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Let A be a finite dimensional algebra over an algebraically closed field k.
We denote by modA the category of finite dimensional left A-modules and
by Db(A) the derived category of modA. We say that two algebras, A and
B, are derived equivalent if their derived categories, Db(A) and Db(B), are
derived equivalent as triangulated categories. See [11] for definitions and
basic concepts.

In recent years a considerable effort has been devoted in the characteriza-
tions of algebras which are derived equivalent to well understood classes of
algebras (tame hereditary algebras, tubular algebras, some special biserial
algebras) [1, 12, 3, 9]. An important invariant entering in all these character-
izations is the Euler form: if A has finite global dimension, the Grothendieck
group K◦(A) ' Z

n is equipped with a (non-symmetric) bilinear form 〈−,−〉
A

such that for two modules X,Y ∈ modA we have

〈[X], [Y ]〉
A

=

∞∑

i=0

dimkExtiA(X,Y ),

where [X] denotes the class of X in K◦(A). The associated quadratic form
χ

A
(v) = 〈v, v〉

A
is the Euler form of A. For two derived equivalent algebras,

A and B, the Euler forms χ
A

and χ
B

are equivalent. In particular, χ
A

is
non-negative if and only if so is χ

B
.

Algebras A whose form χ
A

is non-negative are important. Examples
include the algebras which are derived equivalent to tame hereditary and
tubular algebras [11, 12]; certain tree algebras which are derived tame [16]
and others. Recent results in [5] show that for the non-negative form χ

A

of a connected algebra A, there exists an invertible linear transformation
T : Z

n → Z
n such that χ

A
T (x1, . . . , xn) = q∆(x1, . . . , xn−s), where s =

corankχ
A

and q∆ is the quadratic form associated to a uniquely determined
Dynkin graph ∆. The graph ∆ = Dyn(χ

A
) is called the Dynkin-type of χ

A
.

The main result of this work completes the description of the algebras A
whose Euler form χ

A
is non-negative with corank χ

A
≤ 2 (at least for some

classes of algebras).

Theorem. Let A = kQA/I be a connected finite dimensional k-algebra such
that χ

A
is non-negative of corank 2. Assume that A is in one of the following

classes: (1) tree algebras; (2) strongly simply connected poset algebras.
Then A is derived equivalent to a tubular algebra or to a poset algebra P(n)
of the form

1
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︸ ︷︷ ︸
n − 6 points

Moreover, if A has more than 6 vertices, then A is derived equivalent to
a tubular algebra (resp. to P(n)) if and only if Dyn(χ

A
) = Ep (p = 6, 7, 8)

(resp. Dyn(χ
A
) = Dn−2).

The work is organized as follows. In Section 1, we recall some examples
and properties of algebras whose Euler form is non-negative. In Section 2,
we describe the Dynkin-type of algebras derived equivalent to well-known
classes of algebras. In particular we show the following result.

Proposition . Let A be a strongly simply connected algebra whose Euler
form is non-negative and of Dynkin-type An. Then A is derived equivalent
to a hereditary algebra of type An.

In Section 3, we prove a useful lemma about the connectedness of the
radical of a strongly simply conneced algebra. In Section 4 and 5, we give the
proofs of the above theorem for tree algebras and strongly simply connected
poset algebras respectively. Finally in the last section, we treat the case
where the associated Euler form is non-negative but has higher corank.

We gratefully acknowledge support from DGAPA, UNAM and CONA-
CyT.

1. Some algebras whose Euler form is non-negative

1.1 Let A = kQA/I be a finite-dimensional algebra. We shall assume
that QA is connected and without oriented cycle (we say A is connected and
triangular, respectively). In particular, A has finite global dimension. By
Q◦ we denote the set of vertices of QA.

A module X ∈ modA is also considered as a representation of QA. The
dimension vector dimX is also identified with the class [X] of X in the
Grothendieck group K◦(A) ' Z

n.
For x ∈ Q◦ we denote by Sx the simple module at x. By Px (resp. Ix)

we denote a projective cover (resp. injective envelope) of Sx. We also write
ex instead of dimSx.

1.2 Given two derived equivalent algebras A and B with F : Db(A) →
Db(B) a triangular equivalence, there is an induced isometry f : K◦(A) →
K◦(B), satisfying 〈x, y〉

A
= 〈f(x), f(y)〉

B
.

Recall that A[M ] denotes the one-point extension of A by a module M
(see [17]). The following result will be basic for our considerations.

Theorem. [2] Let A and B be two algebras and M ∈ modA, N ∈ modB

two modules. Suppose there is a triangular equivalence F : Db(A) → Db(B)
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which maps the stalk complex M [0] to N [0]. Then there exists a triangular
equivalence F : Db(A[M ]) → Db(B[N ]) extending F .

1.3 Given a subset J of the vertices of QA, the algebra EndA(
⊕

x∈J Px)op =
B is said to be fully contained in A. If J is path closed in QA, then B is said
to be convex in A. If Q◦ denotes the vertex set of QA and J = Q◦ \ {y}, we
denote A \ {y} = B.

Lemma. [3] Let B be fully contained in A and assume that χ
A

is non-
negative. Then χ

B
is non-negative and corank χ

B
≤ corank χ

A
.

1.4 We recall that an algebra A is said to be strongly simply connected
if for every algebra B convex in A, the first Hochschild cohomology H1(B)
vanishes [18]. Equivalently, A is strongly simply connected if and only if
every algebra B convex in A is separated, that is, B = kQB/I ′ and for every
vertex x in QB the following condition is satisfied: let radPx =

⊕t
i=1 Mi be

a decomposition into indecomposable modules of the B-module radPx, then
for any i 6= j, the support of Mi and Mj are contained in different connected
components of QB \ {y : there is a path from y to x}. See also [6, 18].

Examples: (a) If A = kQA/I is a tree algebra (that is, the underlying
graph of QA is a tree), then A is strongly simply connected.

(b) Let A = k[S] be a poset algebra (that is, S is a poset and A = kQS/IS

where QS is the quiver, kQS the path algebra of kQA of S and IS the ideal
in kQS generated by the differenes of parallel paths in kQS , see [10]). Then
A is strongly simply connected if and only if A has no crowns, see [7]. We
recall that a crown in A is an algebra C, fully contained in A, of the form

a1 a2 am

b1 b2 bm

? ? ?

PPPPPPPPPPPq

�
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and such that the convex closure {ai, bi} of {ai, bi} intersects {ai+1, bi}

(resp. {ai, bi−1}) in bi (resp. in ai), for i = 1, . . . ,m and am+1 = a1, b0 = bm.
The following results are central in our considerations.

Theorem. Let A be a strongly simply connected algebra.

(i) [1, 4] A is derived equivalent to a tame hereditary algebra k∆ if and
only if χ

A
is non-negative with corankχ

A
= 1. In this case, ∆ is of

type D̃n (n ≥ 4) or Ẽp (p = 6, 7, 8).
(ii) [3] If QA has more than 6 vertices, then A is derived equivalent to a

tubular algebra k∆ if and only if χ
A

is non-negative with corankχ
A

=
2 and χ−1

A
(1) ∩ χ−1

A
(0)⊥ = ∅ (where V ⊥ = {w ∈ K◦(A) : 〈v, w〉

A
=

0 for all v ∈ V }).
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1.5 Following [16], we say that A is derived-tame if A has finite global

dimension and the repetitive category Â is tame. Examples of derived-tame
algebras are the following:

(a) By [11], hereditary tame algebras are also derived-tame. By [12],
tubular algebras are also derived-tame.

(b) If A is derived tame and Db(A) ' Db(B) is a triangular equivalence,
then B is also derived-tame, see [16].

(c) Let C be a hereditary tame algebra of type D̃n and let M be an
indecomposable regular C-module of regular length 2 lying in a tube of rank
n−2 in the Auslander-Reiten quiver ΓC . Then the one-point extension C[M ]
is called a 2-tubular algebra (see [14]). In [16], it is shown that B is derived
tame and derived equivalent to the poset algebra P(n + 2) as defined in the
introduction.

(d) Other examples of derived tame algebras are provided by the poset
algebras associated to posets of the form
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Remark. (1) All algebras in the above examples have a non-negative
Euler form.

(2) Information on the structure of the module category of a derived tame
algebra was recently obtained in [9].

2. The Dynkin-type of non-negative Euler forms

2.1 Let q : Z
n → Z be an integral quadratic form of the shape q(v) =∑n

i=1 qiv(i)2 +
∑

i<j qijv(i)v(j). We say that q is a unit (resp. semi-unit)

form if qi = 1 (resp. qi ∈ {0, 1}).
Associated with a semi-unit form we define a bigraph Gq with vertices

1, . . . , n; two vertices i 6= j are joined by |qij | full edges if qij < 0 and by qij

dotted edges if qij ≥ 0; for every vertex i, there are 1 − qi full loops at i.
We say that q is connected if Gq is connected. The following are elementary
facts.

(a) If A = kQ/I is a connected and triangular algebra, then χ
A

is a
connected unit form.

(b) Given a connected graph ∆ formed by full edges and at most one
loop at each vertex, there is a semi-unit form q∆ such that Gq∆

= ∆.
Then q∆ is positive (resp. non-negative) if and only if ∆ is a Dynkin
diagram (resp. extended Dynkin diagram).
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For Dynkin diagrams we consider the following partial order:

Am ≤ An ≤ Dn ≤ Dp for m ≤ n ≤ p and

Dp ≤ Ep ≤ Eq for 6 ≤ p ≤ q ≤ 8.

The following result is relevant in our discussion.

Theorem. [5] Let q : Z
n → Z be a connected, non-negative semi-unit form.

Then there exists a Z-invertible linear transformation T : Z
n → Z

n such that
qT (x1, . . . , xn) = q∆(x1, . . . , xn−c), where c = corank q and ∆ = Dyn(q) is
a Dynkin diagram uniquely determined by q. Moreover, if q ′ is a connected
restriction of q, then Dyn(q′) ≤ Dyn(q).

2.2 Proposition. Let A be a strongly simply connected algebra with a non-
negative Euler form χ

A
of type An. Then A is derived equivalent to a hered-

itary algebra of type An and corank χ
A

= 0.

Proof. We show first that corank χ
A

= 0, that is, χ
A

is positive. Suppose
that corank χ

A
> 0. Then there exists an algebra B convex in A such that

corankχ
B

= 1. By (2.1), Dyn(χ
B
) ≤ Dyn(χ

A
) = An, thus Dyn(χ

B
) = Am

for some m ≤ n. By (1.4), the algebra B is derived equivalent to a hereditary

algebra of type D̃m−1 or Ẽm−1 (m = 7, 8, 9), which implies Dyn(χ
B
) = Dm−1

or Dyn(χ
B
) = Em−1, respectively - in any case a contradiction. Hence we

have corank χ
A

= 0.
By [1], A is derived equivalent to a hereditary algebra k∆, where ∆ is a

quiver of Dynkin type. Clearly, we have Dyn(χ
A
) = ∆. �

2.3 Let us restate the results in [1, 3] mentioned in (1.3). Let A = kQ/I
be a connected and strongly simply connected algebra. Then we have:

(1) A is derived equivalent to a tame (but not representation-finite)
hereditary algebra if and only if χ

A
is non-negative and corankχ

A
=

1. In this case, Dyn(χ
A
) is Dn (n ≥ 4) or Ep (p = 6, 7, 8).

(2) If A is derived equivalent to a tubular algebra (resp. to a 2-tubular
algebra), then χ

A
is non-negative and corank χ

A
= 2. If QA has more

than 6 vertices, then Dyn(χ
A
) = Ep (p = 6, 7, 8) (resp. Dyn(χ

A
) =

Dn (n ≥ 4)), whereas if QA has 6 vertices in both cases we have
Dyn(χ

A
) = D4.

(3) Assume A = B[M ] such that χ
A

is non-negative, corank χ
A

= 2
and corank χ

B
= 1. Then A is derived equivalent to a tubular or a

2-tubular algebra.

We conjecture that the following hold for a strongly simply connected
algebra A.

(4) If corank χ
A

= 2, then
(4.1) if Dyn(χ

A
) = Dn and n ≥ 5, then A is derived equivalent to a

2-tubular algebra,
(4.2) if Dyn(χ

A
) = Ep (p = 6, 7, 8), then A is derived equivalent to a

tubular.
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(5) If corank χ
A
≥ 3 then Dyn(χ

A
) = Dn.

The results we show in this work are special cases of conjecture (4). In
[9], special cases of conjecture (5) are considered.

2.4 We recall from [4, 5] examples showing that the above conjectures
may be expected only in the strongly simply connected case.

(a) Let A be the algebra given by the following quiver with commutativity
relations as indicated by dotted lines.

q

q

q

q

q

q

q

q

q

q

�
�	

HHj

?

@
@R ���

���

���

���

A
AU

A
AU

A
AU

A
AU

Then χ
A

is non-negative with corankχ
A

= 2 and Dyn(χ
A
) = E8. More-

over, A is wild and hence A cannot be derived tame, by (1.5).
(b) Let A be the algebra given by the following quiver with zero relations

as indicated by dotted lines.

q q q q q q q q

q

q1 q1 q1 - - - -?

Then χ
A

is non-negative with corank χ
A

= 3 and Dyn(χ
A
) = E6.

3. Connectivity of the radical

In the following we prove a general result about the convex closure of
the support of the radical of a strongly simply connected algebra with non-
negative Euler form. Although the proof is quite technical, it will be of great
use in the forthcoming considerations.

Proposition. Let A = kQ/I be a strongly simply connected algebra with
non-negative Euler form. Then the convex closure radχ

A
of the support of

radχ
A

is connected in A.

Proof. Suppose that there exists a strongly simply connected algebra A
such that radχ

A
is not connected in A. We assume that A is a minimal

such example and let radχ
A

=
⋃t

i=1 Ri, (t ≥ 2), be a decomposition into
connected algebras Ri which are convex in A.

The proof is done in several steps:
(i) We first show that corank χ

A
≥ 2.

Any vector v ∈ radχ
A

decomposes as v =
∑t

i=1 vi with vi ∈ K◦(Ri) ⊂

K◦(A). Hence 0 = χ
A
(v) =

∑t
i=1 χ

Ri
(vi) (since for i 6= j, x ∈ suppRi and
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y ∈ suppRj there are no directed paths between x and y implying that
〈ei, ej〉A = 0). Since χ

A
is non-negative, then vi ∈ radχ

Ri
for 1 ≤ i ≤ t, and

therefore corank χ
A
≥ 2.

(ii) We show t = 2, that is radχ
A

= R1 ∪R2 where R1, R2 are connected
and convex in A.
Choose i 6= j such that there is a walk γ between Ri and Rj in QA of
minimal length. Then the convex closure of Ri, Rj and γ in A is a strongly

simply connected algebra A◦ with radχ
A◦

= Ri ∪ Rj. By the minimality of
A we get A = A◦ and t = 2.

(iii) Next we verify for i = 1, 2 that there is a source or a sink yi such
that A \ {yi} is connected and yi ∈ Ri.
First observe that A \ {R1 ∪ R2} contains a vertex x0 which is a source or
a sink in QA, and that for any such point x0, by the minimality, A \ {x0} is
not connected.

Choose such a point x0 ∈ A \ {R1 ∪ R2}, say x0 is a source, and set
A\{x0} = B1∪B2 with B1 ⊂ R1 and B2 ⊂ R2. Now, choose a sink x1 ∈ B1.
If A \ {x1} decomposes, say A \ {x1} = C1 ∪ C2 with R2 ⊂ C2, we choose a
source x2 ∈ C1. Again, if A\{x2} decomposes, say A\{x2} = D1∪D2 with
B2 ⊂ D2 we choose a sink x3 ∈ D1. Observe that |B1| > |C1| > |D1| > · · · .
This process may be continued until we find a source or a sink xm not
belonging to R2 such that A \ {xm} is connected. By the above, we thus
have y1 := xm ∈ R1. Dually we find y2.

(iv) Now we shall prove that A is tubular or 2-tubular.
Since yi ∈ Ri, we have corank χ

A\{yi}
< corankχ

A
for i = 1, 2, and hence we

obtain by the minimality that corank χ
R1

= 1 = corank χ
R2

. Therefore we
have corank χ

A
= 2.

We may assume that y1 is a source. Since A is strongly simply connected,
M = radPy1 is indecomposable and A′ = A \ {y1} is strongly simply con-
nected with corank χ

A′ = 1. By (2.3.3), A either derived equivalent to a
tubular or to a 2-tubular algebra.

(v) Finally, we show that this leads to a contradiction.
In both cases we have radχ

A
= k v1 ⊕ k v2 with 〈v1, v2〉A 6= 0 (in the tubular

case this follows from [17], in the 2-tubular case it may be easily verified for
the poset algebra P(n)). But this contradicts the fact that there are vectors
w1, w2 ∈ radχ

A
with wi ∈ K◦(Ri) ⊂ K◦(A) for i = 1, 2, which implies that

〈w1, w2〉A = 0. This completes the proof of the proposition. �

4. The tree case

4.1 The first result we state provides the inductive step dealing with tree
algebras with non-negative Euler form.

Proposition . Let A be a tree algebra with non-negative Euler form and
corankχ

A
= c. Then there exists an algebra B satisfying the following two

properties.
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(i) B is derived equivalent to a tree algebra and χ
B

is non-negative with
corank χ

B
= c − 1.

(ii) A is derived equivalent to B[M ] for some indecomposable B-module
M .

We give the proof of the proposition in (4.4) after some preparation.

4.2 Lemma. Let A = kQA/I be a tree algebra. Consider the convex closure
radχ

A
of the support of radχ

A
and let x be a source or a sink in radχ

A
.

Then A \ {x} is again a tree algebra.

Proof. Suppose A \ {x} is not a tree. Denote by y1, . . . , yt the vertices
in QA such that there exists an arrow αi : yi → x and denote by z1, . . . , zs

those vertices with an arrow βi : x → zi. Since χ
A

is non-negative, we have
t ≤ 4 and s ≤ 4. Since A \ {x} is not a tree, it fully contains an algebra B
of the form

yi1 yi2 yir

zj1 zj2 zjr

? ? ?

PPPPPPPPPPPq

�
��	

�
��	

�
��	

p p p

with r ≥ 2 and the arrows are compositions βjαi for some 1 ≤ i ≤ t and
1 ≤ j ≤ s. Then there exists a vector v ∈ radχ

A
with v(yi1) 6= 0 6= v(zj1).

This contradicts the fact that x was chosen to be a source or a sink in radχ
A
.

�

4.3 Let A = kQA/I be a triangular algebra and x a source in QA. Let
A◦ = A \ {x} and write A = A◦[M ] as a one-point extension with M =
radPx. Then S+

x A = [M ]A◦ is the source-reflection of A at x. In [11] it is
shown that A and S+

x A are derived equivalent. We denote the extension-
vertex in QS+

x A by x∗, that is Ix∗/socIx∗ = M .
For any vertex x ∈ QA we assume that

x<
A := {a 6= x : there is a path from a to x} = {a1, . . . , at}

is enumerated in such a way that the existence of a path from ai to aj

implies that i ≤ j. Define the algebra Ax = S+
at
· · ·S+

a1
A, which is derived

equivalent to A. Clearly, x is then a source in Ax. For any point u ∈ x<
A

and y = u∗ ∈ QAx we also write u = y∗.

Lemma. Let A be a tree algebra such that χ
A

is non-negative, and let x be a

source in radχ
A
. Then for any arrow α : x → y in QAx we have y ∈ radχ

A
.

Proof. We assume that there exists y 6∈ radχ
A

such that there is an arrow
α : x → y in QAx and proceed in several steps.

(i) First we show, that x is the only vertex in radχ
A

which is the starting
point of a path in QAx to y.
Assume there exists a vertex x′ ∈ radχ

A
, x′ 6= x and a path

x′ → z0 → z1 → · · · → zt → y
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in QAx. By Proposition 3, we know that x and x′ may be connected by
a walk inside radχ

A
, thus, since A is a tree algebra, we have y ∈ (x<

A)∗.
If there exists i > 0 such that zi−1 does not belong to (x<

A)∗, we choose i
maximal with this property. Then in A we have the following paths.

x′ → z0 → z1 → · · · → zi−1

z∗i → z∗i+1 → · · · → z∗t → y∗
f
→x

where f itself is a path. Together with a path from z∗
i to zi−1 and a walk

inside radχ
A

between x′ and x, we obtain a closed walk in QA, in contra-
diction to the assumption that A is a tree algebra. The case where z∗

i ∈ x<
A

for all i = 0, . . . , t is similar.
(ii) Now we show that the assumption leads to a contradiction.

Let A′ = A \ {y<
Ax \ x<

Ax}. Clearly, A′ is convex in Ax and radχ
Ax is fully

contained in A′. It is thus sufficient to show that for A′ the assumption
leads to a contradiction.

Consider a projective resolution in modA′

0 → P (n) → P (n − 1) → · · · → P (0) → Sy → 0,

then 〈dimP (i), v〉
A′ = 0 for all i = 0, . . . , n and v ∈ radχ

A′ .
Let v ∈ radχ

A′ be such that v(x) 6= 0. Then

〈v, ey〉A′ = 〈v,dim Iy〉A′ − 〈v,dim Ix〉A′ = −v(x) 6= 0

because y 6= radχ
A′ and x is the only predecessor of y in QA′ . On the other

hand,

〈ey, v〉A′ =

n∑

i=0

(−1)i〈dimP (i), v〉
A′ = 0.

Therefore χ
A′ (2v + ey) < 0 contradicting the non-negativity of χ

A′ . �

Obviously, the dual statement may be proved similarily.

4.4 Proof of Proposition 4.1. By Proposition 3, radχ
A

is connected. Choose

a source or a sink x in radχ
A

such that radχ
A
\{x} is still connected. Say x is

a source in radχ
A
. Consider the algebra A◦ = A\{x} which is fully contained

in A. By (4.2), A◦ is again a tree algebra and clearly, corankχ
A◦

= c − 1.
As in the proof of Lemma 4.3, we have radχ

A
= radχ

Ax and in particular

radχ
A

= radχ
Ax . Observe that x is a source in Ax and define B = Ax \ {x}.

Hence B = S+
at
· · · S+

a1
A◦ (where x<

A = {a1, . . . , at} is supposed to be “well-
enumerated”) and corankχ

B
= corank χ

A◦
= c − 1.

It remains to show that the B-module M = radPx is indecomposable.
First, observe that M ′ = radPx|radχ

Ax
is indecomposable (because radχ

A
=

radχ
Ax ). By (4.3), any arrow x → y in QAx belongs to radχ

Ax . Therefore a
decomposition of M yields a decomposition of M ′, thus M is indecompos-
able. �

4.5 Proof of the Main Theorem for tree algebras. Let A be a tree algebra
with non-negative Euler form of corank 2. By (4.1), there exists a triangular,
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connected algebra B which is derived equivalent to a tree algebra C and such
that χ

B
is non-negative of corank one and there exists an indecomposable

B-module M such that A is derived equivalent to B[M ]. In particular, χ
C

is non-negative of corank one.
By (1.4), the algebra C is derived equivalent to a hereditary algebra of

type ∆̃ and moreover ∆ = Dyn(χ
A
) = Dn (n ≥ 4) or Ep (p = 6, 7, 8).

By (1.1), there exists an indecomposable H-module N such that B[M ] is
derived equivalent to H[N ]. The result follows from (2.3.3). �

5. The poset case

A rereading of the proof of the Main Theorem in the tree case reveals,
that the assumption for A to be a tree algebra is only needed in the proof
of Lemma 4.2 and in the step (i) of Lemma 4.3.

In the following we just give the arguments which establish the same
assertions as (4.2) and (4.3) if A is a strongly simply connected poset algebra.

5.1 Lemma. Let A be a strongly simply connected poset algebra. Let x be a
source or a sink in radχ

A
. Then A\{x} is again a strongly simply connected

poset algebra.

Proof. The algebra B = A \ {x} is clearly a poset algebra. To show that
B is strongly simply connected, it is enough to show that B admits no crown
(1.4). This is shown exactly as in the proof of Lemma 4.2. �

5.2 Lemma. Let A be strongly simply connected poset algebra such that
χ

A
is non-negative, and let x be a source in radχ

A
. Then for any arrow

α : x → y in QAx we have y ∈ radχ
Ax .

Proof. Again, we assume that there exists an arrow α : x → y such that
y 6∈ radχ

A
.

And again, we first show that then x is the only start point of a path
from radχ

Ax to y in QAx. So assume that this is not so: let x′ ∈ radχ
Ax be

different from x such that there exists a path

x′ → z0 → z1 → · · · → zt → y

in Ax. Since radAx is connected there exists a fully contained algebra C in
radAx of the form (∗)

x′

c0

b1

c1

bt

ct

x
@@R @@R @@R��	 ��	

p p p

x′

b1

c1

bt

ct

x
@@R @@R��	 ��	

p p por

First, suppose y 6∈ (x<
A)∗. Then we have x′ 6< x in A because there is an

arrow x → y and A is a poset algebra. If there exists a j such that cj < y
then we choose j maximal with that property. Observe that we have j < t.
Thus {bj+1, cj+1, . . . , bt, ct, x, y} is a crown in A, in contradiction to the fact
that A is strongly simply connected, see (1.4 b). On the other hand, if there
does not exist a j with cj < y then (∗) together with y forms a crown in A.
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Thus we have y∗ ∈ x<
A and therefore y∗ < x < ct. On the other hand,

since x → y is an arrow in QAx , the vertex y∗ can not be smaller than ct in
A. This contradicts the fact that A is a poset algebra.

The rest of the proof follows as in (4.3). �

6. Higher coranks

6.1 In the following we shall prove the following result which is related
to the conjecture about algebras A with corank χ

A
> 2, see (2.3.(5)).

Proposition. Let A be a tree algebra or a strongly simply connected poset
algebra with non-negative Euler form. Then any properly contained, convex
algebra B in A whose Euler form has corank 2 is derived equivalent to a
poset algebra P(n).

6.2 We shall need the following result.

Proposition. Let A be an algebra which is derived equivalent to a tubular
algebra and let M be an indecomposable A-module. Then the following hold.

(i) χ
A
(dimM) ∈ {0, 1}.

(ii) The Euler form of A[M ] is indefinite.

Proof. (i). By [11], the inclusion modA ↪→ Db(A), X 7→ X[0] induces an
isometry K◦(A) → K◦(D

b(A)). Hence we shall prove that χ
Db(A)

(M [0]) ∈

{0, 1}. By [12], for an indecomposable object X ∈ Db(A), there is a tubular
algebra B such that X lies in the image of the composition mod B ↪→
Db(B) → Db(A), of the inclusion with some triangular equivalence F , say
X = F (Y [0]) for some indecomposable B-module Y . Hence χ

A
(dimM) =

χ
Db(A)

([M [0]]) = χ
Db(B)

([Y [0]]) = χ
B
(dimY ), and finally χ

B
(dimY ) ∈

{0, 1} by the results in [17].
(ii). Let M be an indecomposable A-module and A′ = A[M ]. Then

we have χ
A
(dimM) ∈ {0, 1}. Assume first χ

A
(dimM) = 0. As we have

seen in the proof of Proposition 3, there exists a vector v ∈ radχ
A

such
that 〈dimM,v〉

A
6= 0. Let x be the extension vertex in QA′ such that

radPx = M . Then 〈v, ex〉A′ = 0 and 〈ex, v〉
A′ = 〈dimPx, v〉

A′−〈dimM,v〉
A′ =

−〈dimM,v〉
A
6= 0 which implies that χ

A′ is indeed indefinite.
Now assume χ

A
(dimM) = 1. Suppose that χ

A′ is non-negative. We shall

show that dimM ∈ χ−1
A

(1) ∩ χ−1
A

(0)⊥ in contradiction to (1.4). Indeed, if

v ∈ χ−1
A

(0), then 〈ex, v〉
A′ + 〈v, ex〉A′ = 0 (since otherwise χ

A′ (2v ± ex) < 0,
a contradiction). Since 〈v, ex〉A′ = 0, we have 0 = 〈ex, v〉

A′ = −〈dimM,v〉
A
.

�

6.3 Proof of the Proposition 6.1. Let B be connected and convex in A with
B 6= A and such that corank χ

B
= 2. By our Main Theorem, B is derived

equivalent to a tubular algebra or to a 2-tubular algebra. Since B 6= A,
there exists a B-module M such that B[M ] (or [M ]B) is still convex in A.
Since then B[M ] (resp. [M ]B) is strongly simply connected, the module M
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has to be indecomposable and by (6.2), the algebra B can not be tubular.
�
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E-mail address: barot@gauss.matem.unam.mx, jap@penelope.matem.unam.mx


