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Abstract. Let A be a finite dimensional algebra over an algebraically
closed field k. Assume A = kQ/I for a connected quiver Q and an
admissible ideal I of kQ. We study algebras A which are derived equiv-
alent to tubular algebras. If A is strongly simply connected and Q has
more than six vertices then A is derived tubular if and only if (i) the
homological quadratic form χA is non-negative of corank two and (ii) no
vector of χ−1

A (1) is orthogonal (with respect tho the homological bilinear
form) to the radical of χA.

Finite dimensional algebras over an algebraically closed field k are divided
in two classes. On one hand, we have the tame algebras for which almost all
indecomposable modules of each fixed dimension occur in a finite number
of one-parametric families; on the other hand, the wild algebras for which
the classification of indecomposable modules contains the classification of
pairs of matrices under simultaneous conjugations. Among tame algebras,
tubular algebras form a well-understood and important class [15]. The aim
of this work is the study of algebras which are derived equivalent to tubular
algebras. We shall apply our results to obtain a new characterization of
polynomial growth algebras.

Two k-algebras A1 and A2 are said to be derived equivalent if their derived
categories Db(A1-mod) and Db(A2-mod) are equivalent as triangulated cat-
egories, see [10]. If A1 and A2 are derived equivalent and A1 is tubular, we
say that A2 is a derived tubular algebra. In [4], a characterization of derived
tubular algebras of finite representation type was given, the characterization
uses properties of the homological form and the Tits form of the algebra. In
this work we extend those results to certain classes of tame algebras.

If the algebra A is of finite global dimension, then the homological bilinear
form of A is defined by 〈dimM,dim N〉A =

∑
∞

i=0(−1)idimkExtiA(M,N),
where dimM denotes the class of an A-module M in the Grothendieck
group K◦(A) of A. The corresponding quadratic form is denoted by χA,
whereas the Tits form qA is the “truncated version”, defined for a semisimple
module S as qA(dimS) =

∑2
i=0(−1)idimkExti(S, S). The radical rad qA is

the subgroup of K◦(A) of all vectors v such that qA(v+?) = qA(v) + qA(?).
The corank of qA is the rank of rad qA.

This work was partially supported by CONACYT and DGAPA, UNAM
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Let Q be a connected quiver and I an admissible ideal of kQ such that
A = kQ/I is finite dimensional k-algebra. We recall from [17] that A is
said to be strongly simply connected if Q has no oriented cycle and for
every convex subcategory B of A, the first Hochschild cohomology group
H1(B,B) vanishes. The main results of this work are the following.

Theorem A. Let Q be a connected quiver with more than six vertices and
I an admissible ideal of kQ such that A = kQ/I is strongly simply con-
nected. Then A is derived tubular if and only if A satisfies the following two
conditions.

(i) The homological quadratic form χA is non-negative and has corank
two,

(ii) No vector of χ−1
A (1) is orthogonal (with respect to the homological

bilinear form) to the whole radical of χA.

Theorem B. Let Q be a connected quiver with more than six vertices and I
an admissible ideal of kQ such that A = kQ/I is strongly simply connected.
Then A is tubular if and only if A satisfies the following three conditions.

(i) The Tits form qA is non-negative and has corank two,
(ii) No vector of q−1

A (1) is orthogonal (with respect to the homological
bilinear form) to the whole radical of qA.

(iii) There exists a positive sincere radical vector of qA.

In section 2 we shall provide a complete list of derived tubular algebras
whose underlying quivers have six vertices. This is relevant since for this
number of vertices the above characterizations fail.

For a tame algebra A, and d ∈ N denote by µA(d) the minimal number of
one-parametric families of indecomposable d-dimensional A-modules. We
say that A is of polynomial growth if µA(d) ≤ dm for some m ∈ N and all
d ∈ N. In [13], strongly simply connected polynomial growth algebras are
characterized by properties of qA. From those results and Theorem B we
obtain the following characterization.

Theorem C. Let A be a strongly simply connected algebra. Then A is
of polynomial growth if and only if qA is weakly non-negative and any full
convex subcategory B of A with non-negative Tits form qB of corank two
and a sincere, positive radical vector of qB satisfies the following condition:
either B is isomorphic to Aρ, Bρ or B

op
ρ in list 2.4, or B has more than

six points and then no vector in q−1
B (1) is orthogonal (with respect to the

homological bilinear form) to the whole radical of qB.

Proofs of the results are given in section 4 after some required preparation
in section 3. For a general discussion on quadratic forms and representation
theory see for example [14].

1. Fundamental concepts

Throughout the article, k denotes a fixed, algebraically closed field. A spec-

troid is a k-category with finite dimensional morphism spaces and pairwise
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non-isomorphic objects (called points) whose endomorphism algebras are
local. Basic algebras over k stand in a one-to-one correspondence with finite
spectroids, A ←→ SA. [9] The category A-mod of finite-dimensional left-
modules over A, is equivalent to the category SA-mod of covariant finitely
generated functors (also called left SA-modules) SA → k-mod. Since only
left S-modules will be considered, the specification “left” will be suppressed.
The category of finite dimensional S-modules is denoted by S-mod. For each
class of indecomposable S-modules choose a representative. Then the full
subcategory of S-mod given by those representatives is a spectroid which
will be denoted by S-ind.
A spectroid S is finite if it has only finitely many points, it is directed if
there does not exist a cycle of non-zero morphisms in S, and it is connected

if the points of S cannot be divided into two non-empty sets with only zero
morphisms between them.
If a spectroid S is directed the associated quiver of S induces a partial order
on the objects of S. The maximal points correspond to the sinks whereas
the minimal points to the sources.

1.1 Let S be a finite and directed spectroid. Then its repetitive spec-

troid Ŝ is a spectroid having as object-set S × Z (instead of ObS we just
write S, the points are denoted by s[i], s ∈ S, i ∈ Z) and non-zero morphism-

spaces Ŝ(r[i], s[i]) = S(r, s)× {i} and Ŝ(r[i], s[i−1]) = DS(s, r)× {i}

The bijection ?[j] from the points of Ŝ to itself, (s[i])[j] := s[i+j] extends for

any j ∈ Z in a natural way to an automorphism of Ŝ, which again will be
called ?[j].

1.2 The source-extension S (denoted by S◦[M ]) of a spectroid S◦ by
a S◦-module M is a spectroid having as points those of S◦, an additional
point αM and morphism-spaces given by S|S◦

= S◦, S(αM , ?)|S◦
= M (as

left S◦-modules), S(?, αM ) = 0 and S(αM , αM ) = k. The sink-extension

(denoted by [M ]S◦) of S by M is defined dually. If S is a finite spectroid,
ω a maximal point of S and if Iα denotes the injective indecomposable S-
module corresponding to ω then the spectroid ρ+

ωS which is obtained from
S by deleting ω (i.e. taking the full subspectroid of S given by all points
β 6= ω) and then building the source-extension in Iω/socIω is called the
source-reflection of S in ω.
Dually for a minimal point α in S we define the sink-reflection of S in α
and denote it by ρ−αS.
The unique point in ρ+

ωS \ S◦ will be denoted by ω[1], in the first case, and
the unique point in ρ−αS \S

′
◦ by α[−1]. Two spectriods are called reflection-

equivalent if one is obtained from the other by a sequence of source- and
sink-reflections.

1.3 It is sometimes useful to mark a point p of a spectroid S and to

consider pointed spectroids. Let A :=
−→
An denote the linearily ordered

spectroid with n points, P the unique projective-injective indecomposable
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and T a tilting A-module. If we vary n and T we obtain simple but important
examples of pointed finite spectroids (End(T ), P ), where T = End(T ) is
the spectroid whose points Ti, i = 1, ..., n are chosen representatives of the
isomorphism classes of the indecomposable direct summands of T and whose
morphism spaces are T (Ti, Tj) = Hom(Ti, Tj). These pointed spectroids are
called branches. For a more descriptive definition see for example [15].

Let now Ṙ = (R, r) and Ṡ = (S, s) be two pointed spectroids. The glueing

of R with S is a spectroid, defined as the fibre-product of ιr : {�} −→
R,� 7→ r and ιs : {�} −→ S,� 7→ s.
For a spectroid S and an indecomposable S-module M , the branch-source-

extension S[M, Ḃ] of S by a branch Ḃ in M is the glueing of (S[M ], αM )

with Ḃ, and dually the branch-sink-extension [Ḃ,M ]S is the glueing of

([M ]S, ωM ) with Ḃ.

Let S be a finite spectroid, s an extremal point of S and R a full and convex
subspectroid of S. We then say that the reflection of S in s avoids R if
s does not belong to R. In particular R is preserved as full and convex
subspectroid under the reflection. A sequence of reflections avoids R if
each reflection of the sequence avoids R. Any finite spectroid which can be
obtained from a branch-source-extension of a spectroid S◦ by a sequence of
reflections avoiding S◦ is called a branch-enlargement of S◦.

1.4 Let C be a critical spectroid (for a definition we refer to [15]). If
(Tλ)λ∈P1k is the tubular family in C-ind then the function tC : P1k −→ N,
λ 7→ rk(Tλ) is called the tubular-type-function, where rk(T ) denote the
rank of Tλ, that is, the number of modules in the mouth of Tλ. Since almost
everywhere tC takes the value one, usually one writes only the tubular type

(tC(λ1), . . . , tC(λp)) of C, where Tλ1 , . . . , Tλp
are the non-homogeneous tubes

in C-ind [15].
A 1-regular branch-source-extension of C is a branch-source-extension of
C by a regular, indecomposable module of colength 1. The colength of a
module in an arbitrary tube is the position in the coray through M . The
tubular-type-function of C[M, Ḃ] is defined by t

C[M,Ḃ](µ) = tC(µ) + |B|, if

M belongs to Tµ, and t
C[M,Ḃ](λ) = tC(λ) for all λ 6= µ. Let M1, . . . ,Mn

be pairwise distinct, indecomposable, regular C-modules, all of colength one
and Ḃ1, . . . , Ḃn branches. The spectroid C[M1, Ḃ1] · · · [Mm, Ḃm] will still be
called a 1-regular branch-source-extension of C and its tubular type function
is defined iteratively.

The 1-regular branch-source-extensions of a critical spectroid C have been
extensively studied [3, 12, 15]. The distinction of tame and wild ones can
be easily formulated by means of the tubular type; namely, the spectroid
S = C[M1, Ḃ1] · · · [Mm, Ḃm] is tame if and only if the star Γ(t1 ,... tp) associated
to the tubular type (t1, . . . tp) of S is Dynkin or extended Dynkin [12,
15]. In the first case S is called domestic tubular, whereas in the latter
tubular. The expressions “derived equivalent to a tubular (resp. domestic
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tubular) spectroid of tubular type (t1, . . . , tp)” will be shortend down to
derived tubular (resp. derived domestic tubular) of type (t1, . . . , tp).

1.5 From [5], we recall that a spectroid S satisfies the separation con-

dition if for each point s of S, two different direct summands of radPs lie
in different connected components of the spectroid S \ s/, where s/ is the
full subspectroid of S given by the start points of all paths ending at s.
By [17], a spectroid S is strongly simply connected if and only if each full and
convex subspectroid of S satisfies the separation condition. If, in addition,
S is of finite representation type, then by [8], S is strongly simply connected
if and only if S itself satisfies the separation condition.

2. Spectroids with six points

2.1 A finite spectroid S is called 2-tubular if it is isomorphic to a source-
extension D[M ], where D is a domestic tubular spectroid of tubular type
(2, 2, s), for some s ≥ 2, and M is an indecomposable regular D-module
of colength two lying in a tube Tλ with tD(λ) = s. Important examples of
2-tubular spectroids are the strongly simply connected pg-critical spectroids
as defined in [18].
It is known that tubular and 2-tubular spectroids have “similar” quadratic
forms. However, if the considered spectroids have more than six points (the
smallest tubular and 2-tubular spectroids have six points), then there is a
distinction of their quadratic forms.
We recall from the introduction that χS denotes the associated quadratic
form to the homological bilinear form 〈?,−〉S . Furthermore we define for any
subset U ⊂ K◦(S) its right orthogonal group U⊥ = {v ∈ K◦(S) | ∀u ∈
U, 〈u, v〉S = 0}.

2.2 Distinction Lemma. [4] Let S be a finite spectroid with more than
six points.

(a) If S is derived tubular, then χS
−1(1) ∩ (radχS)⊥ = ◦/,

(b) if S is derived 2-tubular, then χS
−1(1) ∩ (radχS)⊥ 6= ◦/,

Proof. The proof is roughly sketched, for more details we refer to [4].
For (a) we assume, that there exists a vector v in S−1(1)∩(radS)⊥. Let w be
a sincere positive, radical vector with 〈h◦, w〉S = −〈h∞, w〉S , where h◦ and
h∞ denote the positive radical vectors corresponding to the two critical, full
and convex subspectroids of S. For a sufficiently large natural number N ,
the vector v′ = v +Nw is then sincere, positive and satisfies χS(v′) = 1 and
〈h◦, v

′〉S = −〈h∞, v′〉S = N〈h◦, w〉S . The latter implies that χS(v′) = 0, a
fact, which contradicts the above statement.

In order to prove (b), we set S = D[M ] as in the definition above. Let
N be the indecomposable, regular D-module of colength one, which lies on
the same coray than M . One shows now first, that ΦSdimN + dimN =
dimPα − dimSα where ΦS denotes the Coxeter transformation of S and
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α = αM . From this it follows that u := Φ2
S
dimN + dimSα belongs to

(radχS)⊥. Finally one verifies, that also χS(u) = 1 holds. �

2.3 The condition on the number of points in 2.2 is necessary as shown
by the following considerations.
Let D[M ] be a 2-tubular spectroid with six points. The tubular type of D is
then (2, 2, 2) and therefore the tube to which the module M belongs is stable
and of rank two. Since M has colength two, it follows that the dimension
vector of M is the same than for any indecomposable, regular module M ′,
of colength one lying in a homogeneous tube.
Hence the Cartan matrices of the spectroids D[M ] and D[M ′] are the same
and so are the homological bilinear forms. Since both spectroids have global
dimension two, the homological quadratic forms such as the Tits forms are
all indistinguishable.

2.4 Fortunately, in the situation considered in 2.3 it is easy to determine
all spectroids explicitly. First in Figure 1, part I, we obtain the list of all
tubular spectroids with six points, where every picture represents a family
spectroids (the index ρ runs over a cofinite subset of the field k and hits each
isoclass of algebras only finitely many times). This list was also calculated
in [16].
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Figure 1, part I

Using that a derived tubular spectroid is always reflection-equivalent to a
tubular spectroid [1], we obtain furthermore the spectroids shown in Figure
1, part II.
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Figure 1 (part I and II) exhibits all derived tubular spectroids with six
points. Only the first three families, namely (Aρ), (Bρ) and (Bop

ρ ) are
strongly simply connected.
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Figure 1, part II

3. Tools

3.1 For the proof of the theorems we proceed by reduction deleting special
extremal points. In this section we discuss this method.

Proposition. Let S be a finite and directed spectroid with a non-negative
(respectively positive) homological quadratic form, then any full subspectroid
S◦ of S has again a non-negative (respectively positive) homological quadratic
form.

Proof. By induction on the number of points of S which do not belong to
S◦.
Let s be a point of S and set S◦ = S\{s}. Then define s/ as in 1.5. Let s1 be
minimal in s/, s2 be minimal in s/ \ {s1}, s3 be minimal in s/ \ {s1, s2}, and
so on, until we end up with s/\{s1, . . . , sq} = {s}. Set thenR = ρ−sq

· · · ρ−s1
S.

Observe that reflections provide isomorphisms between the Grothendieck
groups preserving the homological bilinear form. Therefore χR is non-nega-
tive (respectively positive) again. The point s is minimal in R, thus R◦ =
R \ {s} is convex in R. Hence χR◦

is non-negative (respectively positive)
again. Now the assertion follows again by the observation above observing
that S◦ is isomorphic to ρ+

s1[−1] · · · ρ
+
sq [−1]R◦ �
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Observe that χS◦
is not always the restriction of χS .

3.2 Lemma. Let S be a directed spectroid, which satisfies the following two
conditions.

(i) The homological quadratic form χS is non-negative and has corank
two and

(ii) χS
−1(1) ∩ (radχS)⊥ = ◦/.

Let furthermore s be a point of S. Then the homological quadratic form χS◦

is non-negative of corank one, where S◦ denotes the spectroid S \ {s}.

Proof. As in the lemma above we can restrict, without loss of generality,
to the case where s is maximal. The quadratic form χS◦

is then just the
restriction of χS to S◦. Since the corank of χS is two, it is easy to find
a radical vector v such that v(s) = 0. This shows that the corank of χS◦

is at least one. If there would be two linearily independent radical vectors
w1 and w2 of χS◦

, then this would imply, that the dimension vector of the
indecomposable projective S-module corresponding to s, belongs to radχS

⊥,
and hence also to χS

−1(1) ∩ (radχS)⊥, in contradiction to the condition
(ii). �

3.3 The basic piece in our tool box is the following

Proposition. [4] If D is a derived domestic tubular spectroid and M an
indecomposable D-module, such that χD[M ] is non-negative, then there ex-
ists a hereditary critical spectroid H, an indecomposable regular H-module
N and an equivalence between Db(D-mod) and Db(H-mod) as triangulated
categories which extends to an equivalence between Db(D[M ]-mod) and
Db(H[N ]-mod) as triangulated categories.

Proof. For more details we refer to [4]. First show, that the module M

considered as D̂-module, lies in one of the tubular families of D̂-ind. Then

one verifies that the support of M in D̂ is a branch-enlargement E of a special
shape of a critical spectroid. Finally prove, that E [M ] can be transformed
by a sequence of tiltings and cotiltings into a source-extension of a critical,
hereditary spectroid H by an indecomposable, regular module N . �

3.4 Proposition. Let S be a finite, connected and strongly simply connected
spectroid. Then S is derived domestic tubular if and only if χS is non-
negative and has corank one.

Proof. Let S be a finite, connected and strongly simply connected spectroid
with a non-negative homological quadratic form of corank one. If S is of
finite representation type, then the result follows from [3]. In the remaining
case we use that, according to [7], there exists a full and convex subspectroid
R of S, which is critical. If R = S we are done. Otherwise we may find an
extremal point s in S such that S◦ = S \ {s} is still connected and contains
R. By induction S◦ is derived domestic tubular. If s is minimal, then radPs

is indecomposable and therefore by Proposition 3.3, the result follows. If
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on the other hand s is maximal, then we apply the same argument to ρ−
s S,

where we use, that the opposite of a strongly simply connected spectroid is
strongly simply connected again, [17]. �

4. Proof of the results

4.1 Proof of Theorem A. The necessity of the conditions (i) and (ii) follows
from 2.2 and [15].
For the sufficiency we choose an extremal point s of S such that S◦ := S\{s}
is connected. By 3.1 the homological quadratic form of S◦ is non-negative
and by 3.2 it has corank one. Since S◦ is full and convex in S, the spectroid
S◦ is strongly simply connected again, and therefore 3.4 implies, that S◦ is
derived domestic tubular. If the point s is maximal in S we work with the
opposite spectroid Sop.
So suppose, that the point s is minimal in S. The module radPs is in-
decomposable and hence 3.3 may be applied, in order to obtain, that S is
derived equivalent to a source-extension of a hereditary spectroid H by an
indecomposable regular H-module N . By [12] the non-negativity of the qua-
dratic form of H[N ] implies that H[N ] is either domestic tubular, tubular
or 2-tubular. The first is excluded by the corank of the quadratic form and
the latter by condition (ii) and 2.2. �

4.2 Corollary. Let S be a strongly simply connected spectroid with more
than six points. Then S is tubular if and only if S satisfies the following
three conditions.

(i) The homological quadratic form χS is non-negative and has corank
two,

(ii) χS
−1(1) ∩ (radχS)⊥ = ◦/.

(iii) There exists a positive sincere radical vector of the Tits form qS.

Proof. Once again only the sufficiency requires an argument.
First, by Theorem A, S is derived tubular. Now since S is strongly simply
connected, it has a postprojective component and therefore the condition
(iii) implies, that S is of infinite representation type [6]. Thus by [2], S is a
branch-enlargement of a critical spectroid of extended Dynkin tubular type.
If S is not tubular, there is exactly one critical convex subspectroid R of
S. But condition (iii) implies that rad qA is spanned by two critical (i.e.
minimal) positive radical vectors v1 and v2. By [13], each of these vectors
vi give rise to a critical convex subspectroid of S, a contradiction showing
the result. �

4.3 It is not satisfactory to use two different quadratic forms in the for-
mulation of the characterization 4.2 (which, a posteriori, are in fact the
same, since the global dimension is two). In fact, the homological quadratic
form can be completely exchanged by the Tits form, but the orthogonality
in condition (ii) remains with respect to the homological bilinear form, as
shown in Theorem B.
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Proof of Theorem B. Again only the sufficiency has to be shown.
First observe that by condition (ii) and 2.2 S does not contain a full and
convex 2-tubular subspectroid. Since moreover qS is weakly non-negative,
[18] implies that S is tame of polynomial growth. By (iii) and [13] we get
that S is a critical or a tubular spectroid and hence by (i) the result. �

4.4 Proof of Theorem C. By 2.3 and 4.3, we have to show that S is of
polynomial growth if and only if qS is weakly non-negative and any full
convex subspectroid R of S satisfying conditions (i) and (iii) of Theorem B,
is a tubular spectroid. The result follows directly from [13]. �
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