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Abstract. The use of quadratic forms as a tool for characterizing classes of
algebras is well known and widely accepted. However, untill now a charac-
terization of the interesting class of derived tubular algebras, by properties
of the (non-symmetric) Euler form only, failed because of the existence of so-
called pg-critical algebras, whose Euler form manifest similar properties as
those of tubular algebras. The present article fills this gap and provides a
distinction between derived tubular algebras and derived pg-critical algebras.
Furthermore, an explicit characterization of representation-finite derived tubu-
lar algebras in terms of their Euler forms will be given.

1. Known properties of tubular algebras, the main result

For definitions and more details we refer, unless otherwise stated, in this section
always to [13]. By an algebra we mean a finite-dimensional, basic algebra over
an algebraically closed field k, and by a module we mean a finite dimensional left
module.

Tubular algebras were introduced by Ringel in [13], they are branch-enlargements
of tame concealed algebras with tubular type (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6).
Two tubular algebras, A and B, are derived equivalent, that is their derived cate-
gories Db(A) and Db(B) are triangular equivalent [7], if and only if they have the
same tubular type [8]. Therefore we may speak of the tubular type of a derived
tubular algebra, that is an algebra which is derived equivalent to a tubular algebra.

In [2], it was shown, that for a derived tubular algebra A there exists a tubular
algebra T such that A and T are even reflection-equivalent, that is A may be
obtained from T by a series of source- and sink-reflections, or equivalently, their
repetitive categories are equivalent [9].

Tubular algebras are directed, that is, their ordinary quiver QA contains no cy-
cle, their global dimension is always 2. In the forthcoming we shall identify the
Grothendieck group K◦(A) with Z

n, where n is number of points of QA, and the
class of an A-module X , denoted by dim X ∈ K◦(A) with the dimension vector of
the corresponding representation of QA.

We denote by 〈−,−〉
A

: K◦(A) × K◦(A) → Z the homological bilinear form of an

algebra of finite global dimension and by χ
A

: K◦(A) → Z the associated quadratic
form, called Euler-Poincaré characteristic, or shortly Euler form, whereas the Tits
form will be denoted by qA.

If χ
A

is non-negative, that is χ
A
(v) ≥ 0 for all v ∈ K◦(A), then radχ

A
equals

χ
A
(0)−1 and is a direct summand of K◦(A). In this case the corank of χ

A
is
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defined as corankχ
A

= rank(radχ
A
). Further, we define the right orthogonal space

of a subset U ⊂ K◦(A) to be U⊥ = {v ∈ K◦(A) | ∀u ∈ U, 〈u, v〉
A

= 0}.

In the following we consider an algebra A as a spectroid, that is a k-category where
distinct objects are non-isomorphic, morphism spaces are finite dimensional and
endomorphism algebras are local, see [10]. We say that a full subcategory B of A
is convex in A if the quiver QB is path closed in QA and by abusing the language
we say then that B is a full subalgebra of A. An algebra A is called strongly simply
connected if for every convex algebra B in A, the first Hochschild cohomology
vanishes [14].

The main result of this paper is the following.

Main Theorem. Let A be a finite-dimensional, connected algebra over an alge-
braically closed field. Then A is of derived tubular and representation-finite if and
only if A satisfies the following five conditions:

(i) QA has more than six points,
(ii) χA is non-negative and has corank two,
(iii) χ−1

A
(1) ∩ (radχ

A
)⊥ = ◦/

(iv) the Tits form qA does not admit a positive isotropic root, and
(v) A is strongly simply connected.

The article is organized as follows. Section 2 and 3 deal with the conditions (i) and
(iii) respectively. The proof of the Main Theorem is given in section 4.

This work is part of my Ph.D. thesis done at UNAM under the supervision of J. A.
de la Peña. Results of this work have been used in further developpments [4].

2. Derived tubular algebras of type (2, 2, 2, 2)

2.1. The following result is a special case of a result in [11]. The proof we present
is more elemetary.

Proposition. A derived tubular algebra of type (2, 2, 2, 2) is representation-infinite.

2.2. We shall need the following lemma.

Lemma. Let A be an algebra such that there exist two points, x and y, in A with
dimkA(x, y) ≥ 2. Then all algebras which are reflection-equivalent to A are of
infinite representation type.

Proof. We denote the repetitive category of an algebra A by Â and their points by
a[i], for a ∈ A and i ∈ Z. Let B be a algebra, which is reflection-equivalent to A.

Then by [9], B can be considered as a full, complete slice of Â, hence there exist
integers ix and iy such that x[ix] and y[iy] belong to B. By the convexity of B in

Â follows, that either ix = iy or ix = iy − 1. In both cases there exist two points,
x′ and y′, in B such that dimkB(x′, y′) ≥ 2. The full subalgebra of B given by this
two points is therefore of representation-infinite, and hence so is B itself. �

2.3. Proof of Proposition 2.1. Let A be a derived tubular algebra of tubular type
(2, 2, 2, 2). By [2], there exists a tubular algebra T , which is reflection-equivalent
to A. Let C be a tame concealed algebra such that T is a branch-source-extension
of C. Clearly C has one of the following tubular types: (), (2), (2, 2) or (2, 2, 2). In
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the first two cases there exist two points, x and y, in C such that dimkC(x, y) ≥ 2,
so the assertion follows by (2.2). In the last case, C is hereditary with underlying
graph D4, T = C[M ] (one-point source extension), where M is an indecomposable
C-module lying in a homogeneous tube. Since for all possible orientations we have
dimkM(c) = 2, if c denotes the “center-point” of C, we obtain dimkT (α, c) = 2,
where α denotes the extension vertex of T [M ], and the assertion follows again by
(2.2). In the remaining case C is hereditary with one of the two quivers in Figure
1,
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Figure 1

from which the left hand case can be handled as before. So it remains to consider
the case where C is hereditary and has as quiver the one in Figure 1 on the right
hand side. In order to obtain T from C, the latter must be extended by two non-
isomorphic modules, Mλ and Mµ, both lying in homogeneous tubes. Hence T is
isomorphic to kQ/Iρ where the quiver Q looks as depicted in Figure 2 on the left
hand side,
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and the ideal Iρ is generated by α1γ1 −α′
1γ

′
1, α1γ2 −α′

1γ
′
2, α2γ1 −α′

2γ
′
1 and α2γ2 −

ρ ·α′
2γ

′
2 for some ρ ∈ k with ρ 6= 0, 1. The quiver of its repetitive algebra is depicted

on the right hand side in Figure 2. By [9], A is a full complete slice of T̂ and,
by the convexity, it follows that R contains a full complete subalgebra, which is
isomorphic to C. Therefore B is of infinite representation type. �

3. Distinction Lemma

3.1. In order to charaterize the derived tubular algebras of finite representation-
type, we may restrict to algebras with more than six points, see (2.1). A 2-tubular
algebra A is a one-point source extension A = D[M ], where D is domestic tubular
of tubular type (2, 2, t) for some t ≥ 2, and M an indecomposable, regular D-module
of colength two (that is M lies on the second position in its coray), which belongs
to the tube Tλ of rank t.

Distinction Lemma. Let A be a finite algebra with more than six points.

(a) If A is derived tubular, then χ−1
A

(1) ∩ (radχ
A
)⊥ = ◦/ .

(b) If A is derived 2-tubular, then χ−1
A

(1) ∩ (radχ
A
)⊥ 6= ◦/ .

For algebras with six points the statement (b) of the Distinction Lemma fails [4].
The proof of the Distinction Lemma is given in 3.7.
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3.2. Denote by N the indecomposable, regular D-module, which lies on the same
coray than M and has colength one.

Let α = αM , the additional point of the source-extension A = D[M ]. Furthermore
denote τA the Auslander-Reiten-translation in ind A, and ΦA : K◦(A) −→ K◦(A)
the Coxeter transformation.

Lemma. With the above notations, the following holds:

ΦAdim N + dim N = dim Pα − dim Sα.

Proof. If N is not projective, then clearly dim τDN + dim N = dim M = dim Pα −
dim Sα. Calculating τAN by considering the almost-split sequence in ind A, which
ends at N , one verifies, that τAN = τDN . Using, that the Coxeter transforma-
tion of a source-extension A = D[M ] can be expressed by the Coxeter transfor-
mation of D and the bilinear form 〈?′, ?〉

D
, one obtains ΦAdim N = ΦDdim N −

〈dim N, dim M〉
D
· dim Sα. Therefore the assertion follows, since t > 2 implies

〈dim N, dim M〉
D

= 0.

If N is projective, N = Pβ , then ΦAdim N = −dim Iβ = −dim Sβ , where the last
equation is due to the position of N in the tube Tλ. Therefore ΦAdim N +dimN =
−dimSβ + dim N = dim M . �

3.3. Lemma. With the notations of (3.1), the following holds:

for all v ∈ radχA,
〈
v, Φ2

Adim N + dim Sα

〉
A

= 0

Proof. First apply the general rules 〈x, y〉
A

(\)
= −〈y, ΦAx〉

A
and Φdim Ps

([)
= −dim Is

in order to obtain
〈
v, Φ2

Adim N + dim Sα

〉
A

= 〈ΦAdim N, v〉
A
− v(α).

Now by (3.2), 〈ΦAdim N, v〉
A

= −〈dim N, v〉
A

+ v(α) − 〈dim Sα, v〉
A
. Applying to

the first and the last term on the right hand side twice (\) and the fact, that for

all v ∈ radχA, ΦAv = v holds, we get 2 〈dim Sα, v〉
A

= v(α) − 〈ΦAdim Sα, v〉
A

([)
=

v(α) − 〈dim Pα, v〉
A

= 2v(α), hence the result. �

3.4. Lemma. With the notations of (3.1), the following holds:

χA(Φ2
Adim N + dim Sα) = 1.

Proof. First, if N is not projective, then ΦAdim N = dim τDN holds, as we have al-
ready seen in the proof of Lemma (3.2). Since t > 2, we have 〈dim τDN, dim M〉

D
=

1 and therefore ΦAdim τDN = ΦDdim τDN − 〈dim τDN, dim M〉
D

dim Sα =
ΦDdim τDN − dim Sα. Altogether we get

χA(Φ2
Adim N + dim Sα) = χA(ΦDdim τDN)

= χD(ΦDdim τDN)

= χD(dim τDN)

= 1,

where the second equality is due to the convexity of D in A and the third to (3.3
\).
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Assume now N = Pβ. In that case the position of N in Tλ, and the definition of
branch-source-extensions imply, that there exists a point γ ∈ D, such that radPα =
radPβ = Pγ . Therefore 〈dim Iβ , dim Iα〉

A
= 0 and ΦAdim Iβ = ΦA(dim Pβ −

dim Pγ) = dim Iβ − dim Iγ , and thus 〈ΦAdim Iβ, dim Iα〉
A

= −〈dim Iγ , dim Iα〉
A

=
−1.

So we conclude again

χA(Φ2
Adim N + dim Sα) = χA(ΦAdim Iβ) + χA(dim Iα)

+ 〈ΦAdim Iβ, dim Iα〉
A

+ 〈dim Iα, ΦAdim Iβ〉
A

= 1 + 1 + (−1) + 0.

�

Remark. If the module τ2
AN exists, then its dimension vector equals Φ2

Adim N +
dim Sα.

3.5. Proof of the Distinction Lemma. The main work, namely part
(b), was already done in (3.3) and (3.4).

So assume that A is a tubular algebra. Then A contains two full, convex and
critical subalgebras, C◦ and C∞ [13]. Denote by h◦ and h∞ its radical vectors (by
the convexity of C◦ and C∞ in A they belong automatically to radχA). The full
subcategory T (1) of ind A formed by all indecomposable modules M, which satisfy
〈h◦, dim M〉

A
= −〈h∞, dim M〉

A
build a stable tubular family of the same tubular

type than A [13]. More general, let U (1) = {u ∈ K◦(A) | 〈h◦, u〉
A

= −〈h∞, u〉
A
}.

Since χA controls T (1) [13], it follows that for any positive u (u(s) ≥ 0 for all s ∈ A,
and u 6= 0) in K◦(A) with χA(u) = 1 there exists an indecomposable module M
in T (1) with dim M = u. From the additivity of the linear functions 〈h◦, ?〉

A
and

〈h∞, ?〉
A

it follows for a positive u ∈ U (1), that 〈h◦, u〉
A

= n · 〈h◦, h∞〉
A

implies

χA(u) = 0.

Therefore, if there would exist a vector v ∈ χ−1
A

(1) ∩ (rad χ
A
)⊥, then for a large

N ∈ N, the vector u := v + N(h◦ + h∞) would be positive, lie in U (1) and 〈h◦, u〉
A

would be a multiple of 〈h◦, h∞〉
A
, and hence χA(u) = 0, but at the same time it

would hold χA(u) = χA(v)+N2χA(h◦+h∞)+N 〈h◦ + h∞, v〉
A
+N 〈v, h◦ + h∞〉

A
=

χA(v) + 0 + 0 + 0 = 1 in contradiction to the calculation above. This shows part
(a) of the Distinction Lemma. �

4. Proof of the Main Theorem

First assume that A is derived tubular of finite representation-type. Then by (2.1),
A has more than six points and thus the Distinction Lemma (3.1) shows condition
(iii), whereas (ii) is well-known [13]. Condition (iv) follows directly from the famous
Tits argument, namely that a representation-finite algebra has a weakly positive

Tits form [5]. Finally for the last condition we use, that mod Â is cycle-finite, and
apply [1] in order to conclude, that A is simply connected. So, by [6], A is strongly
simply connected.

Now assume that the finite algebra A satisfies the conditions (i) to (v). Choose
then x ∈ A extremal, such that A◦ = A \ {x} is connected (an easy inductive
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argument, left to the reader, shows that it is always possible to find such an x,
whenever A is directed). If x is minimal then by condition (v) x is separating
and Ix/soc Ix is indecomposable. So, in this case we first may reflect x, in order
to obtain in any case the following situation: A = A◦[M ], where A◦ is a finite,
directed algebra of finite representation type and strongly simply connected, and
M is an indecomposable A◦-module. Since A◦ is convex in A, the homological
quadratic form, χA◦

, is just the restriction of χA to A◦, and therefore non-negative
again. The free abelian group radχA has rank two, and it is therefore easy to
find a non-zero vector v ∈ radχA with v(x) = 0. Thus the corank of χA◦

is
at least one. But it is exactly one, since the assumption that there exist two
linarly independent radical vectors of χA◦

would imply directly dim Px ∈ χ−1
A

(1) ∩

(radχ
A
)⊥ (where Px is the indecomposable projective A-module corresponding

to x) - in contradiction to condition (iii). Altogether A◦ is a algebra of finite
representation type with a non-negative homological quadratic form of corank one.
Thus, by [4], A◦ is derived equivalent to hereditary algebra B◦ of extended Dynkin
type and the indecomposable A◦-module M corresponds by this equivalence to an
indecomposable B◦-module N . By [3], the two alegbras A = A◦[M ] and B = B◦[N ]
are derived equivalent. By [12], the algebra B is either domestic tubular or tubular
or 2-tubular. Now, the first possibility is excluded by condition (ii) and the latter
by conditions (i) and (iii) together with the Distinction Lemma (3.1). �
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