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Let q: Zn → Z be an integral quadratic form of the shape

q(x) =
n

∑

i=1

qix(i)2 +
∑

i<j

qijx(i)x(j).

Following [5], we say that q is a unit (resp. semi-unit) form if qi = 1 (resp. qi ∈ {0, 1})
for every 1 ≤ i ≤ n.

Unit forms appear in different fields of mathematics. Our motivation comes from
unit forms associated to algebraic structures such as Lie algebras, finite dimensional
algebras and others. The study of the roots (x ∈ Zn: q(x) = 1) and isotropic vectors
(x ∈ Zn: q(x) = 0) of these unit forms provide important information on the algebraic
structures. Moreover, the positivity or non-negativity of the forms is important. For
example, the semi-simple Lie algebras are those whose Killing form is positive and
are therefore associated to Dynkin diagrams; in the representation theory of finite
dimensional algebras, a path algebra k∆ is of finite (resp. tame) representation type
if and only if the corresponding Tits form is positive (resp. non-negative) if and only
if ∆ is of Dynkin type (resp. extended-Dynkin type), see [4].

In this work we are concerned with non-negative semi-unit forms. Although, it is
simple to verify if a quadratic form is non-negative (for example, applying Lagrange’s
method), we find convinient the following criterion for semi-unit forms. We shall
consider the polar form q(−,−) of q as a bilinear map Zn × Zn → Z defined by
q(x, y) = q(x + y) − q(x) − q(y).

Theorem (Non-negativity criterion). Let q: Zn → Z be a semi-unit form. Then

q is non-negative if and only if the following conditions hold:

(C1) −2 ≤ qij ≤ 2, for i < j.

(C2) q is balanced, that is, for every v ∈ Zn with q(v) = 0, we have q(v,−) = 0.

Associated to a semi-unit form q: Zn → Z we have a bigraph Gq with vertices 1, . . . , n;
two vertices i 6= j are joined by |qij| full edges if qij < 0 and by qij dotted edges if
qij > 0; for every vertex i, there are 1− qi full loops at i. We say that q is connected
if so is Gq. For a given graph ∆ (of full edges) with at most one loop at each vertex,
we consider the semi-unit form q∆ with associated bigraph ∆.
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If q is non-negative, then q−1(0) = {x ∈ Zn: q(x,−) = 0} is a direct summand of Zn.
For Dynkin diagrams we consider the order relation given by:

Am ≤ An ≤ Dn ≤ Dp, for 0 ≤ m ≤ n ≤ p and

Dp ≤ Ep ≤ Eq, if 6 ≤ p ≤ q ≤ 8.

We consider the diagram without points as Dynkin diagram and denote it by A0.
Observe that qA0

: Z0 = {0} → Z is a positive form by definition.

The main result of the work is the following.

Theorem (Dynkin-types). Let q: Zn → Z be a connected non-negative semi-

unit form.

(a) There exists a Z-invertible transformation T : Zn → Z
n such that

qT (x1, . . . , xn) = q∆(x1, . . . , xn−c),

where c = corank q and ∆ is a Dynkin diagram uniquely determined by q. Write

Dyn (q) = ∆ and call it the Dynkin-type of q.

(b) If q′ is a connected restriction of q, then Dyn (q ′) ≤ Dyn (q).

(c) There exists a connected restriction q ′ of q such that q′ is a positive unit form

and Dyn (q′) = Dyn (q).

Part of this result was shown in [1]. The proof of the above results is based on the use
of inflations and deflations, a technique introduced in [9] and recently used in [6, 7].
Note that the theorem implies immediatly the following result (two forms q, q ′ are
called equivalent if there is a liner Z-invertible transformation T such that q ′ = qT ,
see also 1.2).

Corollary Two connected non-negative semi-unit forms are equivalent if and only if

they have the same corank and the same Dynkin-type.

The paper is organized as follows. In section 1 we recall some basic facts, in particular,
the definitions of inflations and deflations. In section 2 we give the proofs of our
Theorems. Section 3 is devoted to some considerations on Coxeter matrices associated
to non-negative unit forms. We show that the eigenvalues of those matrices have
modulus one.

Applications of our results to finite dimensional algebras may be found in the recent
papers [2, 3, 7, 10].

The authors thankfully acknowledge support of CONACyT and DGAPA, UNAM.
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1. Basic facts.

1.1. Let q: Zn → Z, x 7→
n
∑

i=1
qix(i)2 +

∑

i<j
qijx(i)x(j) be an integral quadratic form.

The radical of q is rad q = {x ∈ Zn: q(x,−) = 0}. Since rad q is a pure subgroup of
Zn, it is a direct summand of Zn. We define corank q = rank (rad q). Observe that
rad q ⊂ q−1(0).

If q is non-negative, then rad q = q−1(0). In this case, the induced form q̄ =
q/rad q: Zn−c → Z, where c = corank q, is well-defined.

For the sake of simplicity we set qji = qij for i < j.

1.2. We say that two integral forms q, q′: Zn → Z are Z-equivalent if there exists a
Z-invertible linear transformation T : Zn → Zn with q′ = qT . Observe that then q is
non-negative if and only if q′ is non-negative, and in that case corank q = corank q ′

(in particular, q is positive if and only if q′ is positive). For ε ∈ {+,−} and i, j ∈
{1, . . . , n}, i 6= j we define T ε

ij: Z
n → Zn as the linear transformation given by

T ε
ij(es) =

{

es, if s 6= i
ei − εej, if s = i.

If qij > 0 we call T +
ij an inflation for q, whereas if qij < 0 we call T−

ij a deflation for
q. Some simple facts are given in the following lemma.

Lemma. Let T = T−

ij be a deflation for q: Zn → Z and set q′ = qT . Then we

have:

(a) q and q′ are Z-equivalent.

(b) If q is a unit form and qij = −1, then q′ is a unit form.

(c) If q is a semi-unit form and 0 < −qij ≤ qi + qj, then q′ is a semi-unit form.

(d) If q is a non-negative semi-unit form, then so is q ′.

Proof: Straightforward, observing that q′i = qi + qj + qij. 2

1.3. For q : Zn → Z an integral quadratic form and i ∈ {1, . . . , n} define q(i) :
Zn−1 → Z by q(i)(x1, . . . , xn−1) = q(x1, . . . , xi−1, 0, xi, . . . , xn−1).

Now, let q: Zn → Z be a semi-unit form. Then we have the following facts.

(a) If q is a weakly positive (i.e. q(v) > 0 for all v ∈ Nn \ {0}), then q is a unit form
and −1 ≤ qij ≤ 1.

(b) If q is weakly non-negative (i.e. q(v) ≥ 0 for all v ∈ Nn), then −2 ≤ qij ≤ 2.
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(c) The form is said to be critical if q is not weakly positive but every restriction q(i)

is weakly positive. By [9], a critical form q is non-negative of corank one and there
exists a sincere vector z ∈ Nn such that rad q = Zz (we recall that a vector v ∈ Zn is
sincere if v(i) 6= 0 for 1 ≤ i ≤ n). Note that a critical form is connected.

The following result was shown in [9] (see also [5, 7]).

Proposition. Let q: Zn → Z be a unit form.

(a) If q is positive, then there is a sequence of inflations with composition T such

that the bigraph of qT is a disjoint union of Dynkin diagrams.

(b) If q is critical, then there is a sequence of inflations with composition T such

that the bigraph of qT is an extended-Dynkin diagram.

This result was used in [5] to classify the critical unit forms.

2. Proof of the Theorems.

2.1. A quadratic form q is balanced if q−1(0) ⊂ rad q. In that case, q−1(0) = rad q.
Clearly, if q is non-negative, then q is balanced. The converse is not true as shown
by the unit form q(x, y) = x2 + y2 − 3xy.

Proof of the non-negativity criterion: The ‘only if’ follows from the remarks above
and (1.3 b). For the ‘if’ part, assume that q satisfies conditions (C1) and (C2).

(i) We show that, if T is a deflation or an inflation for q, then qT again satisfies

conditions (C1) and (C2)

Let T = T−

ij be a deflation for q and q′ = qT . Since q′ −1(0) = T−1(q−1(0)) =
T−1(rad q) = rad q′, we only need to verify that q′ satisfies (C1).

Assume that q′st ≤ −3 for some s < t.

Since q′st = q′(es + et) − q′(es) − q′(et), we shall have that either s = i or t = i. Let
s = i, then q′st = qit + qjt ≤ −3. Since q satisfies (C1), we get that either (qit = −2
and qjt ≤ −1) or (qit ≤ −1 and qjt = −2). We consider the first possibility. For
v = ei + et, we have then q(v) = qi + qt + qit ≤ 0.

This implies that qi = 1 (otherwise, q(ei) = 0 and q(ei, et) = qit < 0 contradicting
that q is balanced). Similarly qt = 1 and hence q(v) = 0. From this we get q(v, ej) =
qij + qjt < qjt ≤ −1, again a contradiction. This shows that −2 ≤ q ′st. By dual
arguments we get q′st ≤ 2, that is q′ satisfies condition (C1).

Similarly, qT +
ij satisfies (C1) and (C2) for any inflation T +

ij for q.
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(ii) We shall show that there is a composition of inflations and deflations T such that

qT = ζ ⊕ p, where ζ is the trivial quadratic form in c = corank q variables and p is a

semi-unit form in n − c variables satisfying (C1), (C2) and

(C3) p−1(0) = {0}.

Since q is balanced, we have q−1(0) ∼= Zc. We proceed by induction on c.

If c = 0, there is nothing to prove. Assume c > 0 and choose 0 6= v ∈ rad q. We define

|v| =
n
∑

i=1
|v(i)|, supp v = {i: v(i) 6= 0} and v+, v− ∈ Zn by vε(i) = max(0, εv(i)).

If there are x ∈ supp v+ and y ∈ supp v− such that qxy > 0, then we apply T +
xy to q

to obtain q̃ = qT +
xy and ṽ = (T +

xy)
−1v. Observe that ṽ = v + v(x)ey, thus |ṽ−| < |v−|.

We repeat this procedure until this is no longer possible and obtain a composition of
inflations T ′ such that the radical of the form q′ = qT ′ contains a positive vector v′,
see [1, (2.9)] for details.

Now we claim that there exists a sequence of deflations with composition T ′′ such
that qT ′T ′′ = ζ ′ ⊕ p′, where ζ ′ is the trivial form in one variable and p′ is a semi-unit
form with corank c− 1 satisfying (C1) and (C2). We proceed as in [1, (2.9)]: if there
exist x, y ∈ supp v′ with q′xy < 0, we apply T = T−

xy if v′(y) ≥ v′(x) (or T = T−

xy if
v′(y) < v′(x)). Observe that for q̃ = q′T and ṽ = T−1v′ we have that ṽ is positive
again with |ṽ| < |v′|. We repeat the procedure as long as possible to get a composition
of deflations T ′′, a semi-unit form q′′ = q′T ′′ and a positive vector v′′ ∈ rad q′′ such
that q′′xy ≥ 0 for all x, y ∈ supp v′′. Then q′′x = 0 whenever x ∈ supp v′′. The claim
follows. We are now in position to apply the induction hypothesis on p′.

To complete the proof it is enough to show that a semi-unit form satisfying conditions
(C1), (C2) and (C3) is positive. This is the content of the next result. 2

2.2. Theorem (positivity-criterion). Let q: Zn → Z be a semi-unit form. Then

q is positive if and only if q satisfies:

(C1) −2 ≤ qij ≤ 2 for i < j and

(C3) q−1(0) = {0}.

Proof. Assume that q is not positive.

(i) First, we verify that we may restrict to the case where q is not weakly positive.

Let v ∈ Zn \{0} be a vector with q(v) ≤ 0. If there exist j ∈ supp v+ and i ∈ supp v−

with qij > 0, then as in the proof (2.1) we apply the inflation T +
ij to q to obtain

q′ = qT+
ij and v′ = (T+

ij )−1v satisfying q′(v′) = q(v) ≤ 0 and |v′−| < |v−|. Repeating
this procedure produces a semi-unit form q̃ = qT where T is a composition of inflations
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and a vector ṽ 6= 0 with q̃(ṽ) ≤ 0 and such that q̃ij ≤ 0 for every i ∈ supp ṽ−,
j ∈ supp ṽ+. Hence 0 ≥ q̃(ṽ) = q̃(ṽ+) + q̃(ṽ−) +

∑

i<j q̃ij ṽ
+(i)ṽ−(j) ≥ q̃(ṽ+) + q̃(ṽ−)

and either q̃(ṽ+) ≤ 0 or q̃(ṽ−) ≤ 0. By the proof of (2.1), we know that qT satisfies
(C1) and (C3). Moreover, if qT is positive, then q is positive. Therefore, we may
assume that 0 6= v ∈ Nn with q(v) ≤ 0, that is, q is not weakly positive.

(ii) We show, that this leads to a contradiction.

We shall proceed by induction on n. First, observe that qi = 1 and −1 ≤ qij ≤ 1.
Indeed, qi = 0 implies that q(ei) = 0 in contradiction to (C3); qij = ±2 implies that
q(ei ± ej) = 0, again a contradiction.

If n = 1, then q(x1) = x2
1; if n = 2, then q(x1, x2) = x2

1 + x2
2 ± x1x2 which are positive

forms. We may assume that n ≥ 3 and that every restriction q(i): Zn−1 → Z is positive
(since q(i) satisfies (C1) and (C3)). Hence q is critical by (1.3). In particular, q is
non-negative and corank q = 1, in contradiction to (C3). 2

2.3. The next result, proved in [1], shows part (a) of the Dynkin-type Theorem.

Theorem. Let q: Zn → Z be a connected non-negative semi-unit form. Then there

exist a composition T of deflations and inflations such that qT (x1, . . . , xn) =
q∆(x1, . . . , xn−c) where c = corank q and ∆ is a Dynkin diagram uniquely determined

by q.

Sketch of proof: First, we need to know that, if T = T ε
ij is an inflation or a deflation

for q and q′ = qT is not connected, then we have

qT (x1, . . . , xn) = q̃(x1, . . . , xj−1, xj+1, . . . , xn)

for some 1 ≤ j ≤ n, where q̃ is a connected non-negative semi-unit form. Indeed, if
q′ is not connected, then q′ij = 0. Using the non-negativity of q, we get q′j = 0 and
q′js = 0 for any s 6= j. Since for s 6= i, j we have qjs = q′js, we infer that q̃ is connected.

As in (2.1), we get a composition T1 of deflations and inflations such that qT1 = ζ⊕p,
where ζ is the trivial quadratic form in c variables and p is positive. By the first
remark, p is connected. Then (1.3 a) yields a composition T2 of inflations such that
pT2 = q∆, where ∆ is a Dynkin diagram. 2

Corollary. Let q: Zn → Z be a connected non-negative semi-unit form. Then there

exists a Dynkin diagram ∆ such that the induced form q̄ is Z-equivalent to q∆. ut
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2.4. Proof of part (b) of the Dynkin-type Theorem: Let q: Zn → Z be a connected
non-negative semi-unit form and i ∈ {1, . . . , n} be such that q(i) is connected. We
shall prove that Dyn (q(i)) ≤ Dyn (q).

(i) First we suppose that corank q(i) = corank q = c.

We take i = n. Let T : Zn−1 → Zn−1 be a Z-invertible linear transformation such that

q(n)T (x1, . . . , xn−1) = q∆(x1, . . . , xn−1−c)

for some Dynkin diagram ∆. Let T̃ : Zn → Zn be such that T̃ (en) = en and
T̃ (ei) = [ T (ei) 0 ]T for all i = 1, . . . , n − 1. If we apply T̃ to q we obtain

qT̃ (x1, . . . , xn−1, xn) = q̃(x1, . . . , xn−1−c, xn),

where q̃ is a connected positive unit form. By (1.3), there is a composition S of
inflations such that

q̃S(x1, . . . , xn−1−c, xn) = q∆′(x1, . . . , xn−1−c, xn)

for a Dynkin diagrams ∆′. We shall prove that ∆ ≤ ∆′ in the order given in the
introduction.

Let v ∈ q−1
∆ (1) be a maximal root, that is, for all w ∈ q−1

∆ (1), the vector v − w
is positive or zero. Let v̄ = (v1, . . . , vn−c−1, 0) ∈ q′ −1(1). Observe that for all j ∈
{1, . . . , n− 1− c, n}, we have v̄(j) ≤ (S−1v̄)(j). Let j0 ∈ {1, . . . , n− 1− c, n} be such
that v̄(j0) ≥ v̄(t) for all t. If ∆ is of type Dn (resp. E6, E7, E8) we have v̄(j0) = 2
(resp. 3, 4, 5). Therefore q∆′ contains a root S−1v̄ with (S−1v̄)(j0) ≥ 2 (resp. 3, 4, 5).
Hence ∆ ≤ ∆′.

(ii) Suppose that corank q(i) < corank q.

Hence corank q(i) = corank q − 1. Denote p = q(i). Observe that extending by zero
gives an inclusion p−1(1) ↪→ q−1(1) and that the graphs Dyn (p) and Dyn (q) have
the same number of vertices.

For a Dynkin graph ∆, the number of roots |q−1
∆ (1)| is given as follows:

∆ Am Dm E6 E7 E8

|q−1
∆ (1)| m(m + 1) 2m(m − 1) 72 126 240

Clearly, if ∆ and ∆′ are two Dynkin diagrams with the same number of vertices and
|q−1

∆′ (1)| ≤ |q−1
∆ (1)|, then ∆′ ≤ ∆. This shows Dyn (q(i)) = Dyn (p) ≤ Dyn (q) 2
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2.5. The following result proves the induction step for part (c) of the Dynkin-type
Theorem. Let q : Zn → Z be a connected non-negative semi-unit form. We say
that i ∈ {1, . . . , n} is omissible (or an omissible point) for q if there exists a vector
v ∈ rad q such that v(i) = 1.

Proposition. Let q : Zn → Z be a connected non-negative semi-unit form, q 6= 0.
Then for any omissible point i, the restriction q(i) is again connected and Dyn (q(i)) =
Dyn (q).

Moreover, if corank q > 0 then q admits an omissible point.

Proof. If corank q = 0 then there is no omissible point and we have nothing to show.

Let i be any omissible point of q, and v ∈ rad q such that v(i) = 1. Let x =
{x1, . . . , x`} be a Z-base of Zn/rad q and let xj ∈ Zn be a representative of xj with
xj(i) = 0. Thus, if ι : Zn−1 → Zn denotes the canonical inclusion with q(i) = q ι,
then we have that xj belongs to the image of ι for all j, say ι(x′

j) = xj. Since

ι(rad q(i)) ⊂ rad q, we obtain that x′ = {π(x′

1), . . . , π(x′

`)} are linearily independent
and therefore build a Z-base in Zn−1/rad q(i), where π : Zn−1 → Zn−1/rad q(i) is the
canonical projection. If T denotes the transition matrix of the base x in the base x′

we have q = q(i)T .

This implies first that, since q is connected, q(i) and therefore also q(i) is connected,
and secondly, that Dyn (q(i)) = Dyn (q).

Now, we assume that corank q > 0 and have to show that there exists at least one
omissible point for q. We first study the case where corank q = 1. Let v be the
generator of the radical of q, which has at least one positive entry. As shown in
the proof of the Non-neagtivity Criterion (2.1), there exists a sequence of inflations
with composition T such that ṽ = T−1v is a positive vector. Observe that we have
ṽ(i) = v(i) for all i ∈ supp v+ and that the restriction of qT to the support of ṽ is a
critical form. Thus the result follows from [5], where it is shown, that a critical form
always admits an omissible point.

If the corank of q is bigger than one, we take q ′ to be a restriction of q with corank
one and apply the above argument on q′ in order to see that there always exists an
admissible point. 2

As direct consequence we obtain the following result.

Corollary 1 Let q be a connected, non-negative semi-unit form. Then for any c with

0 ≤ c ≤ corank q there exists a restriction q ′ of q with corank q′ = c and Dyn (q′) =
Dyn (q).
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Proof: By induction on corank q − c. ut

Part (c) in the Dynkin-type Theorem is just the special case c = 0 of the Corollary.

2.6. Example: Let q be the unit form associated to the following bigraph

q q q q q q q q

q

a c

b

Then q is non-negative and corank q = 3. Moreover, Dyn (q) = E6, Dyn (q(a)) = E6,
Dyn (q(b)) = A5 and Dyn (q(c)) = D5.

3. Coxeter matrices.

3.1. Let q: Zn → Z be a unit form and consider the upper triangular matrix C = (cij)
given by cii = qi = 1, cij = qij if i < j. Then q(x, y) = xt(C + Ct)y and C is a Z-
invertible matrix. The matrix φ = −C−1Ct is called the Coxeter matrix associated
to q.

Part (a) of the following remark is proved in [8].

Proposition. Let q and φ be as above.

(a) If q is positive, then all eigenvalues of φ have modulus one and 1 is not an

eigenvalue of φ.

(b) If q is non-negative, then all eigenvalues of φ have modulus one. Moreover, if q
is not positive, then 1 is an eigenvalue of φ.

Proof. The first statement of (a) is [8, (3.1)]. If φv = v for some vector v 6= 0, then
q(v,−) = 0 and q is not positive.

(b): Assume q is non-negative. Let ε > 0 and consider the triangular matrix Nε =
C +εIn. The quadratic form qε(x) = xt(Nε +N t

ε)x = q(x)+2ε‖x‖2 is positive. Hence
by (a), the eigenvalues of φε = −N−1N t have modulus one. Moreover, φε depends
continuously on the parameter ε. Hence Spec φ ⊂ S1.

If q is not positive, let 0 6= v ∈ Z
n be such that q(v) = 0. Hence 0 = (C + C t)v and

φv = v, showing that 1 ∈ Spec φ. 2
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3.2. Example: Let q be the quadratic form associated to the following bigraph

q q

q q

@
@

@@��
��

q q

q q

@
@

@@��
��

q q

q q

@
@

@@��
��

q q

��

��@@

@@

q q

��

��@@

@@

is non-negative with corank q = 5. We have Dyn (q) = D11 and the characteristic
polynomial of the Coxeter matrix φ is (T + 1)6(T − 1)6(T 4 + T 3 + T 2 + T + 1).
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