) [21]. If
A is strongly simply connected, it is conjectured that the converse holds [22].

Theorem. [3] The algebra A is representation-finite and derived tubular if and only
if the following conditions are satisfied:

(0) A has more than six vertices (n > 6);

(1) χ
A

is non-negative and corank χ
A

= 2;

(2) χ−1
A

(1) ∩ (radχ
A
)⊥ = ∅;

(3) qA is weakly positive;

(4) A is separated.

Where V ⊥ = {w ∈ K◦(A) : 〈w, v〉 = 0 for every v ∈ V }. Conditions (0), (1) and
(4) are easy to check (also by a computer). For condition (3) there are efficient
algorithms as we shall recall in section 2. Condition (2) is the hardest to check. Our
work in section 3 is devoted to substitute this condition for another easier to check
(by computer).

1.7. We shall consider also the following extension of (1.6) to representation-infinite
algebras.

Theorem. [4] Let A = kQ/I be a strongly simply connected algebra with n = |Q0| >
6. Then A is derived tubular if and only if conditions (1) and (2) above hold.
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Let us observe that it is impossible to have a criterion for derived tubularity in the
case n = 6, which uses only properties of the Euler form. Indeed, for p = (2, 2, 2, 2)
and λ = (1, ρ) with ρ /= 0, 1, the algebra C = C(p, λ) is canonical tubular, while the
algebra C ′ = kQ(p)/〈α(3) − α(2) − α(1), α(4) − α(2) − α(1)〉 is not derived tubular, but
χ

C
= χ

C′
. See [4].

In the case n = 6, a complete list of all derived tubular algebras (strongly simply
connected or not) was obtained in [4]. We reproduce in Fig. 1 this list.
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Fig. 1

1.8. We need to recall some central steps of the proof of Theorems (1.6) and (1.7) with
the purpose of sketching how condition (2) is used. We consider only the sufficiency
of the conditions in Theorem (1.7).

We assume that A = kQ/I is strongly simply connected and such that Q has n > 6
vertices. Assume moreover that conditions (1) and (2) are satisfied. Choose a a
source or sink in Q such that Q\{a} is connected, say a is a source. Then A = B[M ]
is a one-point extension for B = A/(a) and M = rad Pa. Since A is strongly simply
connected, M is indecomposable and B is again strongly simply connected. Clearly,
χ

B
is non-negative and corank χ

B
≥ 1 (indeed, if v and w are generators of radχ

A
,

we may always choose w satisfying w(a) = 0). Consider p = [Pa] ∈ K0(A) which
is a root of χ

A
. Since 〈p, v〉A = v(a) for any vector v ∈ K0(A) and by assumption

(2) we have 〈p, radχ
A
〉A /= 0, thus corank χ

B
= 1. By (1.4), there is a hereditary

algebra H = k∆ of extended-Dynkin type which is derived equivalent to B. The
argument [3,(5.4)] shows that the non-negativity of χ

A
implies the existence of a

derived equivalence F : Db(B) → Db(H) such that FM ∈ modH and F extends to an
equivalence F̂ : Db(B[M ]) → Db(H[FM ]). In particular χ

H[FM]
is non-negative. By

[21] and condition (1), only the following situations are possible:

(a) FM is a simple regular module and H[FM ] is a tubular algebra;

(b) ∆ is of type D̃n−2, FM is a regular module of regular length 2 in the tube of rank
n − 4 (≥ 3) in the Auslander-Reiten quiver ΓH . In this case H[FM ] is said to be
2-tubular.

Finally, condition (2) is not satisfied by 2-tubular algebras (see below) and the proof
is completed.

As illustration of the last step above, we consider a ‘typical’ 2-tubular algebra A:
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It is easy to see that χ
A

is non-negative of corank χ
A

= 2 but e1 ∈ χ−1
A

∩ (radχ
A
)⊥.

2. Reduction of integral quadratic forms.

2.1. An integral quadratic form q is a map q: Zn → Z of the shape

q(x1, . . . , xn) =
n

∑

i=1

qix
2
i +

∑

i<j

qijxixj

where qi ∈ Z and qij ∈ Z for all i, j ∈ {1, . . . , n}. We say that q is a semi-unit form
if qi ∈ {0, 1} for all i ∈ {1, . . . , n}. Sometimes we also will consider the special case
where qi = 1 for all i ∈ {1, . . . , n} and then say that q is a unit form.

With a semi-unit form q we associate a bigraph Gq (see for example [16,19]). We
illustrate this in the following example:

q(x1, x2, x3) = x2
1 + x2

2 − 2x1x3 + x2x3 Gq :

q q

q
�

1 2

3

In particular, we say that q is connected if the graph Gq is connected. Conversely,
any bigraph G defines a quadratic form pG : ZG0 → Z, where G0 denotes the set of
vertices of G.

In the following observations we will deal with semi-unit forms which are weakly
non-negative (or even weakly positive). Observe that this implies qij ∈ {−1,−2}
whenever qij < 0.

2.2. In [16], a reduction procedure for semi-unit forms was introduced which allows
to verify the weak positivity or weak non-negativity of forms.

Let q: Zn → Z be a semi-unit form and i /= j be indices such that qij < 0. Define the
form q′: Zn+1 → Z by

q′(y) = qρ(y) + yiyj

where ρ: Zn+1 → Zn denotes the linear map sending es 7→ es if 1 ≤ s ≤ n and
en+1 7→ ei + ej. Then q′ is said to be obtained from q by edge reduction with respect
to i and j.
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Proposition. [16,18] Let q: Zn → Z be a semi-unit form and q′ be obtained from q
by edge reduction. Then

(a) q is weakly positive if and only if q′ is weakly positive. In this case, ρ induces a
bijection between the set of positive roots

∑1(q) = q−1(1) ∩ Nn and
∑1(q′).

(b) q is weakly non-negative if and only if q ′ is weakly non-negative. In this case, ρ
induces a bijection between the set of positive isotropic vectors

∑0(q) = q−1(0)∩
Nn and

∑0(q′).

2.3. We say that an iterated edge reduction of a semi-unit form q: Zn → Z is exhaus-
tive if every reduction step only involves reductions with respect to indices ≤ n and
the resulting semi-unit form q′ satisfies q′ij ≥ 0 for all 1 ≤ i < j ≤ n. For instance the
unit form q in the example below admits an exhaustive reduction with respect to the
sequence (of couples of vertices) {2, 3}, {1, 2}, {1, 2}, the result is indicated as q(1):

q

q q

�����
1 2

3

q :

q q q

q q q
�
�

1 2

3

4

5 6

q(1) :

Theorem. [18] Let q: Zn → Z be a semi-unit form and q(k): Znk → Z, k = 0, 1, 2 . . .
be a sequence of semi-unit forms obtained by iterated exhaustive reductions of q.

(a) q is weakly positive if and only if there is some k ≤ 30 such that q
(k)
ij ≥ 0 for all

1 ≤ i < j ≤ nk

(b) q is weakly non-negative if and only if q
(k)
i ≥ 0 for all k ≤ 31 and 1 ≤ i ≤ nk.

2.4. We recall that a semi-unit form q: Zn → Z is called critical if either n = 1 and
q(x1) = 0, n = 2 and q(x1, x2) = (x1 − x2)

2 or n ≥ 3 and q is not weakly positive but
every restriction q(i) = q(x1, . . . , xi−1, 0, xi+1, . . . , xn) is weakly positive. In the latter
case, q is non-negative and there is a vector z0 ∈ Nn such that rad q = Zz0 (for n = 1,
z0 = (1); for n = 2, z0 = (1, 1)). See [26].

Similarly, the semi-unit form q: Zn → Z with n ≥ 3 is called hypercritical if q is
not weakly non-negative but every restriction q(i) is weakly non-negative. Clearly a
semi-unit form q is weakly positive (resp. weakly non-negative) if and only if there is
no restriction q|I of q which is critical (resp. hypercritical). Observe that a critical
semi-unit form is already a unit form. Critical and hypercritical unit forms have been
classified [15,17].

A strongly simply connected algebra A is said to be a critical algebra (resp. hyper-
critical algebra) if its Tits form qA is critical (resp. hypercritical). These algebras
have also been classified [14,28]. Their importance is due to the following:
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Theorem. Let A be a strongly simply connected algebra. Then

(a) [6] qA is weakly positive (equivalently, A is representation-finite) if and only if
A does not contain a convex critical subcategory.

(b) [22] qA is weakly non-negative if and only if A does not contain a convex hyper-
critical subcategory.

For other results related to these problems the reader may see [24]. Criteria as the
above Theorem are normally well-adapted for eye-checking but are very slow when
run in a computer. The implementations of (2.3) run much faster.

2.5. Clearly, if gldim A ≤ 2, then the quadratic forms qA and χ
A

coincide. Most of
the applications of these forms reduces to this case when the homological information
contained in χ

A
may be compared with the combinatorial information related to qA.

In the general case there are still some relations.

Lemma. [25] Let A be a strongly simply connected algebra. If χ
A

is weakly posi-
tive (resp. weakly non-negative), then qA is also weakly positive (resp. weakly non-
negative).

Proof: Assume qA is not weakly positive (resp. not weakly non-negative). Since A is
strongly simply connected, then by (2.4), A contains a convex subcategory B which is
critical (resp. hypercritical). Since gldim B ≤ 2, then qB = χ

B
is not weakly positive

(resp. not weakly non-negative) which implies that χ
A

is not weakly positive (resp.
not weakly non-negative). ut

2.6. Let q: Zn → Z be a semi-unit form. A vector v ∈ Nn is called critical for q
if the restriction qv of q to the support supp v = {i: v(i) /= 0} is a critical form and
rad qv = Zv. The set of critical vectors for q is denoted by Cq.

Lemma. [23] Let q: Zn → Z be a semi-unit form.

(a) If q is weakly non-negative, then every vector w ∈
∑0(q) may be written as

w =
∑

v∈Cq

λvv for some numbers λv ∈ Q+, where Q+ denotes the non-negative

rational numbers.

(b) If q is non-negative, then the dimension of the space generated by
∑0(q) is the

maximal number of linearly independent vectors in Cq (this number is called the
positive corank of q and it is denoted by corank+q).

(c) If q is non-negative and there is a sincere vector v ∈
∑0(q), then corank q =

corank+q.
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2.7. We introduce some operations on quadratic forms, the so called deflations and
inflations which have been successfully applied for various problems [20,15,19].

Let q: Zn → Z be a semi-unit form with qij /= 0 and set ε = − (resp. ε = +) if qij < 0
(resp. qij > 0). Then we define the invertible Z-matrix T ε

ij: Z
n → Z by the rule

T ε
ij(es) =

{

es if s /= i
ei − εej if s = i

We say that T−
ij is a deflation (resp. T +

ij is an inflation) for q.

In comparison to the edge reductions which preserve weak positivity and weak non-
negativity, deflations and inflations preserve positivity and non-negativity. The fol-
lowing result shown in [19] is a generalization of corank q = 1, considered in [20].

Theorem. [19] Let q: Zn → Z be a non-negative semi-unit quadratic form. Then
corank q = corank+q = s if and only if there is an iteration of deflations with com-
position T such that the form q′ = qT is the orthogonal sum q0 ⊕ q1 of two forms
such that q0 is the zero form in s variables and q1 is a positive definite form in n− s
variables.

Example: We consider the quadratic form p∆ associated to the following (extended
Dynkin) diagram

∆ :
q q

q q

q 2

3

4 5
�
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�
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@@
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@@

p∆T−
21 :

q q

q q

q 2
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�

��
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��

@
@@

1
q′ :

q q

q q

q 2

3

4 5
�

��

�
��

@
@@

1

��

Applying to p∆ the transformation T−
21 we get the quadratic form associated to the

bigraph in the middle. The sequence (T−
21, T

−
31, T

−
41, T

−
51, T

−
21) applied to p∆ yields the

form q′ = qT−
21T

−
31T

−
41T

−
51T

−
21 in the variables x1, x2, x3, x4, x5 but since x1 does not

appear explicitely, we have q′ = q0 ⊕ q1 where q1(x2, x3, x4, x5) = q′(0, x2, x3, x4, x5)
and q0 = 0. The form q1 is positive definite and corank q = corank+q = 1.

2.8. We denote by ζ the zero form in one variable.

Lemma. Let q 6= 0 be a connected non-negative semi-unit form, T be a deflation or
an inflation and q′ = qT . If q′ decomposes properly, say q′ = q0 ⊕ q1 with q1 6= 0 then
q0 = ζ and q1 is a connected non-negative semi-unit form.
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Proof: Let T = T ε
ij be deflation or an inflation. Let Gq′ be the bigraph associated to

q′ and assume it is not connected. Since Gq is connected, then Gq′ has exactly two
components, C0 containing j and C1 containing i. In particular, q′ij = 0.

An obvious calculation yields:

0 = q′ij = qij + 2ε and q′j = qiε
2 + qijε + qj = qi + qj − 2

As observed in [19], q′ is still a semi-unit form and hence qi = 1 = qj and q′j = 0. For
any s /= j we should have q′sj = 0, otherwise q′(2ej − q′sjes) < 0 which contradicts the
non-negativity of q′. Therefore, C0 contains only the vertex j and q′ = q0 ⊕ q1, where
qi is the form associated to Ci, i = 0, 1. Clearly, q0 is the zero form in one variable.
ut

2.9. We present now a generalization of (2.7) which will be central in the proof of
our main result (compare also with [29]).

Theorem. Let q be a connected, non-negative semi-unit form of corank s. Then
there exists an iteration of deflations and inflations with composition T such that qT
is the orthogonal sum ζs ⊕ p∆, where ζs is the zero form in s variables and p∆ is the
quadratic form associated to a (connected) Dynkin diagram ∆ (hence p∆ is positive
definite). Moreover, ∆ is uniquely determined by q.

Proof: We proceed by induction on s = corank q. If s = 0 the form q is already
positive definite. Hence by [20], there exists a sequence of inflations with composition
T such that qT = p∆ for some Dynkin diagram ∆. By (2.8), ∆ is connected.

For the induction step we first show in (a) that there is a sequence of inflations
with composition Ta such that the radical of the form qa = qTa contains a positive
vector va and then in (b) we prove that there exists a sequence of deflations with
composition Tb such that qaTb is the orthogonal sum of the zero form in one variable
with a non-negative connected semi-unit form of corank s − 1.

For any v ∈ Zn we define |v| =
∑n

i=1 |v(i)|, supp v = {i : v(i) 6= 0} and v+, v− ∈ Zn

by

vε(i) =
{

εv(i) if εv(i) > 0
0 else

(ε = ±)

(a) Choose v ∈ rad q, v 6= 0. If there are i ∈ supp v+ and j ∈ supp v− such that
qij > 0 then we apply T +

ji to q obtaining q̃ = qT +
ji and ṽ = (T +

ji )
−1v. Observe that

ṽ = v + v(j)ei, thus |ṽ−| < |v−|. We repeat this procedure until this is no longer
possible and obtain a quadratic form qa and a radical vector v′

a. Now we have

0 = qa(v′
a) = qa(v′

a
+
) + qa(v′

a
−
) +

∑

(i,j)

(qa)ijv
′
a(i)v

′
a(j)
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where the sum runs over supp v′
a
+ × supp v′

a
−. Any summand on the right hand side

is at least zero hence equals zero. So we get step (a) by setting va = v′
a
+ + v′

a
−.

(b) If there exist i, j ∈ supp va with (qa)ij < 0 we apply T = T−
ij if va(i) ≥ va(j) (or

T = T−
ji if va(i) < va(j)). Observe that for q̃a = qaT and ṽa = T−1va we have that ṽa

is positive again with |ṽa| < |va|. We repeat this procedure as long as possible and
end up with a quadratic form qb and a positive radical vector vb. Then we have

0 = qb(vb) =
n

∑

i=1

(qb)ivb(i)
2 +

∑

i,j∈supp vb

(qb)ijvb(i)vb(j)

where any summand on the right hand side is non-negative, hence zero. In particular
(qb)i = 0 whenever vb(i) 6= 0. This proves step (b). ut

2.10. Lemma Let q: Zn → Z be a non-negative semi-unit form. Let S, T : Zn → Zn

be Z-invertible such that qS = ζs ⊕ pΣ and qT = ζ t ⊕ p∆ where Σ =
a
∪

i=1
Σi and

∆ =
b
∪

j=1
∆j are disjoint unions of Dynkin graphs, then we have s = t, a = b and

Σi = ∆π(i) for i = 1, . . . , a where π is a permutation.

Proof: Since pΣ is positive definite, s is the corank of qS hence s = t.

Let CΣ = q−1
Σ (1) ⊂ Zn−s and G(CΣ) be the graph having as points the elements

of CΣ and an edge x y if x ± y ∈ CΣ ∪ {0} for x, y ∈ CΣ. The connected
components of G(CΣ) are exactly the graphs G(CΣi

) for i = 1, . . . , a. The map
T ◦S−1 induces a bijection CΣ

∼
−→ C∆ which respects the associated graph structure,

i.e. T ◦ S−1 induces an isomorphism G(CΣ)
∼

−→ G(C∆), hence a = b and there exists
a permutation π such that G(CΣi

)
∼

−→ G(C∆π(i)
). Therefore Σi

∼
−→ ∆π(i) holds for

every i. ut

2.11. Let q: Zn → Z be a non-negative semi-unit form. Then rad q is a pure subgroup
of Zn (that is, if n ∈ Z\{0} and nv ∈ rad q, then v ∈ rad q). Hence Zn/rad q

∼
−→ Zn−s

as Z-modules where s = corank q. Thus we may consider the induced map

q̄: Zn/rad q → Z, v + rad q 7→ q(v)

which is, by choosing a Z-base of Zn/rad q, a positive definite form.

The following result, which (surprisingly) seems to be new, answers the question
whether there is a basis of Zn/rad q, which makes q̄ a unit form, affirmatively.

Theorem. Let q be a non-negative semi-unit form. Then there exists a disjoint union
∆ of Dynkin graphs ∆i (i = 1, . . . , n) such that q̄ is Z-equivalent to p∆. Moreover
n is the number of connected components of q and ∆ is (up to the order of the ∆i)
uniquely determined by q.
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Proof: By (2.9), there is an invertible Z-matrix T : Zn → Zn such that qT−1 = ζs ⊕
p∆: Zs×Zn−s → Z where ∆ is the disjoint union of Dynkin diagrams ∆i (i = 1, . . . , n)
and n is the number of connected components of q. Since Zs = T (rad q) = rad (qT−1)
we get an induced Z-isomorphism T̄ : Zn/rad q → Zs making the following diagram
commutative

Zs × Zn−s

Zn

Zn−s

Zn/rad q

Z

Z-

-
?

?

HHHHHHHHHj���������*

���������* HHHHHHHHHHj

ζs × p∆

T

T

q

p∆pr2

can q

hence q̄ = p∆T̄ which is the desired equivalence. The assertion about the uniqueness
follows by (2.10). ut

Corollary. Each connected non-negative unit form q determines uniquely a Dynkin
graph ∆ such that q and p∆ are Z-eqivalent.

3. Derived tubularity: an algorithm.

3.1. Lemma

(a) Let C be a canonical tubular algebra of type (3, 3, 3), (2, 4, 4) or (2, 3, 6). The
Dynkin diagram ∆(χ

C
) associated to the Euler form χ

C
as in (2.9) is of the

form Ep, p = 6, 7, 8, respectively.

(b) Let C0 be a representation-infinite tame concealed algebra of type D̃n and let M
be an indecomposable C0-module regular of regular length 2 lying in a tube of
rank n − 2. Consider the one-point extension B = C0[M ]. Then the Dynkin
diagram ∆(χ

B
) is of the form Dn.

Proof: It is enough to apply deflations and inflations in the way indicated by (2.9).
(a) is left as an easy exercise.

(b): Any algebra of the type B = C0[M ] as indicated is tilted (and therefore derived
equivalent) to an algebra E whose Euler form χ

E
has the following bigraph (we draw

the case n = 6)
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q

q

q

q
q q

q

q
��

��@@

@@

Again, it is an easy exercise to transform this graph to a Dynkin diagram D5 by
means of deflations. ut

3.2. Proof of the main Theorem: Let A be a strongly simply connected algebra of
the form A = kQ/I with Q0 = {1, . . . , n} and n > 6.
Assume first that A is derived tubular. Then we know that χ

A
is non-negative

of corank χ
A

= 2 and A = B[M ] for some representation-infinite tilted connected
algebra B such that corank χ

B
= 1, see for example [4]. Moreover we may assume

that A is derived equivalent to a canonical tubular algebra C of type (3, 3, 3), (2, 4, 4)
or (2, 3, 6). Then by (2.9) and (3.1), the Dynkin graph ∆(χ

A
) is equal to ∆(χ

C
) of

type Ep, p = 6, 7, 8, respectively. The number of positive roots of χ̄
A
' p∆(χ

A
) is

36, 63, 120, respectively.
Conversely, assume that the conditions (a), (b) and (c) hold. Choose a sink or source
a in Q such that Q \ {a} is connected and χ

B
is non-negative with corank one, where

B = A/(a). We assume that a is a source (the case where a is sink, is handled dually),
so the B-module M = radPa is indecomposable.
By (1.4), we get that B is derived equivalent to a hereditary algebra H = k∆, where
∆ is an extended-Dynkin diagram of type D̃n or Ẽp (p = 6, 7, 8). As in (1.8), we get
a derived equivalence between A = B[M ] and H[N ] for some regular H-module N .
There are two possibilities: either H[N ] is a tubular algebra or ∆ is of type D̃m and
N lies on a tube of rank n−4 (≥ 3) in ΓH and has regular length 2. In the latter case,
(3.1) implies that ∆(χ

H[N]
) = ∆(χ

A
) is a Dynkin diagram of type Dn. But then the

number of positive roots of χ̄
A

= p∆(χ
A

) is n(n − 1) which cannot be 36, 63 or 120.
A contradiction showing that H[N ] is a tubular algebra and A is derived tubular. ut

3.3. We remark that the ‘strong simple connectedness’ hypothesis is necessary in the
main theorem. Namely, consider the algebra A = kQ/I given by the following quiver
with commutative relations

q

q

q

q

q
q

q
q

q
q

�
�

�	

HHHj

?

@
@

@R
����

����

����

����

A
A
AU

A
A
AU

A
A
AU

A
A
AU

a
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Then we have the following facts:

• χ
A

is non-negative of corank χ
A

= 2;

• the algebra B = A/(a) is tame concealed of type Ẽ8;

• ∆(χ
A
) is of type E8 and hence χ̄

A
has 120 positive roots;

• the algebra A is wild since the universal covering Ã of A contains a convex
subcategory of the following form

q

q

q

q
q q q q q q

q

� �- - -
��	

��	

��	

@@I

@@I

therefore, A is not derived tubular (as observed in [25], every derived tubular
algebra is tame).

3.4. In a preliminary stage of our research we suggested the following algorithm
to check whether or not χ−1

A
(1) ∩ χ−1

A
(0)⊥ = ∅ for a non-negative form χ

A
with

corank χ
A

= 2.

First construct a Z-bases (v1, v2) of radχ
A
.

A subset S of χ−1
A

(1) is said to be reduced if s1, s2 ∈ S and s1 − s2 ∈ χ−1
A

(0) or
s1 + s2 ∈ χ−1

A
(0) imply that s1 = s2. Any reduced set is finite.

Construct a maximal reduced subset S of χ−1
A

(0). Then the following hold:

• If 〈v1, v2〉A = 0, then χ−1
A

(1) ∩ χ−1
A

(0)⊥ = ∅ if and only if 〈v1, s〉A /= 0 or
〈v2, s〉A /= 0 for every s ∈ S

• If 〈v1, v2〉A /= 0, then χ−1
A

(1)∩χ−1
A

(0)⊥ = ∅ if and only if ε1
〈v2,s〉
〈v2,v1〉

v1 + ε2
〈v1,s〉
〈v1 ,v2〉

v2

is not in Zn for any s ∈ S and ε1, ε2 ∈ {1,−1}.

Clearly, the cardinality of S is the number of positive roots of χ̄
A
. It was the imple-

mentation of the above algorithm which suggested the result presented in the main
theorem.
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4. Examples.

We append the list of all derived tubular algebras whose underlying quiver is linearly
ordered. The list was calculated by our C++ program.

Each figure represents a class of algebras which is obtained from the given algebra
in the picture by a sequence of the following two operations: add a relation βα, if
βα 6= 0, and change the orientation of all arrows simultaneously. In this way, picture
(6) defines 16 non-isomorphic algebras.

For each algebra we give at the right hand side generators of the radical of the Euler
form. In order to obtain the generators of the radical of the Euler form of an algebra
which is obtained by adding a relation of length two one calculates starting with the
given vectors [v1 v2 · · · vn] the new ones in the following way:

Add a relation from 2 to 4: [(v1−v2) − v2 (v3−v2) v4 · · · vn].

Add a relation from 1 to 3: [−v1 (v2−v1) v3 v4 · · · vn].

Add a relation from 2 to 4 and a relation from 1 to 3:
[(−v1+v2) − v1 (v3−v2) v4 · · · vn].

Similarily one calculates on the side of the sink of the algebra.

Algebras with 9 points (8 algebras)

(1)

r r r r r r r r r- - - - - - - - 1 1 -1 -1 0 1 2 1 0

-1 0 1 0 -1 -1 -1 0 1

(2)

r r r r r r r r r- - - - - - - - 1 0 -1 -1 0 1 1 1 0

-1 1 1 0 -1 -2 -1 0 1

(3)

r r r r r r r r r- - - - - - - - 1 -1 -1 -1 0 1 2 1 0

0 1 0 -1 -1 -1 -1 0 1

(4)

r r r r r r r r r- - - - - - - - 1 1 0 -1 -1 0 1 1 0

-1 0 1 1 0 -1 -1 0 1

(5)

r r r r r r r r r- - - - - - - - 1 0 -1 -1 -1 0 1 1 0

0 1 1 0 -1 -1 -1 0 1

Algebras with 10 points (123 algebras)

(6)

r r r r r r r r r r- - - - - - - - - 0 0 -2 -1 0 1 2 3 2 1

-1 -2 -1 0 1 2 1 0 0 0
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(7)

r r r r r r r r r r- - - - - - - - - -2 -1 0 1 2 3 2 1 0 0

-1 -2 -1 0 1 2 2 2 2 1

(8)

r r r r r r r r r r- - - - - - - - - -2 -2 -2 -1 0 1 2 3 2 1

-1 0 1 1 1 1 1 1 0 -1

(9)

r r r r r r r r r r- - - - - - - - - 1 2 3 0 -1 -2 0 2 1 0

0 0 0 1 1 0 -1 -1 0 1

(10)

r r r r r r r r r r- - - - - - - - - 1 0 -1 -1 0 1 1 1 1 1

0 1 0 -2 -1 0 2 3 2 1

(11)

r r r r r r r r r r- - - - - - - - - 1 2 0 -1 -2 -1 0 1 0 0

0 0 1 0 -1 -2 -1 0 2 1

(12)

r r r r r r r r r r- - - - - - - - - -1 0 1 2 2 2 1 0 -1 -1
0 -1 0 1 2 3 2 1 0 -2

(13)

r r r r r r r r r r- - - - - - - - - 1 2 0 -2 -1 0 3 2 1 0

0 0 1 2 0 -1 -2 -1 0 1

(14)

r r r r r r r r r r- - - - - - - - - 0 -2 -1 0 1 2 3 2 1 0

1 0 -1 -1 -1 0 1 1 1 1

(15)

r r r r r r r r r r- - - - - - - - - 0 -1 -2 -1 0 1 2 1 0 0

1 0 -1 -2 -1 0 2 2 2 1

(16)

r r r r r r r r r r- - - - - - - - - 1 2 2 1 0 -1 -2 -1 0 0

0 0 -1 -2 -1 0 1 2 2 1

(17)

r r r r r r r r r r- - - - - - - - - -1 -2 -1 0 1 2 2 1 0 0

0 -1 -2 -1 0 1 2 2 2 1

(18)

r r r r r r r r r r- - - - - - - - - -1 -2 -1 0 1 2 2 2 1 0

1 0 -1 -1 -1 -1 0 1 1 1

(19)

r r r r r r r r r r- - - - - - - - - -2 -2 -1 0 1 2 3 2 1 0

-1 0 1 1 1 1 1 0 -1 -1
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(20)

r r r r r r r r r r- - - - - - - - - 0 0 0 1 0 -1 -1 0 1 1

1 2 3 0 -1 0 2 1 0 -2

(21)

r r r r r r r r r r- - - - - - - - - 0 0 1 0 -1 -2 -1 0 1 1

1 2 0 -1 0 3 2 1 0 -2

(22)

r r r r r r r r r r- - - - - - - - - 0 1 0 -1 -2 -1 0 1 1 0

-1 0 1 0 -2 -2 -1 0 2 1

(23)

r r r r r r r r r r- - - - - - - - - 0 -1 0 1 1 1 0 -1 0 0

-1 0 1 2 0 -2 -1 0 2 1

(24)

r r r r r r r r r r- - - - - - - - - 1 0 -1 -1 0 1 1 0 0 0

0 1 0 -2 -1 0 2 3 2 1

(25)

r r r r r r r r r r- - - - - - - - - 0 1 0 -1 -2 -1 0 2 1 0

-1 0 1 2 2 0 -1 -1 0 1

(26)

r r r r r r r r r r- - - - - - - - - 1 0 -1 -2 -1 0 1 1 0 0

0 1 0 -1 -2 -1 0 2 2 1

(27)

r r r r r r r r r r- - - - - - - - - -1 0 1 2 2 1 0 -1 -1 0

0 -1 0 1 2 2 1 0 -2 -1

(28)

r r r r r r r r r r- - - - - - - - - 1 0 -2 -1 0 2 3 2 1 0

0 -1 -2 0 1 2 2 1 0 -1

(29)

r r r r r r r r r r- - - - - - - - - 1 0 -1 -2 -1 0 2 2 1 0

0 1 2 2 0 -1 -2 -1 0 1

(30)

r r r r r r r r r r- - - - - - - - - 0 -1 -2 -1 0 1 2 2 1 0

1 1 0 -1 -1 -1 0 1 1 1

(31)

r r r r r r r r r r- - - - - - - - - -1 -2 -2 -1 0 1 2 2 1 0

0 1 2 2 1 0 -1 -2 -2 -1

(32)

r r r r r r r r r r- - - - - - - - - -1 -2 0 1 0 -1 0 2 1 0

0 0 1 0 -1 0 1 1 0 -1
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(33)

r r r r r r r r r r- - - - - - - - - -1 0 1 0 -1 -1 0 1 0 0

0 -1 0 1 -2 -1 0 2 1

(34)

r r r r r r r r r r- - - - - - - - - -1 0 1 0 -2 -1 0 2 1 0

0 -1 0 1 2 0 -1 -1 0 1

(35)

r r r r r r r r r r- - - - - - - - - 0 1 0 -1 -1 0 1 1 0 0

-1 -2 1 2 0 -1 -2 0 2 1

(36)

r r r r r r r r r r- - - - - - - - - 0 0 1 0 -1 -1 0 1 1 0

1 2 0 -1 0 2 1 0 -2 -1

(37)

r r r r r r r r r r- - - - - - - - - 0 1 0 -1 -2 -1 0 1 1 0

-1 0 1 0 -2 -2 -1 0 2 1

(38)

r r r r r r r r r r- - - - - - - - - -1 0 1 2 0 -1 -1 0 1 0

0 1 0 -1 -1 0 2 1 0 -1

(39)

r r r r r r r r r r- - - - - - - - - 0 1 0 -1 0 1 1 0 -1 0

1 0 -1 0 1 0 -2 -1 0 1

(40)

r r r r r r r r r r- - - - - - - - - 1 0 -1 0 1 0 -1 0 1 0

0 1 0 -1 0 1 0 -1 0 1
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