ALGEBRAS WHOSE EULER FORM IS NON-NEGATIVE

M. BAROT AND J. A. DE LA PEÑA

Let A be a finite dimensional algebra over an algebraically closed field k. We denote by $\bmod _{A}$ the category of finite dimensional left A-modules and by $\mathrm{D}^{\mathrm{b}}(A)$ the derived category of $\bmod _{A}$. We say that two algebras, A and B, are derived equivalent if their derived categories, $\mathrm{D}^{\mathrm{b}}(A)$ and $\mathrm{D}^{\mathrm{b}}(B)$, are derived equivalent as triangulated categories. See [11] for definitions and basic concepts.

In recent years a considerable effort has been devoted in the characterizations of algebras which are derived equivalent to well understood classes of algebras (tame hereditary algebras, tubular algebras, some special biserial algebras) $[1,12,3,9]$. An important invariant entering in all these characterizations is the Euler form: if A has finite global dimension, the Grothendieck group $\mathrm{K}_{\circ}(A) \simeq \mathbb{Z}^{n}$ is equipped with a (non-symmetric) bilinear form $\langle-,-\rangle_{A}$ such that for two modules $X, Y \in \bmod _{A}$ we have

$$
\langle[X],[Y]\rangle_{A}=\sum_{i=0}^{\infty} \operatorname{dim}_{k} \operatorname{Ext}_{A}^{i}(X, Y),
$$

where $[X]$ denotes the class of X in $\mathrm{K}_{\circ}(A)$. The associated quadratic form $\chi_{A}(v)=\langle v, v\rangle_{A}$ is the Euler form of A. For two derived equivalent algebras, A and B, the Euler forms χ_{A} and χ_{B} are equivalent. In particular, χ_{A} is non-negative if and only if so is χ_{B}.

Algebras A whose form χ_{A} is non-negative are important. Examples include the algebras which are derived equivalent to tame hereditary and tubular algebras [11, 12]; certain tree algebras which are derived tame [16] and others. Recent results in [5] show that for the non-negative form χ_{A} of a connected algebra A, there exists an invertible linear transformation $T: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that $\chi_{A} T\left(x_{1}, \ldots, x_{n}\right)=q_{\Delta}\left(x_{1}, \ldots, x_{n-s}\right)$, where $s=$ $\operatorname{corank} \chi_{A}$ and q_{Δ} is the quadratic form associated to a uniquely determined Dynkin graph Δ. The graph $\Delta=\operatorname{Dyn}\left(\chi_{A}\right)$ is called the Dynkin-type of χ_{A}.

The main result of this work completes the description of the algebras A whose Euler form χ_{A} is non-negative with corank $\chi_{A} \leq 2$ (at least for some classes of algebras).

Theorem. Let $A=k \mathrm{Q} A / I$ be a connected finite dimensional k-algebra such that χ_{A} is non-negative of corank 2. Assume that A is in one of the following classes: (1) tree algebras; (2) strongly simply connected poset algebras. Then A is derived equivalent to a tubular algebra or to a poset algebra $\mathrm{P}(n)$ of the form

Moreover, if A has more than 6 vertices, then A is derived equivalent to a tubular algebra (resp. to $\mathrm{P}(n))$ if and only if $\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{E}_{p}(p=6,7,8)$ (resp. $\left.\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{D}_{n-2}\right)$.

The work is organized as follows. In Section 1, we recall some examples and properties of algebras whose Euler form is non-negative. In Section 2, we describe the Dynkin-type of algebras derived equivalent to well-known classes of algebras. In particular we show the following result.
Proposition. Let A be a strongly simply connected algebra whose Euler form is non-negative and of Dynkin-type \mathbb{A}_{n}. Then A is derived equivalent to a hereditary algebra of type \mathbb{A}_{n}.

In Section 3, we prove a useful lemma about the connectedness of the radical of a strongly simply conneced algebra. In Section 4 and 5, we give the proofs of the above theorem for tree algebras and strongly simply connected poset algebras respectively. Finally in the last section, we treat the case where the associated Euler form is non-negative but has higher corank.

We gratefully acknowledge support from DGAPA, UNAM and CONACyT.

1. Some algebras whose Euler form is non-negative

1.1 Let $A=k \mathrm{Q}_{A} / I$ be a finite-dimensional algebra. We shall assume that Q_{A} is connected and without oriented cycle (we say A is connected and triangular, respectively). In particular, A has finite global dimension. By Q_{0} we denote the set of vertices of Q_{A}.

A module $X \in \bmod _{A}$ is also considered as a representation of Q_{A}. The dimension vector $\operatorname{dim} X$ is also identified with the class $[X]$ of X in the Grothendieck group $\mathrm{K}_{\circ}(A) \simeq \mathbb{Z}^{n}$.

For $x \in \mathrm{Q}$ 。 we denote by S_{x} the simple module at x. By P_{x} (resp. I_{x}) we denote a projective cover (resp. injective envelope) of S_{x}. We also write e_{x} instead of $\underline{\operatorname{dim}} S_{x}$.
1.2 Given two derived equivalent algebras A and B with $F: \mathrm{D}^{\mathrm{b}}(A) \rightarrow$ $\mathrm{D}^{\mathrm{b}}(B)$ a triangular equivalence, there is an induced isometry $f: \mathrm{K}_{\circ}(A) \rightarrow$ $\mathrm{K}_{\circ}(B)$, satisfying $\langle x, y\rangle_{A}=\langle f(x), f(y)\rangle_{B}$.

Recall that $A[M]$ denotes the one-point extension of A by a module M (see [17]). The following result will be basic for our considerations.
Theorem. [2] Let A and B be two algebras and $M \in \bmod _{A}, N \in \bmod _{B}$ two modules. Suppose there is a triangular equivalence $F: \mathrm{D}^{\mathrm{b}}(A) \rightarrow \mathrm{D}^{\mathrm{b}}(B)$
which maps the stalk complex $M[0]$ to $N[0]$. Then there exists a triangular equivalence $\bar{F}: \mathrm{D}^{\mathrm{b}}(A[M]) \rightarrow \mathrm{D}^{\mathrm{b}}(B[N])$ extending F.
1.3 Given a subset J of the vertices of Q_{A}, the algebra $\operatorname{End}_{A}\left(\bigoplus_{x \in J} P_{x}\right)^{\mathrm{op}}=$ B is said to be fully contained in A. If J is path closed in Q_{A}, then B is said to be convex in A. If Q_{\circ} denotes the vertex set of Q_{A} and $J=\mathrm{Q}_{\circ} \backslash\{y\}$, we denote $A \backslash\{y\}=B$.

Lemma. [3] Let B be fully contained in A and assume that χ_{A} is nonnegative. Then χ_{B} is non-negative and $\operatorname{corank} \chi_{B} \leq \operatorname{corank} \chi_{A}$.
1.4 We recall that an algebra A is said to be strongly simply connected if for every algebra B convex in A, the first Hochschild cohomology $\mathrm{H}^{1}(B)$ vanishes [18]. Equivalently, A is strongly simply connected if and only if every algebra B convex in A is separated, that is, $B=k \mathrm{Q}_{B} / I^{\prime}$ and for every vertex x in Q_{B} the following condition is satisfied: let $\operatorname{rad} P_{x}=\bigoplus_{i=1}^{t} M_{i}$ be a decomposition into indecomposable modules of the B-module $\operatorname{rad} P_{x}$, then for any $i \neq j$, the support of M_{i} and M_{j} are contained in different connected components of $\mathrm{Q}_{B} \backslash\{y$: there is a path from y to $x\}$. See also $[6,18]$.

Examples: (a) If $A=k \mathrm{Q}_{A} / I$ is a tree algebra (that is, the underlying graph of Q_{A} is a tree), then A is strongly simply connected.
(b) Let $A=k[S]$ be a poset algebra (that is, S is a poset and $A=k Q_{S} / I_{S}$ where Q_{S} is the quiver, $k \mathrm{Q}_{S}$ the path algebra of $k \mathrm{Q}_{A}$ of S and I_{S} the ideal in $k \mathrm{Q}_{S}$ generated by the differenes of parallel paths in $k \mathrm{Q}_{S}$, see [10]). Then A is strongly simply connected if and only if A has no crowns, see [7]. We recall that a crown in A is an algebra C, fully contained in A, of the form

and such that the convex closure $\overline{\left\{a_{i}, b_{i}\right\}}$ of $\left\{a_{i}, b_{i}\right\}$ intersects $\overline{\left\{a_{i+1}, b_{i}\right\}}$ (resp. $\overline{\left\{a_{i}, b_{i-1}\right\}}$) in b_{i} (resp. in a_{i}), for $i=1, \ldots, m$ and $a_{m+1}=a_{1}, b_{0}=b_{m}$.

The following results are central in our considerations.
Theorem. Let A be a strongly simply connected algebra.
(i) $[1,4] A$ is derived equivalent to a tame hereditary algebra $k \Delta$ if and only if χ_{A} is non-negative with corank $\chi_{A}=1$. In this case, Δ is of type $\widetilde{\mathbb{D}}_{n}(n \geq 4)$ or $\widetilde{\mathbb{E}}_{p}(p=6,7,8)$.
(ii) [3] If Q_{A} has more than 6 vertices, then A is derived equivalent to a tubular algebra $k \Delta$ if and only if χ_{A} is non-negative with $\operatorname{corank} \chi_{A}=$ 2 and $\chi_{A}^{-1}(1) \cap \chi_{A}^{-1}(0)^{\perp}=\varnothing$ (where $V^{\perp}=\left\{w \in \mathrm{~K}_{\circ}(A):\langle v, w\rangle_{A}=\right.$ 0 for all $v \in V\}$).
1.5 Following [16], we say that A is derived-tame if A has finite global dimension and the repetitive category \widehat{A} is tame. Examples of derived-tame algebras are the following:
(a) By [11], hereditary tame algebras are also derived-tame. By [12], tubular algebras are also derived-tame.
(b) If A is derived tame and $\mathrm{D}^{\mathrm{b}}(A) \simeq \mathrm{D}^{\mathrm{b}}(B)$ is a triangular equivalence, then B is also derived-tame, see [16].
(c) Let C be a hereditary tame algebra of type $\widetilde{\mathbb{D}}_{n}$ and let M be an indecomposable regular C-module of regular length 2 lying in a tube of rank $n-2$ in the Auslander-Reiten quiver Γ_{C}. Then the one-point extension $C[M]$ is called a 2-tubular algebra (see [14]). In [16], it is shown that B is derived tame and derived equivalent to the poset algebra $\mathrm{P}(n+2)$ as defined in the introduction.
(d) Other examples of derived tame algebras are provided by the poset algebras associated to posets of the form

Remark. (1) All algebras in the above examples have a non-negative Euler form.
(2) Information on the structure of the module category of a derived tame algebra was recently obtained in [9].

2. The Dynkin-type of non-negative Euler forms

2.1 Let $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ be an integral quadratic form of the shape $q(v)=$ $\sum_{i=1}^{n} q_{i} v(i)^{2}+\sum_{i<j} q_{i j} v(i) v(j)$. We say that q is a unit (resp. semi-unit) form if $q_{i}=1$ (resp. $q_{i} \in\{0,1\}$).

Associated with a semi-unit form we define a bigraph G_{q} with vertices $1, \ldots, n$; two vertices $i \neq j$ are joined by $\left|q_{i j}\right|$ full edges if $q_{i j}<0$ and by $q_{i j}$ dotted edges if $q_{i j} \geq 0$; for every vertex i, there are $1-q_{i}$ full loops at i. We say that q is connected if G_{q} is connected. The following are elementary facts.
(a) If $A=k \mathrm{Q} / I$ is a connected and triangular algebra, then χ_{A} is a connected unit form.
(b) Given a connected graph Δ formed by full edges and at most one loop at each vertex, there is a semi-unit form q_{Δ} such that $G_{q_{\Delta}}=\Delta$. Then q_{Δ} is positive (resp. non-negative) if and only if Δ is a Dynkin diagram (resp. extended Dynkin diagram).

For Dynkin diagrams we consider the following partial order:

$$
\begin{gathered}
\mathbb{A}_{m} \leq \mathbb{A}_{n} \leq \mathbb{D}_{n} \leq \mathbb{D}_{p} \text { for } m \leq n \leq p \text { and } \\
\mathbb{D}_{p} \leq \mathbb{E}_{p} \leq \mathbb{E}_{q} \text { for } 6 \leq p \leq q \leq 8 .
\end{gathered}
$$

The following result is relevant in our discussion.
Theorem. [5] Let $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ be a connected, non-negative semi-unit form. Then there exists a \mathbb{Z}-invertible linear transformation $T: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that $q T\left(x_{1}, \ldots, x_{n}\right)=q_{\Delta}\left(x_{1}, \ldots, x_{n-c}\right)$, where $c=\operatorname{corank} q$ and $\Delta=\operatorname{Dyn}(q)$ is a Dynkin diagram uniquely determined by q. Moreover, if q^{\prime} is a connected restriction of q, then $\operatorname{Dyn}\left(q^{\prime}\right) \leq \operatorname{Dyn}(q)$.
2.2 Proposition. Let A be a strongly simply connected algebra with a nonnegative Euler form χ_{A} of type \mathbb{A}_{n}. Then A is derived equivalent to a hereditary algebra of type \mathbb{A}_{n} and $\operatorname{corank} \chi_{A}=0$.

Proof. We show first that corank $\chi_{A}=0$, that is, χ_{A} is positive. Suppose that corank $\chi_{A}>0$. Then there exists an algebra B convex in A such that corank $\chi_{B}=1$. By (2.1), $\operatorname{Dyn}\left(\chi_{B}\right) \leq \operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{A}_{n}$, thus $\operatorname{Dyn}\left(\chi_{B}\right)=\mathbb{A}_{m}$ for some $m \leq n$. By (1.4), the algebra B is derived equivalent to a hereditary algebra of type $\widetilde{\mathbb{D}}_{m-1}$ or $\widetilde{\mathbb{E}}_{m-1}(m=7,8,9)$, which implies $\operatorname{Dyn}\left(\chi_{B}\right)=\mathbb{D}_{m-1}$ or $\operatorname{Dyn}\left(\chi_{B}\right)=\mathbb{E}_{m-1}$, respectively - in any case a contradiction. Hence we have corank $\chi_{A}=0$.

By [1], A is derived equivalent to a hereditary algebra $k \Delta$, where Δ is a quiver of Dynkin type. Clearly, we have $\operatorname{Dyn}\left(\chi_{A}\right)=\Delta$.
2.3 Let us restate the results in [1, 3] mentioned in (1.3). Let $A=k \mathrm{Q} / I$ be a connected and strongly simply connected algebra. Then we have:
(1) A is derived equivalent to a tame (but not representation-finite) hereditary algebra if and only if χ_{A} is non-negative and $\operatorname{corank} \chi_{A}=$ 1. In this case, $\operatorname{Dyn}\left(\chi_{A}\right)$ is $\mathbb{D}_{n}(n \geq 4)$ or $\mathbb{E}_{p}(p=6,7,8)$.
(2) If A is derived equivalent to a tubular algebra (resp. to a 2-tubular algebra), then χ_{A} is non-negative and corank $\chi_{A}=2$. If Q_{A} has more than 6 vertices, then $\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{E}_{p}(p=6,7,8)\left(\right.$ resp. $\operatorname{Dyn}\left(\chi_{A}\right)=$ $\left.\mathbb{D}_{n}(n \geq 4)\right)$, whereas if Q_{A} has 6 vertices in both cases we have $\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{D}_{4}$.
(3) Assume $A=B[M]$ such that χ_{A} is non-negative, corank $\chi_{A}=2$ and corank $\chi_{B}=1$. Then A is derived equivalent to a tubular or a 2-tubular algebra.
We conjecture that the following hold for a strongly simply connected algebra A.
(4) If corank $\chi_{A}=2$, then
(4.1) if $\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{D}_{n}$ and $n \geq 5$, then A is derived equivalent to a 2-tubular algebra,
(4.2) if $\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{E}_{p}(p=6,7,8)$, then A is derived equivalent to a tubular.
(5) If corank $\chi_{A} \geq 3$ then $\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{D}_{n}$.

The results we show in this work are special cases of conjecture (4). In [9], special cases of conjecture (5) are considered.
2.4 We recall from [4, 5] examples showing that the above conjectures may be expected only in the strongly simply connected case.
(a) Let A be the algebra given by the following quiver with commutativity relations as indicated by dotted lines.

Then χ_{A} is non-negative with corank $\chi_{A}=2$ and $\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{E}_{8}$. Moreover, A is wild and hence A cannot be derived tame, by (1.5).
(b) Let A be the algebra given by the following quiver with zero relations as indicated by dotted lines.

Then χ_{A} is non-negative with corank $\chi_{A}=3$ and $\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{E}_{6}$.

3. Connectivity of the radical

In the following we prove a general result about the convex closure of the support of the radical of a strongly simply connected algebra with nonnegative Euler form. Although the proof is quite technical, it will be of great use in the forthcoming considerations.
Proposition. Let $A=k \mathrm{Q} / I$ be a strongly simply connected algebra with non-negative Euler form. Then the convex closure $\overline{\operatorname{rad}} \chi_{A}$ of the support of $\operatorname{rad} \chi_{A}$ is connected in A.

Proof. Suppose that there exists a strongly simply connected algebra A such that $\overline{\operatorname{rad}} \chi_{A}$ is not connected in A. We assume that A is a minimal such example and let $\overline{\operatorname{rad}} \chi_{A}=\bigcup_{i=1}^{t} R_{i},(t \geq 2)$, be a decomposition into connected algebras R_{i} which are convex in A.

The proof is done in several steps:
(i) We first show that corank $\chi_{A} \geq 2$.

Any vector $v \in \operatorname{rad} \chi_{A}$ decomposes as $v=\sum_{i=1}^{t} v_{i}$ with $v_{i} \in \mathrm{~K}_{\circ}\left(R_{i}\right) \subset$ $\mathrm{K}_{\circ}(A)$. Hence $0=\chi_{A}(v)=\sum_{i=1}^{t} \chi_{R_{i}}\left(v_{i}\right)$ (since for $i \neq j, x \in \operatorname{supp} R_{i}$ and
$y \in \operatorname{supp} R_{j}$ there are no directed paths between x and y implying that $\left\langle e_{i}, e_{j}\right\rangle_{A}=0$). Since χ_{A} is non-negative, then $v_{i} \in \operatorname{rad} \chi_{R_{i}}$ for $1 \leq i \leq t$, and therefore corank $\chi_{A} \geq 2$.
(ii) We show $t=2$, that is $\overline{\operatorname{rad}} \chi_{A}=R_{1} \cup R_{2}$ where R_{1}, R_{2} are connected and convex in A.
Choose $i \neq j$ such that there is a walk γ between R_{i} and R_{j} in Q_{A} of minimal length. Then the convex closure of R_{i}, R_{j} and γ in A is a strongly simply connected algebra A_{\circ} with $\overline{\operatorname{rad}} \chi_{A_{\circ}}=R_{i} \cup R_{j}$. By the minimality of A we get $A=A_{\circ}$ and $t=2$.
(iii) Next we verify for $i=1,2$ that there is a source or a sink y_{i} such that $A \backslash\left\{y_{i}\right\}$ is connected and $y_{i} \in R_{i}$.
First observe that $A \backslash\left\{R_{1} \cup R_{2}\right\}$ contains a vertex x_{0} which is a source or a sink in Q_{A}, and that for any such point x_{0}, by the minimality, $A \backslash\left\{x_{0}\right\}$ is not connected.

Choose such a point $x_{0} \in A \backslash\left\{R_{1} \cup R_{2}\right\}$, say x_{0} is a source, and set $A \backslash\left\{x_{0}\right\}=B_{1} \cup B_{2}$ with $B_{1} \subset R_{1}$ and $B_{2} \subset R_{2}$. Now, choose a sink $x_{1} \in B_{1}$. If $A \backslash\left\{x_{1}\right\}$ decomposes, say $A \backslash\left\{x_{1}\right\}=C_{1} \cup C_{2}$ with $R_{2} \subset C_{2}$, we choose a source $x_{2} \in C_{1}$. Again, if $A \backslash\left\{x_{2}\right\}$ decomposes, say $A \backslash\left\{x_{2}\right\}=D_{1} \cup D_{2}$ with $B_{2} \subset D_{2}$ we choose a sink $x_{3} \in D_{1}$. Observe that $\left|B_{1}\right|>\left|C_{1}\right|>\left|D_{1}\right|>\cdots$. This process may be continued until we find a source or a sink x_{m} not belonging to R_{2} such that $A \backslash\left\{x_{m}\right\}$ is connected. By the above, we thus have $y_{1}:=x_{m} \in R_{1}$. Dually we find y_{2}.
(iv) Now we shall prove that A is tubular or 2-tubular.

Since $y_{i} \in R_{i}$, we have corank $\chi_{A \backslash\left\{y_{i}\right\}}<\operatorname{corank} \chi_{A}$ for $i=1,2$, and hence we obtain by the minimality that corank $\chi_{R_{1}}=1=\operatorname{corank} \chi_{R_{2}}$. Therefore we have corank $\chi_{A}=2$.

We may assume that y_{1} is a source. Since A is strongly simply connected, $M=\operatorname{rad} P_{y_{1}}$ is indecomposable and $A^{\prime}=A \backslash\left\{y_{1}\right\}$ is strongly simply connected with corank $\chi_{A^{\prime}}=1$. By (2.3.3), A either derived equivalent to a tubular or to a 2-tubular algebra.
(v) Finally, we show that this leads to a contradiction.

In both cases we have $\operatorname{rad} \chi_{A}=k v_{1} \oplus k v_{2}$ with $\left\langle v_{1}, v_{2}\right\rangle_{A} \neq 0$ (in the tubular case this follows from [17], in the 2 -tubular case it may be easily verified for the poset algebra $\mathrm{P}(n))$. But this contradicts the fact that there are vectors $w_{1}, w_{2} \in \operatorname{rad} \chi_{A}$ with $w_{i} \in \mathrm{~K}_{\circ}\left(R_{i}\right) \subset \mathrm{K}_{\circ}(A)$ for $i=1,2$, which implies that $\left\langle w_{1}, w_{2}\right\rangle_{A}=0$. This completes the proof of the proposition.

4. The tree case

4.1 The first result we state provides the inductive step dealing with tree algebras with non-negative Euler form.
Proposition. Let A be a tree algebra with non-negative Euler form and corank $\chi_{A}=c$. Then there exists an algebra B satisfying the following two properties.
(i) B is derived equivalent to a tree algebra and χ_{B} is non-negative with corank $\chi_{B}=c-1$
(ii) A is derived equivalent to $B[M]$ for some indecomposable B-module M.
We give the proof of the proposition in (4.4) after some preparation.
4.2 Lemma. Let $A=k \mathrm{Q}_{A} / I$ be a tree algebra. Consider the convex closure $\overline{\operatorname{rad}} \chi_{A}$ of the support of $\operatorname{rad} \chi_{A}$ and let x be a source or a sink in $\overline{\operatorname{rad}} \chi_{A}$. Then $A \backslash\{x\}$ is again a tree algebra.

Proof. Suppose $A \backslash\{x\}$ is not a tree. Denote by y_{1}, \ldots, y_{t} the vertices in Q_{A} such that there exists an arrow $\alpha_{i}: y_{i} \rightarrow x$ and denote by z_{1}, \ldots, z_{s} those vertices with an arrow $\beta_{i}: x \rightarrow z_{i}$. Since χ_{A} is non-negative, we have $t \leq 4$ and $s \leq 4$. Since $A \backslash\{x\}$ is not a tree, it fully contains an algebra B of the form

with $r \geq 2$ and the arrows are compositions $\beta_{j} \alpha_{i}$ for some $1 \leq i \leq t$ and $1 \leq j \leq s$. Then there exists a vector $v \in \operatorname{rad} \chi_{A}$ with $v\left(y_{i_{1}}\right) \neq 0 \neq v\left(z_{j_{1}}\right)$. This contradicts the fact that x was chosen to be a source or a sink in $\overline{\operatorname{rad}} \chi_{A}$.
4.3 Let $A=k \mathrm{Q}_{A} / I$ be a triangular algebra and x a source in Q_{A}. Let $A_{\circ}=A \backslash\{x\}$ and write $A=A_{\circ}[M]$ as a one-point extension with $M=$ $\operatorname{rad} P_{x}$. Then $S_{x}^{+} A=[M] A_{\circ}$ is the source-reflection of A at x. In [11] it is shown that A and $S_{x}^{+} A$ are derived equivalent. We denote the extensionvertex in $Q_{S_{x}^{+} A}$ by x^{*}, that is $I_{x^{*}} / \operatorname{soc} I_{x^{*}}=M$.

For any vertex $x \in \mathrm{Q}_{A}$ we assume that

$$
x_{A}^{<}:=\{a \neq x: \text { there is a path from } a \text { to } x\}=\left\{a_{1}, \ldots, a_{t}\right\}
$$

is enumerated in such a way that the existence of a path from a_{i} to a_{j} implies that $i \leq j$. Define the algebra $A^{x}=S_{a_{t}}^{+} \cdots S_{a_{1}}^{+} A$, which is derived equivalent to A. Clearly, x is then a source in A^{x}. For any point $u \in x_{A}^{<}$ and $y=u^{*} \in \mathrm{Q}_{A^{x}}$ we also write $u=y^{*}$.
Lemma. Let A be a tree algebra such that χ_{A} is non-negative, and let x be a source in $\overline{\operatorname{rad}} \chi_{A}$. Then for any arrow $\alpha: x \rightarrow y$ in $\mathrm{Q}_{A^{x}}$ we have $y \in \overline{\operatorname{rad}} \chi_{A}$.

Proof. We assume that there exists $y \notin \overline{\operatorname{rad}} \chi_{A}$ such that there is an arrow $\alpha: x \rightarrow y$ in $\mathrm{Q}_{A^{x}}$ and proceed in several steps.
(i) First we show, that x is the only vertex in $\overline{\operatorname{rad}} \chi_{A}$ which is the starting point of a path in $\mathrm{Q}_{A^{x}}$ to y.
Assume there exists a vertex $x^{\prime} \in \overline{\operatorname{rad}} \chi_{A}, x^{\prime} \neq x$ and a path

$$
x^{\prime} \rightarrow z_{0} \rightarrow z_{1} \rightarrow \cdots \rightarrow z_{t} \rightarrow y
$$

in $\mathrm{Q}_{A^{x}}$. By Proposition 3, we know that x and x^{\prime} may be connected by a walk inside $\overline{\operatorname{rad}} \chi_{A}$, thus, since A is a tree algebra, we have $y \in\left(x_{A}^{<}\right)^{*}$. If there exists $i>0$ such that z_{i-1} does not belong to $\left(x_{A}^{\prec}\right)^{*}$, we choose i maximal with this property. Then in A we have the following paths.

$$
\begin{aligned}
x^{\prime} \rightarrow z_{0} & \rightarrow z_{1} \rightarrow \cdots \rightarrow z_{i-1} \\
z_{i}^{*} \rightarrow z_{i+1}^{*} & \rightarrow \cdots \rightarrow z_{t}^{*} \rightarrow y^{*} \xrightarrow{*} x
\end{aligned}
$$

where f itself is a path. Together with a path from z_{i}^{*} to z_{i-1} and a walk inside $\overline{\operatorname{rad}} \chi_{A}$ between x^{\prime} and x, we obtain a closed walk in Q_{A}, in contradiction to the assumption that A is a tree algebra. The case where $z_{i}^{*} \in x_{A}^{<}$ for all $i=0, \ldots, t$ is similar.
(ii) Now we show that the assumption leads to a contradiction.

Let $A^{\prime}=A \backslash\left\{y_{A^{x}}^{<} \backslash x_{A^{x}}^{<}\right\}$. Clearly, A^{\prime} is convex in A^{x} and $\overline{\operatorname{rad}} \chi_{A^{x}}$ is fully contained in A^{\prime}. It is thus sufficient to show that for A^{\prime} the assumption leads to a contradiction.

Consider a projective resolution in $\bmod _{A^{\prime}}$

$$
0 \rightarrow P(n) \rightarrow P(n-1) \rightarrow \cdots \rightarrow P(0) \rightarrow S_{y} \rightarrow 0
$$

then $\langle\underline{\operatorname{dim}} P(i), v\rangle_{A^{\prime}}=0$ for all $i=0, \ldots, n$ and $v \in \operatorname{rad} \chi_{A^{\prime}}$.
Let $v \in \operatorname{rad} \chi_{A^{\prime}}$ be such that $v(x) \neq 0$. Then

$$
\left\langle v, e_{y}\right\rangle_{A^{\prime}}=\left\langle v, \underline{\operatorname{dim}} I_{y}\right\rangle_{A^{\prime}}-\left\langle v, \underline{\operatorname{dim}} I_{x}\right\rangle_{A^{\prime}}=-v(x) \neq 0
$$

because $y \neq \overline{\operatorname{rad}} \chi_{A^{\prime}}$ and x is the only predecessor of y in $\mathrm{Q}_{A^{\prime}}$. On the other hand,

$$
\left\langle e_{y}, v\right\rangle_{A^{\prime}}=\sum_{i=0}^{n}(-1)^{i}\langle\underline{\operatorname{dim}} P(i), v\rangle_{A^{\prime}}=0 .
$$

Therefore $\chi_{A^{\prime}}\left(2 v+e_{y}\right)<0$ contradicting the non-negativity of $\chi_{A^{\prime}}$.
Obviously, the dual statement may be proved similarily.
4.4 Proof of Proposition 4.1. By Proposition 3, $\overline{\operatorname{rad}} \chi_{A}$ is connected. Choose a source or a sink x in $\overline{\operatorname{rad}} \chi_{A}$ such that $\overline{\mathrm{rad}} \chi_{A} \backslash\{x\}$ is still connected. Say x is a source in $\overline{\operatorname{rad}} \chi_{A}$. Consider the algebra $A_{\circ}=A \backslash\{x\}$ which is fully contained in A. By (4.2), A_{\circ} is again a tree algebra and clearly, corank $\chi_{A_{\circ}}=c-1$.

As in the proof of Lemma 4.3, we have $\operatorname{rad} \chi_{A}=\operatorname{rad} \chi_{A^{x}}$ and in particular $\overline{\operatorname{rad}} \chi_{A}=\overline{\operatorname{rad}} \chi_{A^{x}}$. Observe that x is a source in A^{x} and define $B=A^{x} \backslash\{x\}$. Hence $B=S_{a_{t}}^{+} \cdots S_{a_{1}}^{+} A_{\circ}$ (where $x_{A}^{<}=\left\{a_{1}, \ldots, a_{t}\right\}$ is supposed to be "wellenumerated") and corank $\chi_{B}=\operatorname{corank} \chi_{A_{\circ}}=c-1$.

It remains to show that the B-module $M=\operatorname{rad} P_{x}$ is indecomposable. First, observe that $M^{\prime}=\left.\operatorname{rad} P_{x}\right|_{\overline{\operatorname{rad}} \chi_{A^{x}}}$ is indecomposable (because rad $\chi_{A}=$ $\overline{\operatorname{rad}} \chi_{A^{x}}$). By (4.3), any arrow $x \rightarrow y$ in $Q_{A^{x}}$ belongs to $\overline{\operatorname{rad}} \chi_{A^{x}}$. Therefore a decomposition of M yields a decomposition of M^{\prime}, thus M is indecomposable.
4.5 Proof of the Main Theorem for tree algebras. Let A be a tree algebra with non-negative Euler form of corank 2. By (4.1), there exists a triangular,
connected algebra B which is derived equivalent to a tree algebra C and such that χ_{B} is non-negative of corank one and there exists an indecomposable B-module M such that A is derived equivalent to $B[M]$. In particular, χ_{C} is non-negative of corank one.

By (1.4), the algebra C is derived equivalent to a hereditary algebra of type $\widetilde{\Delta}$ and moreover $\Delta=\operatorname{Dyn}\left(\chi_{A}\right)=\mathbb{D}_{n}(n \geq 4)$ or $\mathbb{E}_{p}(p=6,7,8)$. By (1.1), there exists an indecomposable H-module N such that $B[M]$ is derived equivalent to $H[N]$. The result follows from (2.3.3).

5. The poset case

A rereading of the proof of the Main Theorem in the tree case reveals, that the assumption for A to be a tree algebra is only needed in the proof of Lemma 4.2 and in the step (i) of Lemma 4.3.

In the following we just give the arguments which establish the same assertions as (4.2) and (4.3) if A is a strongly simply connected poset algebra.
5.1 Lemma. Let A be a strongly simply connected poset algebra. Let x be a source or a sink in $\operatorname{rad} \chi_{A}$. Then $A \backslash\{x\}$ is again a strongly simply connected poset algebra.

Proof. The algebra $B=A \backslash\{x\}$ is clearly a poset algebra. To show that B is strongly simply connected, it is enough to show that B admits no crown (1.4). This is shown exactly as in the proof of Lemma 4.2.
5.2 Lemma. Let A be strongly simply connected poset algebra such that χ_{A} is non-negative, and let x be a source in $\overline{\operatorname{rad}} \chi_{A}$. Then for any arrow $\alpha: x \rightarrow y$ in $\mathrm{Q}_{A^{x}}$ we have $y \in \overline{\operatorname{rad}} \chi_{A^{x}}$.

Proof. Again, we assume that there exists an arrow $\alpha: x \rightarrow y$ such that $y \notin \overline{\operatorname{rad}} \chi_{A}$.

And again, we first show that then x is the only start point of a path from $\overline{\operatorname{rad}} \chi_{A^{x}}$ to y in $\mathrm{Q}_{A^{x}}$. So assume that this is not so: let $x^{\prime} \in \overline{\operatorname{rad}} \chi_{A^{x}}$ be different from x such that there exists a path

$$
x^{\prime} \rightarrow z_{0} \rightarrow z_{1} \rightarrow \cdots \rightarrow z_{t} \rightarrow y
$$

in A^{x}. Since $\overline{\operatorname{rad}} A^{x}$ is connected there exists a fully contained algebra C in $\overline{\operatorname{rad}} A^{x}$ of the form $(*)$

First, suppose $y \notin\left(x_{A}^{<}\right)^{*}$. Then we have $x^{\prime} \nless x$ in A because there is an arrow $x \rightarrow y$ and A is a poset algebra. If there exists a j such that $c_{j}<y$ then we choose j maximal with that property. Observe that we have $j<t$. Thus $\left\{b_{j+1}, c_{j+1}, \ldots, b_{t}, c_{t}, x, y\right\}$ is a crown in A, in contradiction to the fact that A is strongly simply connected, see $(1.4 \mathrm{~b})$. On the other hand, if there does not exist a j with $c_{j}<y$ then $(*)$ together with y forms a crown in A.

Thus we have $y^{*} \in x_{A}^{<}$and therefore $y^{*}<x<c_{t}$. On the other hand, since $x \rightarrow y$ is an arrow in $\mathrm{Q}_{A^{x}}$, the vertex y^{*} can not be smaller than c_{t} in A. This contradicts the fact that A is a poset algebra.

The rest of the proof follows as in (4.3).

6. Higher coranks

6.1 In the following we shall prove the following result which is related to the conjecture about algebras A with corank $\chi_{A}>2$, see (2.3.(5)).
Proposition. Let A be a tree algebra or a strongly simply connected poset algebra with non-negative Euler form. Then any properly contained, convex algebra B in A whose Euler form has corank 2 is derived equivalent to a poset algebra $\mathrm{P}(n)$.
6.2 We shall need the following result.

Proposition. Let A be an algebra which is derived equivalent to a tubular algebra and let M be an indecomposable A-module. Then the following hold.
(i) $\chi_{A}(\underline{\operatorname{dim}} M) \in\{0,1\}$.
(ii) The Euler form of $A[M]$ is indefinite.

Proof. (i). By [11], the inclusion $\bmod _{A} \hookrightarrow \mathrm{D}^{\mathrm{b}}(A), X \mapsto X[0]$ induces an isometry $\mathrm{K}_{\circ}(A) \rightarrow \mathrm{K}_{\circ}\left(\mathrm{D}^{\mathrm{b}}(A)\right)$. Hence we shall prove that $\chi_{\mathrm{D}^{\mathrm{b}}(A)}(M[0]) \in$ $\{0,1\}$. By [12], for an indecomposable object $X \in \mathrm{D}^{\mathrm{b}}(A)$, there is a tubular algebra B such that X lies in the image of the composition $\bmod B \hookrightarrow$ $\mathrm{D}^{\mathrm{b}}(B) \rightarrow \mathrm{D}^{\mathrm{b}}(A)$, of the inclusion with some triangular equivalence F, say $X=F(Y[0])$ for some indecomposable B-module Y. Hence $\chi_{A}(\underline{\operatorname{dim}} M)=$ $\chi_{\mathrm{D}^{\mathrm{b}}(A)}([M[0]])=\chi_{\mathrm{D}^{\mathrm{b}}(B)}([Y[0]])=\chi_{B}(\underline{\operatorname{dim}} Y)$, and finally $\chi_{B}(\underline{\operatorname{dim}} Y) \in$ $\{0,1\}$ by the results in [17].
(ii). Let M be an indecomposable A-module and $A^{\prime}=A[M]$. Then we have $\chi_{A}(\underline{\operatorname{dim}} M) \in\{0,1\}$. Assume first $\chi_{A}(\underline{\operatorname{dim}} M)=0$. As we have seen in the proof of Proposition 3, there exists a vector $v \in \operatorname{rad} \chi_{A}$ such that $\langle\underline{\operatorname{dim}} M, v\rangle_{A} \neq 0$. Let x be the extension vertex in $\mathrm{Q}_{A^{\prime}}$ such that $\operatorname{rad} P_{x}=M$. Then $\left\langle v, e_{x}\right\rangle_{A^{\prime}}=0$ and $\left\langle e_{x}, v\right\rangle_{A^{\prime}}=\left\langle\underline{\operatorname{dim}} P_{x}, v\right\rangle_{A^{\prime}}-\langle\underline{\operatorname{dim}} M, v\rangle_{A^{\prime}}=$ $-\langle\underline{\operatorname{dim}} M, v\rangle_{A} \neq 0$ which implies that $\chi_{A^{\prime}}$ is indeed indefinite.

Now assume $\chi_{A}(\underline{\operatorname{dim}} M)=1$. Suppose that $\chi_{A^{\prime}}$ is non-negative. We shall show that $\operatorname{dim} M \in \chi_{A}^{-1}(1) \cap \chi_{A}^{-1}(0)^{\perp}$ in contradiction to (1.4). Indeed, if $v \in \chi_{A}^{-1}(0)$, then $\left\langle e_{x}, v\right\rangle_{A^{\prime}}+\left\langle v, e_{x}\right\rangle_{A^{\prime}}=0$ (since otherwise $\chi_{A^{\prime}}\left(2 v \pm e_{x}\right)<0$, a contradiction). Since $\left\langle v, e_{x}\right\rangle_{A^{\prime}}=0$, we have $0=\left\langle e_{x}, v\right\rangle_{A^{\prime}}=-\langle\underline{\operatorname{dim}} M, v\rangle_{A}$.
6.3 Proof of the Proposition 6.1. Let B be connected and convex in A with $B \neq A$ and such that corank $\chi_{B}=2$. By our Main Theorem, B is derived equivalent to a tubular algebra or to a 2-tubular algebra. Since $B \neq A$, there exists a B-module M such that $B[M]$ (or $[M] B)$ is still convex in A. Since then $B[M]$ (resp. $[M] B$) is strongly simply connected, the module M
has to be indecomposable and by (6.2), the algebra B can not be tubular.

References

[1] I. Assem and A. Skowroński: Quadratic forms and iterated tilted algebras. J. of Algebra 128 (1990), 55-85.
[2] M. Barot and H. Lenzing: One-point extensions and derived equivalence. To appear.
[3] M. Barot and J. A. de la Peña: Derived tubular strongly simply connected algebras. To appear in Proc. Am. Math. Soc.
[4] M. Barot and J. A. de la Peña: Derived tubularity: A computational approach. To appear in Proc. Euroconference on Computaer Algebra for Representations of Groups and Algebras.
[5] M. Barot and J. A. de la Peña: The Dynkin-type of a non-negative unit form. In preparation.
[6] R. Bautista, F. Larrión and L. Salmerón On simply connected algebras J. of London Math. Soc. (2) 27 (1983), 212-220.
[7] P. Dräxler: Completely separating algebras. J. Algebra 165 (1994), 550-565.
[8] P. Dräxler and J. A. de la Peña: Tree algebras with non-negative Tits form. Preprint, México (1996).
[9] Ch. Geiß and J. A. de la Peña: Algebras derived tame to semichain poset algebras. In preparation.
[10] P. Gabriel, B. Keller and A. V. Roiter Representations of finite-dimensional algebras. Encycl. Math. Sc., Algebra VIII, 73 (1992).
[11] D. Happel: Triangulated categories in the representation theory of finite dimensional algebras. London Math. Soc, Lecture Notes Series 119 (1988).
[12] D. Happel and C. M. Ringel: The derived category of a tubular algebra. In: Representation Theory I, Springer Lecture Notes in Math. 1177 (1984), 156-180.
[13] S. A. Ovsienko: Integer weakly positive forms. In: Schurian Matrix problems and quadratic forms. Kiev, (1978), 3-17.
[14] J. A. de la Peña: On the representation type of one point extensions of tame concealed algebras. Manuscr. Math. 61 (1988), 183-194.
[15] J. A. de la Peña: On the corank of the Tits form of a tame algebra. J. of Pure and Appl. Alg. 107 (1996), 89-105.
[16] J. A. de la Peña: Derived-tame algebras. Preprint, México (1998).
[17] C. M. Ringel: Tame algebras and integral quadratic forms. Springer Lecture Notes in Math. 1099, Springer (1984).
[18] A. Skowroński: Simply connected algebras and Hochschild cohomologies. In: Can. Math. Soc. Proc. 14 (1993), 431-447.

Instituto de Matemáticas, UNAM, México, D.F., 04510, MEXICO.
E-mail address: barot@gauss.matem.unam.mx, jap@penelope.matem.unam.mx

