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Abstract. Canonical algebras, introduced by C. M. Ringel in 1984, play an important
role in the representation theory of finite-dimensional algebras. They also feature in many
other mathematical areas like function theory, 3-manifolds, singularity theory, commuta-
tive algebra, algebraic geometry and mathematical physics. We show that canonical alge-
bras are characterized by a number of interesting extremal properties (among concealed-
canonical algebras, that is, the endomorphism rings of tilting bundles on a weighted pro-
jective line). We also investigate the corresponding class of algebras antipodal to canonical
ones. Our study yields new insights into the nature of concealed-canonical algebras, and
sheds a new light on an old question: Why are the canonical algebras canonical?

1. Introduction. Canonical algebras were introduced by C. M. Ringel
in 1984 [Rin84] in order to solve an intriguing problem concerning the rep-
resentation type of a certain class of finite-dimensional algebras, now called
tubular. When introducing weighted projective lines in 1987 [GL87], Gei-
gle and Lenzing showed that canonical algebras arise as the endomorphism
rings of naturally formed tilting bundles, consisting of line bundles. Due to
this fact, the theory of canonical algebras has interfaces with many other
parts of mathematics, classical and modern.

Indeed, the canonical relations

(1.1) xpii = xp22 − λix
p1
1 , i = 3, . . . , t,

defining the canonical algebras already appeared in 1882, respectively 1884,
in the work of H. Poincaré [Poi82, p. 237] (see also [Poi85, p. 183]) and
F. Klein [Kle84] yielding a link to Fuchsian singularities, respectively Klein-
ian (i.e. simple) singularities. For modern accounts on this aspect we refer
to work of J. Milnor [Mil75] and W. D. Neumann [Neu77]; compare also
[Len94].
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An important feature of the canonical relations is the (graded) factorial-
ity of the commutative k-algebra S(p, λ) = k[x1, . . . , xt]/I, where the ideal I
is generated by the canonical relations (1.1). Moreover, by Mori [Mor77] and
Kussin [Kus98] graded factoriality determines the algebras S(p, λ) uniquely
(among the affine algebras of Krull dimension two).

Canonical algebras belong to the larger class of concealed-canonical alge-
bras (see [LdlP99], [LM96]), a class containing the tame concealed algebras
(see [HV83] and [Rin84]). Concealed-canonical algebras may be defined as
the endomorphism rings of tilting bundles on a weighted projective line.
By [Sko96] and [LdlP99], they are also characterized by the existence of
a separating tubular family of sincere, standard stable tubes. Though the
concepts now exist for many years, canonical and concealed-canonical alge-
bras continue to be a topic of much current research. We just mention their
appearance in recent papers dealing with the following subjects:

• the theory of finite-dimensional self-injective algebras [KSY11],
• the invariant theory of module varieties [Bob08a], [Bob08b], [Bob08c],
• explicit matrix representations for exceptional modules [KM07],

[Mel07], [DMM10],
• the study of infinite-dimensional modules [RR06], [AK13],
• the investigation of cluster categories [BKL08], [BKL10],
• the study of (flags of) invariant subspaces for nilpotent operators

[Sim07], [RS08], [KLM12], [KLM13b],
• singularity theory and categories of matrix factorizations [KST07],

[KST09], [LdlP11], [KLM13a],
• mathematical physics [Cec12], [CDZ11].

While for the tame domestic case, the concealed-canonical algebras are
completely known through the Happel–Vossieck list [HV83], their structure
may be quite complicated if we allow the algebras to be tubular or wild, and
many natural questions still remain open. In this paper we present another
record of extremal properties characterizing canonical algebras, completing
the research by Ringel [Rin09] on the challenging question, “Why are the
canonical algebras canonical?”. We further study concealed-canonical alge-
bras with properties antipodal to the canonical ones.

The paper is organized as follows. Section 2 presents our main results on
characterizations of canonical algebras in terms of maximality conditions.
In Section 3 we recall those properties of weighted projective lines that are
needed for the proofs in Section 4. Section 6 deals with concealed-canonical
algebras with properties antipodal to canonical ones. In Section 5 we show
that characterizations of canonical algebras within the class of tame con-
cealed algebras have a tendency not to generalize to the tubular or wild
case.
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As a general reference for weighted projective lines we recommend [GL87],
[LdlP97]. Concerning finite-dimensional algebras and their representations,
the monographs [SS07a], [SS07b] and [Rin84] contain the relevant informa-
tion.

2. Extremal properties of canonical algebras. In this section we
present the main results of our paper, each expressing a certain extremal
property of canonical algebras. Let X = X(p, λ) be a weighted projective
line given by weight type p = (p1, . . . , pt) and parameter sequence λ =
(λ3, . . . , λt). We denote by L(p), or just L, the rank one abelian group gen-
erated by elements ~x1, . . . , ~xt subject to the relations p1~x1 = · · · = pt~xt =: ~c.
Then Tcan, the direct sum of all line bundles O(~x) with 0 ≤ ~x ≤ ~c, is called
the canonical tilting bundle on X. Its endomorphism ring is the canonical
algebra Λ = Λ(p, λ) in the sense of Ringel [Rin84], given by the same data p
and λ (see also Section 3.8). Throughout, we denote by t = t(X), or just t,
the number of weights pi ≥ 2 and by p = p(X), or just p, the least common
multiple of p1, . . . , pt.

The complexity of the classification of indecomposables for cohX, the
category of coherent sheaves on X, respectively for the category modΛ of
finite-dimensional right Λ-modules, is determined by the (orbifold) Euler
characteristic of X,

χX = 2−
t∑
i=1

(
1− 1

pi

)
.

The representation type for both categories is tame domestic if χX > 0,
tame tubular for χX = 0, and wild for χX < 0. See [GL87] as well as [LR06],
[LM93] and [LdlP97] for more specific information.

For other notations and definitions, we refer to Section 3. We assume all
tilting objects T =

⊕n
i=1 Ti on X are multiplicity-free, that is, T1, . . . , Tn are

pairwise non-isomorphic. Throughout, we work over a base field k which is
algebraically closed.

If not stated otherwise, modules will always be right modules.

Maximal number of line bundles. The following result allows two
different interpretations. First, it expresses unicity of the canonical tilting
bundle if T has the maximal possible number of line bundle summands.
Second, it shows that the same assertion holds if we minimize the differences
between the ranks of the indecomposable summands of T . Note that the
case of two weights is somewhat special because there exist tilting bundles,
consisting of line bundles, whose endomorphism rings are not canonical.

Theorem 2.1 (Maximal number of line bundles). Let T be a tilting
bundle on X whose indecomposable summands all have the same rank r.
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Then r = 1. Moreover, assuming t(X) 6= 2, T is isomorphic to Tcan up to a
line bundle twist and, accordingly, the endomorphism ring of T is isomorphic
to a canonical algebra.

Homogeneity. We call a tilting sheaf T on X homogeneous in cohX
(resp. in Db(cohX)) if for any two indecomposable summands T ′ and T ′′ of
T there exists a self-equivalence u of the abelian category cohX (resp. of the
triangulated category Db(cohX)) such that u maps T ′ to T ′′. By its very
definition the canonical tilting bundle Tcan is both homogeneous in cohX
and in Db(cohX). Our next theorem implies that, under mild restrictions,
the canonical tilting bundle is characterized by a variety of homogeneity
conditions.

Theorem 2.2 (Homogeneity). Let T be a tilting sheaf on X with inde-
composable summands T1, . . . , Tn. Assume that one of the following condi-
tions is satisfied:

(i) T is homogeneous in cohX.
(ii) X is not tubular, and T is homogeneous in Db(cohX).
(iii) X is not tubular, and the perpendicular categories T⊥i , formed in

cohX, all have the same Coxeter polynomial.
(iv) X is not tubular, and the one-point extensions A[Pi] of A = End(T )

with the ith indecomposable projective A-module all have the same
Coxeter polynomial.

Then all indecomposable summands of T have rank one and, assuming
t(X) 6= 2, the tilting bundle T is isomorphic to the canonical tilting bundle
Tcan up to a line bundle twist.

In particular, condition (iii) (resp. (iv)) is satisfied if the categories T⊥i
(resp. the algebras A[Pi]) are pairwise derived equivalent.

Assuming X tubular, we note that Example 5.1 presents a tilting bundle
satisfying conditions (ii), (iii) and (iv) and whose endomorphism ring is not
canonical.

Maximal amount of bijections. Assume T is a tilting bundle on X,
and A = End(T ). For χX 6= 0 there exists a unique generic A-module. If
χX = 0, that is, if X and A are tubular, then there exists a rational family
of generic A-modules, with one of them distinguished by T , and called the
T -distinguished generic A-module, a name we also use for non-zero Euler
characteristic. See Section 4.4 for references and the relevant definitions.

For the next result also compare [Rin09]. Note that the canonical con-
figuration Tcan always satisfies the condition stated below.

Theorem 2.3 (Maximal amount of bijections). Assume t(X) 6= 2. Let
T be a tilting bundle on X with endomorphism ring A, and let G be the
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T -distinguished generic module. Then for each arrow α : u → v in the
quiver of A the induced k-linear map Gα : Gv → Gu is injective or surjective.
Moreover, each Gα is bijective if and only if T = Tcan up to a line bundle
twist.

For t(X) = 2 each tilting bundle satisfies the above bijectivity condi-
tion. But in that case we will have tilting bundles with a non-canonical
endomorphism ring.

Maximal number of central simples. If T is a tilting bundle on X
with endomorphism ring A, we identify modA with the full subcategory of
Db(cohX), consisting of all objects X satisfying Hom(T,X[n]) = 0 for each
integer n 6= 0. In particular, each simple A-module U belongs to cohX or
vectX[1] where vectX denotes the category of vector bundles on X. Simple
A-modules U belonging to coh0 X, the category of sheaves of finite length,
are called central. Note that this is equivalent for U to have rank zero.

Theorem 2.4 (Maximal number of central simples). Let T be a tilting
bundle on X with endomorphism ring A. Then the number of central simple
A-modules is at most n− 2, where n is the rank of the Grothendieck group
K0(cohX). Moreover, the number of central simple A-modules equals n− 2
if and only if T equals Tcan up to a line bundle twist.

The question of the position of simple A-modules in the bounded derived
category Db(cohX) is also discussed in Section 6 (see further [KS01] and
[LS03, Section 5]).

Maximal width. Let T be a tilting bundle on X. We arrange its in-
decomposable direct summands Ti, i = 1, . . . , n, so that their slopes satisfy
µT1 ≤ · · · ≤ µTn. Then w(T ) = µTn − µT1 is called the width of T . Con-
cerning slope and stability we refer to Section 3.5.

Theorem 2.5 (Maximal width). Let T be a tilting bundle on X with
endomorphism ring A. Then w(T ) ≤ p(X).

Conversely, assuming χX ≥ 0, any tilting bundle T attaining the maximal
width p(X) equals Tcan up to a line bundle twist.

We expect that the theorem extends to negative Euler characteristic. In
support of this, we mention the next proposition and point to experimental
evidence obtained from examples constructed by means of Hübner reflections
(compare Section 3.10).

Proposition 2.6. Let T be a tilting bundle on X with endomorphism
ring A. Assume that T attains the maximal possible width p = p(X). Then:

(i) Each indecomposable direct summand of T of maximal (resp. mini-
mal) slope is semistable.
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(ii) If there exist line bundle summands L and L′ of T with µL′−µL = p
such that moreover L is a source and L′ is a sink of the quiver of A,
then T = Tcan up to a line bundle twist.

Extremality of the canonical relations. Let R be a commutative,
affine k-algebra, graded by an abelian group H. If x1, . . . , xn are homoge-
neous algebra generators of R, we always assume that their degrees gen-
erate H. We say that R is a graded domain if any product of non-zero
homogeneous elements of R is non-zero. A non-zero homogeneous element
π is called prime if R/Rπ is a graded domain. Finally, a graded domain R
is called graded factorial if each non-zero homogeneous element of R is a
finite product of homogeneous primes. Additionally, we always require that
R0 = k and that each homogeneous unit belongs to R0.

Our next theorem expresses a strong unicity property of the canonical
relations. Part (i) is [GL87, Prop. 1.3] while (ii) is due to S. Mori in the
Z-graded case [Mor77] and to Kussin [Kus98] in general.

Theorem 2.7.

(i) Let X be a weighted projective line. Then the L-graded coordinate
algebra S = k[x1, . . . , xt]/I, where I is the ideal generated by the
canonical relations, is L-graded factorial of Krull dimension two.

(ii) Assume, conversely, that R is an affine k-algebra of Krull dimension
two which is graded by an abelian group of rank one. If R is H-graded
factorial then the graded algebras (R,H) and (S,L) are isomorphic,
where S = S(p, λ) for a suitable choice of p and λ.

We recall from [GL87] that the isomorphism classes of line bundles on a
weighted projective line X form a group with respect to the tensor product,
called the Picard group PicX of X. By means of the correspondence ~x 7→
O(~x) we may identify L and PicX. The following corollary then states an
important extremality property of the canonical relations.

Corollary 2.8. Let R be an H-graded Cohen–Macaulay algebra which
yields by sheafification (Serre construction) the category cohX of coherent
sheaves on a weighted projective line X, and thus induces a monomorphism

of groups jR : H ↪→ PicX, h 7→ R̃(h). Then jR is an isomorphism if and
only if R is graded factorial, if and only if R is isomorphic to an algebra
S(p, λ) defined by canonical relations.

As mentioned in Section 3.8 the squid Tsquid is competing with the canon-
ical tilting bundle for the property of being the most natural tilting sheaf.
The squid Tsquid, compared to Tcan, is accessible with less theoretical knowl-
edge. The squid is thus easier to construct from general information about
the category cohX (compare [Len97b]). On the other hand, the squid does
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not contain any information on the canonical relations xpii = xp22 − λix
p1
1 ,

i = 3, . . . , t, and thus lacks information vital for the link via the projective
coordinate algebra S = S(p, λ) to other branches of mathematics, among
them commutative algebra, function theory, and singularity theory.

3. The set-up. We recall that we work over an algebraically closed
field k. For the convenience of the reader we collect relevant information
about the category of coherent sheaves cohX over a weighted projective
line X (see [GL87]).

3.1. The category of coherent sheaves. The weighted projective
line is given by a weight sequence p = (p1, . . . , pt) with pi ≥ 2 and a param-
eter sequence λ = (λ3, . . . , λt) of pairwise distinct, non-zero elements of the
field k. We may further assume λ3 = 1.

We recall that L = L(p) denotes the abelian group generated by elements
~x1, . . . , ~xt subject to the relations p1~x1 = p2~x2 = · · · = pt~xt =: ~c. The
element ~c is called the canonical element. The degree map is the surjective
homomorphism defined by

(3.1) δ : L→ Z, δ(~xi) = p/pi,

where p = lcm{p1, . . . , pt}. The group L has rank one with torsion subgroup
ker δ and is partially ordered with positive cone L+ =

∑t
i=1 N~xi. This order

is almost linear in the sense that for each ~x ∈ L we have the alternative

(3.2) either ~x ≥ 0 or ~x ≤ ~c+ ~ω.

Here, ~ω = (t− 2)~c−
∑t

i=1 ~xi is the dualizing element of L.

The algebra S = k[x1, . . . , xt]/I, where I is the ideal generated by the
canonical relations

xpii − (xp22 − λix
p1
1 ), i = 3, . . . , t,

is L-graded with xi being homogeneous of degree ~xi, hence S =
⊕

~x∈L+
S~x.

The group L acts on the category modL S of finitely generated L-graded
S-modules by degree shift M 7→M(~x).

The category of coherent sheaves on X is obtained from S by Serre
construction (= sheafification, compare [Ser55]),

cohX = modL S/modL
0 S,

where modL
0 S denotes the Serre subcategory of modL S of those modules of

finite length (= finite k-dimension). We refer to the L-graded algebra S as
the projective coordinate algebra of X.

The action of L on modL S induces an action on cohX, given by line
bundle twists, σ(~x) : E 7→ E(~x) and thus determines a subgroup Pic(X),
called the Picard group, of the automorphism group of cohX.
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Each coherent sheaf has a decomposition X = X+ ⊕ X0 where X0 has
finite length and X+ has no simple subobject, that is, is a vector bundle.
By vectX (resp. coh0 X) we denote the category of all vector bundles (resp.
finite length sheaves).

3.2. Serre duality. The category cohX, which is a connected, abelian
and noetherian category, has Serre duality in the form

D Ext1
X(X,Y ) = HomX(Y,X(~ω))

for all X,Y ∈ cohX. As a consequence cohX has almost split sequences
and the autoequivalence τ of cohX, given by the line bundle twist with ~ω,
serves as the Auslander–Reiten translation. In particular τ preserves the
rank.

3.3. Line bundles. By sheafification the L-graded S-modules S(~x)
yield the twisted structure sheaves O(~x). Due to graded factoriality of S,
each line bundle L in cohX has the form L = O(~x) for some ~x ∈ L. Further,
for all ~x, ~y ∈ L we obtain

HomX(O(~x),O(~y)) = S~y−~x.

This implies, in particular, that

HomX(O(~x),O(~y)) 6= 0 ⇔ ~x ≤ ~y in L.

Invoking Serre duality we obtain the next result.

Lemma 3.1. Let L be a line bundle and ~x, ~y be elements of L. Then
Ext1(L(~x), L(~y)) = 0 = Ext1(L(~y), L(~x)) = 0 if and only if −~c ≤ ~y − ~x
≤ ~c.

3.4. Euler form. The Euler form 〈−,−〉 is the bilinear form on the
Grothendieck group K0(X) given on classes of objects by

〈[E], [F ]〉 = dimk Hom(E,F )− dimk Ext1(E,F ).

As an abelian group, K0(X) is free of rank n = 2 +
∑t

i=1(pi − 1).

3.5. Rank, degree, slope and stability. Rank and degree define
linear forms rk, deg : K0(X)→Z characterized by the properties rk(O(~x))=1
and deg(O(~x)) = δ(~x) for each ~x in L. The rank (resp. degree) is strictly
positive on non-zero vector bundles (resp. non-zero sheaves of finite length).
Then for each non-zero sheaf X the quotient µ(X) = deg(X)/rk(X) is a well
defined member of Q ∪ {∞}, called the slope of X. With these notations,
we have

(3.3) µ(τE) = µ(E) + δ(~ω)

for each object E.
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A non-zero vector bundle E is called stable (resp. semistable) if µE′ < µE
(resp. µE′ ≤ µE) for each proper subobject E′ of E.

3.6. Exceptional objects and perpendicular categories. An ob-
ject E in cohX (or more generally in its bounded derived category Db(cohX))
is called exceptional if End(E) = k and E has no self-extensions, which by
heredity of cohX amounts to Ext1(E,E) = 0. Each exceptional sheaf of
finite length is concentrated in an exceptional point, say λi of weight pi,
and then has length at most pi − 1. Each exceptional sheaf E is uniquely
determined by its class in K0(cohX) (see [Hüb96] or [Mel04]).

An exceptional sequence E1, . . . , En, say in Db(cohX), consists of excep-
tional objects such that, whenever j > i, we have Hom(Ej , Ei[m]) = 0 for
all integers m. If, moreover, n equals the rank of the Grothendieck group
of cohX, we call the sequence complete. The indecomposable summands of
a (multiplicity-free) tilting object T in cohX (or Db(cohX)) can always be
arranged as a complete exceptional sequence.

If E is exceptional in cohX, its right perpendicular category E⊥ consists
of all objects X from cohX satisfying Hom(E,X) = 0 = Ext1(E,X). It is
again an abelian hereditary category with Serre duality. If D = Db(cohX)
denotes the bounded derived category, it is also possible to form the right
perpendicular category E⊥D , formed in D, consisting of all objects X of D
satisfying Hom(E,X[m]) = 0 for each integer m. As is easily seen, E⊥D

equals Db(E⊥).

3.7. Coxeter polynomials. Any triangulated category T with a tilt-
ing object satisfies Serre duality in the form D Hom(X,Y [1]) = Hom(Y, τX)
for a self-equivalence τ of T . On the Grothendieck group K0(T ), the equiva-
lence τ induces an invertible Z-linear map, the Coxeter transformation of T .
Its characteristic polynomial is called the Coxeter polynomial of T . Typi-
cal instances for T are the (bounded) derived category Db(H), where H
is a hereditary category with Serre duality, or the (bounded) derived cate-
gory Db(modA) of modules over a finite-dimensional algebra of finite global
dimension.

3.8. Tilting objects. An object T ∈ cohX is called a tilting sheaf if
Ext1(T, T ) = 0 and T generates the category cohX homologically, in the
sense that Hom(T,X) = 0 = Ext1(T,X) implies X = 0. If further T is a
vector bundle, it is called a tilting bundle. In the terminology of [LM96] the
endomorphism algebras of tilting bundles are concealed-canonical and thus
by [LM96] have a sincere separating tubular family (subcategory) of stable
tubes. Moreover, by [LdlP99] the existence of such a separating subcategory
characterizes concealed-canonical algebras.



192 M. BAROT ET AL.

The line bundles O(~x), 0 ≤ ~x ≤ ~c, yield the canonical tilting bundle
Tcan =

⊕
0≤~x ≤~cO(~x) for cohX. Its endomorphism ring is given by the

quiver

O(~x1)
x1 // O(2~x1) // · · · // O((p1 − 1)~x1)

x1

��

O(~x2) x2
// O(2~x2) // · · · // O((p2 − 1)~x2)

x2 **O

x1

??

x2

44

xt

$$

O(~c)
...

...

O(~xt)
xt // O(2~xt) // · · · // O((pt − 1)~xt)

xt
::

with the canonical relations

(3.4) xpii = xp22 − λix
p1
1 , i = 3, . . . , t.

This algebra is the canonical algebra associated with X.

Another tilting sheaf in cohX, competing with Tcan for the role of being
‘the most natural tilting sheaf’, is the squid tilting sheaf Tsquid, which we
are going to define now. For each i from 1 to t = t(X) there is exactly one
simple sheaf Si, concentrated in λi, satisfying Hom(O, Si) 6= 0. Note for
this purpose that λ1 =∞ and λ2 = 0. Moreover, there exists a sequence of
exceptional objects of finite length together with epimorphisms

Bi : S
[pi−1]
i � S

[pi−2]
i � · · ·� S

[1]
i = Si,

where S
[j]
i has length j and top Si. The direct sum of O, O(~c) and all the

S
[j]
i , i = 1, . . . , t, j = 1, . . . , pi − 1, then forms the tilting sheaf Tsquid:

S
[p1−1]
1

// S
[p1−2]
1

// · · · // S
[1]
1

S
[p2−1]
2

// S
[p2−2]
2

// · · · // S
[1]
2

O
x1 //

x2
// O(~c)

y1
<<

y2 66

yt ))

...
...

...

S
[pt−1]
t

// S
[pt−2]
t

// · · · // S
[1]
t

whose endomorphism algebra is the squid algebra Csquid associated with X.
It is given by the above quiver and is subject to the relations

y1x1 = 0, y2x2 = 0, yi(x2 − λix1) = 0 for i = 3, . . . , t.

A less known tilting object, actually a tilting complex Tcox in Db(cohX),
is displayed below. It is called the Coxeter–Dynkin configuration of canonical
type and exists for t(X) ≥ 2. Like a squid it consists of two line bundles and
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of t = t(X) branches of finite length sheaves, up to translation in Db(cohX).
Following [LdlP11], where the dual algebra is considered, its endomorphism
ring Ccox is called a Coxeter–Dynkin algebra of canonical type (see Fig. 1).
Such algebras, actually their underlying bigraphs, play a prominent role in
singularity theory (compare for instance [Ebe07]).

S
(p1−1)
1

α1

��

// S
(p1−2)
1

// · · · // S
(2)
1

// S
(1)
1

Sp2−1
2

α2 ''

// S
(p2−2)
2

// · · · // S
(2)
2

// S
(1)
2

O(~c)

α1

??

α2

77

αt

''

... O(−~ω)[1]
...

S
(pt−1)
t

αt
77

// S
(pt−2)
t

// · · · // S
(2)
t

// S
(1)
t

Fig. 1. Coxeter–Dynkin algebra of canonical type

The endomorphism algebra Ccox of Tcox is given by the above ‘quiver’
with the two relations

(3.5)
t∑
i=2

α2
i = 0 and α2

1 =
t∑
i=3

λiα
2
i .

It is remarkable that Ccox is Schurian for t(X) = 3. Moreover, for t(X) ≥ 5
the number of relations is strictly less than for the canonical algebra or the
squid algebra. In the tubular case, and only there, Ccox can be realized as
the endomorphism ring of a tilting sheaf, actually as the endomorphism ring
of a tilting bundle; see Section 4.6 for an interesting extremal property of
these algebras.

3.9. Tubular mutations. Assume X has Euler characteristic zero.
Tubular mutations are distinguished self-equivalences of Db(cohX) playing
a key role in the classification of indecomposable objects. By tilting they are
related to Ringel’s shrinking functors from [Rin84]. Their formal definition
is due to [LM93]. From different perspectives, the subject is also treated in
[Mel97], [LdlP99], [Kus09], [Len07]. For quick information we recommend
the survey in [Mel04].

The tubular mutation ρ : Db(cohX) → Db(cohX) is a triangle equiv-
alence that is given on indecomposable objects of slope µX > 0 by the
universal extension

(3.6) 0→
p̄⊕
j=1

Ext1(X, τ jO)⊗k τ jO → ρX → X → 0

(see [LM93] or [Len07, Section 10.3]). Another self-equivalence of Db(cohX),



194 M. BAROT ET AL.

actually also a tubular mutation, is given by the line bundle shift σ(X) =
X(~xt), where ~xt belongs to the largest weight of X, thus δ(~xt) = 1. On the
pair (d, r) = (degX, rkX), the actions induced by σ and ρ are given by right
multiplication with the matrix

(
1 0
1 1

)
resp.

(
1 1
0 1

)
. In particular, σ (resp. ρ)

preserves rank (resp. degree). Further, σ (resp. ρ) induces an action on
slopes, given by the fractional linear transformation q 7→ 1 + q (resp. q 7→
q/(1 + q)).

The self-equivalences σ and λ = ρ−1 are conjugate, actually

(3.7) λ = (λσ)−1σ(λσ),

which follows from the braid relation σλσ = λσλ (see for instance [LM00,
prop. 6.2]).

3.10. Hübner reflections. A useful tool to construct new tilting
sheaves from given ones is by means of mutations (more precisely, by Hübner
reflections). We recall the relevant facts from [Hüb96] (see also [Hüb97]). Let
T be a (multiplicity-free) tilting sheaf on a weighted projective line X and
assume that T = T ′ ⊕E with E indecomposable. Then there exists exactly
one indecomposable object E∗ not isomorphic to E such that T ∗ = T ′⊕E∗
is again a tilting sheaf. We say that T ∗ is the mutation of T at the ver-
tex (corresponding to) E. In more detail, let Q be the quiver of the en-
domorphism algebra A of T . Let T1, . . . , Tn be the (non-isomorphic) inde-
composable summands of T and let U1, . . . , Un be the corresponding simple
A-modules, viewed as members of Db(cohX) where we identify Ti with the
ith indecomposable projective A-module. A vertex is called a formal source
(resp. a formal sink) if Ui belongs to cohX (resp. to (cohX)[1]). Each source
(resp. sink) of Q is a formal source (resp. a formal sink). Moreover, each ver-
tex i of Q is either a formal source or a formal sink. Assume that i is a formal
sink. Then there exists an exact sequence

(3.8) 0→ T ∗i
u−→

n⊕
j=1

T
κj
j → Ti → 0

where κj denotes the number of arrows from j to i in Q, and where u collects
these arrows. Moreover, we have Ext1(Ti, T

∗
i ) = k and Ext1(T ∗i , Ti) = 0. The

case of a formal source is dual.

4. Proofs and more. We fix a tilting bundle T on X and denote by
A = End(T ) its endomorphism ring. We recall the previous convention to
consider modA as a full subcategory of cohX∨cohX[1], and use the notation
S1, . . . , Sn for the corresponding simple A-modules. Let w denote the class
of any homogeneous simple sheaf S0. Note that rkx = 〈x,w〉 = −〈w, x〉 for
each x ∈ K0(X).
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Lemma 4.1 ([Hüb96, Prop. 4.26]). Assume T is a tilting bundle on X.
With the preceding notations we have

n∑
i=1

rk(Ti)[Si] = w,
n∑
i=1

rk(Si)[Ti] = −w.

Proof. Indeed, the Euler form 〈−,−〉 satisfies 〈[Ti], [Sj ]〉 = δij . Express-
ing w in the basis of the simples, w =

∑n
i=1 αi[Si], we get

rkTj = 〈[Tj ],w〉 =

n∑
i=1

αi〈[Tj ], [Si]〉 =

n∑
i=1

αiδij = αj ,

and the first formula follows. Expressing −w in the base of the projectives,
−w =

∑n
i=1 βi[Ti], we get

rkSj = 〈[Sj ],w〉 = −〈w, [Sj ]〉 =
n∑
i=1

βi〈[Ti], [Sj ]〉 = βj .

This shows the second formula.

4.1. Maximal number of central simples. We are now going to
prove Theorem 2.4. Denote by S1, . . . , Sn the simple End(T )-modules cor-
responding to the projectives T1, . . . , Tn respectively. We may assume that
T1, . . . , Tn form an exceptional sequence, a fact implying that the simples
Sn, . . . , S1 form an exceptional sequence in the reverse direction.

To prove the first claim of the theorem, we observe that the vertex associ-
ated to T1, resp. to Tn, is a source, resp. a sink, of the quiver of A = End(T ).
Hence S1 = T1 is simple projective over A of positive rank and Sn = τTn[1]
is simple injective over A of negative rank. Since central simple A-modules
have rank zero, we conclude that the number of central simple modules is
at most n− 2. The bound n− 2 is actually attained for the canonical tilting
bundle Tcan: then 0 → O((j − 1)~xi) → O(j~xi) → Si,j → 0 is a projective
resolution of the simple A-module Si,j associated to the projective O(j~xi)
for j = 1, . . . , pi− 1. Hence rkSi,j = rkO(j~xi)− rkO((j− 1)~xi) = 1− 1 = 0
showing that Si,j is a central simple A-module.

We next assume that T is a tilting bundle with n − 2 central simple
modules over A. As before we conclude that S1 = T1 (resp. Sn = τTn[1])
is a simple projective (resp. simple injective) A-module of positive (resp.
negative) rank. Hence the simple A-modules S2, . . . , Sn−1 have rank zero.

Applying Lemma 4.1 we obtain rk(S1)[T1] + rk(Sn)[Tn] = −w. Since
S1 = T1 and Sn = τTn[1] we have rkS1 = rkT1 and rkSn = − rkTn.
Consequently,

(4.1) rk(T1)[T1] + w = rk(Tn)[Tn].

Applying the rank function to (4.1) we get (rkT1)2 = (rkTn)2, and conclude
that rkT1 = rkTn since both values are positive. Call this common value ρ;
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then (4.1) implies that w = ρ([Tn] − [T1]). Since w is indivisible in the
Grothendieck group K0(cohX) we further get ρ = 1. Hence T1 = L and Tn
are line bundles and now (4.1) implies that Tn = L(~c).

If degS1 =q, it follows from (3.3) that degSn=deg(τTn[1])=−deg(τTn)
= −(deg(L(~c)) + δ(~ω)) = −(q+p+ δ(~ω)). Invoking deg w = p and addition-
ally Lemma 4.1 we obtain

p = rkT1 degS1 + rkTn degSn +

n−1∑
h=2

rkTh degSh

= −(p+ δ(~ω)) +
n−1∑
h=2

rkTh degSh.

Hence

(4.2) 2p+ δ(~ω) =

n−1∑
h=2

rkTh degSh ≥
n−1∑
h=2

degSh.

By assumption the A-modules Si, i = 2, . . . , n − 1, are simple exceptional
sheaves of rank zero. Since further Sn−1, . . . , S2 form an exceptional se-
quence, each exceptional tube of coh0 X with pj simple sheaves can contain
at most pj−1 simple A-modules. Since

∑t
j=1(pj−1) = n−2, our assumption

on the number of central simples implies that each exceptional tube of rank
pj contains exactly pj−1 of them. Using further the fact that degSh ≥ p/pj
if Sh, h = 2, . . . , n − 1, belongs to an exceptional tube of rank pj , we thus
obtain

(4.3)

n−1∑
h=2

degSh ≥
t∑

j=1

(pj − 1)
p

pj
= t · p+

t∑
j=1

1

pj
= 2p+ δ(~ω).

This implies that inequality (4.2) is indeed an equality, which proves that
rkTi = 1 for all i = 1, . . . , n.

Thus T is a direct sum of line bundles Ti = L(~yi), and moreover T1 = L
and Tn = L(~c). Applying Lemma 3.1 to the pairs L,L(~yi) and L(~yi), L(~c),
we then obtain 0 ≤ ~yi ≤ ~c. This shows that T =

⊕
0≤~x≤~c L(~x) is the

canonical tilting bundle up to a line bundle twist, and thus finishes the
proof of Theorem 2.4.

4.2. Maximal number of line bundles. We now prove Theorem 2.1.
Since T =

⊕n
i=1 Ti is tilting, we obtain [O] =

∑n
i=1mi[Ti] with mi ∈ Z.

Passing to ranks we deduce that the common rank r of the Ti divides 1.
Hence r = 1 follows, and thus T =

⊕
~y∈J O(~y) for some subset J ⊂ L of

cardinality n = 2+
∑t

i=1(pi−1) where p = (p1, . . . , pt) is the weight sequence
of X. By means of a line bundle twist, we may assume that (i) 0 ∈ J and
(ii) 0 ≤ δ(~x) for all ~x ∈ J .
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Lemma 3.1 implies (iii) −~c ≤ ~x ≤ ~c for each ~x ∈ J . Invoking the normal
form ~x =

∑t
i=1 `i~xi + `~c with 0 ≤ `i < pi and ` ∈ Z, conditions (ii) and

(iii) imply that ` ∈ {−1, 0, 1}. Note that ` ∈ {0, 1} implies that ~x = a~xi
for some i = 1, . . . , t and 0 ≤ a ≤ pi. If ` = −1, then the inequality
0 ≤ ~x + ~c =

∑t
i=1 `i~xi ≤ 2~c shows that exactly two of the summands `i~xi

are non-zero. Hence ~x+~c = `i~xi + `j~xj with i 6= j and then ~x = ai~xi − bj~xj
with 0 < ai < pi and 0 < bj < pj . In the first case, where ` ∈ {0, 1}, we call
~x unmixed, in the second case, where ` = −1, ~x is called mixed.

We distinguish the two cases (a) ~c ∈ J and (b) ~c /∈ J .

Case (a). If ~c belongs to J , then Lemma 3.1 implies 0 ≤ ~x ≤ ~c for each
~x ∈ J and so T = Tcan for cardinality reasons.

Case (b). If ~c does not belong to J , then J contains a mixed element,
say, ~y = a1~x1 − a2~x2 with 0 < a1 < p1 and 0 < a2 < p2.

We are going to show that then t(X) = 2 and first claim that J ⊂ Z~x1 +
Z~x2. Indeed let 0 6= ~x ∈ J , say, ~x = bi~xi − bj~xj where i 6= j, i, j = 1, . . . , t,
0 < bi < pi, and 0 ≤ bj < pj . Note that bi = 0 is impossible since ~x 6= 0 and
δ(~x) ≥ 0. By Lemma 3.1 we get 0 ≤ ~y − ~x+ ~c ≤ 2~c, hence

0 ≤ a1~x1 + bj~xj + (p2 − a2)~x2 − bi~xi ≤ 2~c.

Since i 6= j this is only possible if i ∈ {1, 2}. If bj = 0, then ~x = bi~xi belongs
to Z~x1 +Z~x2. If bj 6= 0, then reversing the roles of ~x and ~y in the preceding
argument we see that also j belongs to {1, 2}. Summarizing we conclude
that J ⊂ Z~x1 + Z~x2.

Finally assume that t(X) ≥ 3. Let S3 be a simple sheaf concentrated in
the third exceptional point of weight p3 and such that Hom(O, S3) = 0. Since
S3(~xi) = S3 for each i 6= 3 we obtain Hom(O(~x), S3) = 0 for each ~x from
Z~x1 + Z~x2. In particular, we get Hom(T, S3) = 0. Because T is a vector
bundle, we further obtain Ext1(T, S3) = 0, contradicting the assumption
that T is tilting. This finishes the proof of Theorem 2.1.

4.3. Homogeneity. Let A be a finite-dimensional k-algebra, and E a
finite-dimensional right A-module. Then the k-algebra

A[E] =

(
A 0

E k

)
is called the one-point extension of A by E. The proof of Theorem 2.2 is
based on the next proposition.

Proposition 4.2. Let T be a tilting sheaf in cohX with indecomposable
summands T1, . . . , Tn. Consider the following properties:

(a) T is homogeneous in the abelian category cohX.
(b) T is homogeneous in the triangulated category Db(cohX).
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(c) The perpendicular categories T⊥i , formed in cohX, are pairwise de-
rived equivalent.

(d) The Coxeter polynomial ψ′i of T⊥i does not depend on i = 1, . . . , n.
(e) The Coxeter polynomial ψ̄i of the one-point extension A[Pi] of A =

End(Ti) by the indecomposable projective A-module Pi, correspond-
ing to Ti, does not depend on i = 1, . . . , n.

Then we always have the implications (a)⇒(b)⇒(c)⇒(d)⇔(e). Moreover,
if X is not tubular, the indecomposable summands of T are line bundles,
forcing the equivalence of (a) to (e).

Proof. (a)⇒(b). Each self-equivalence of cohX extends to a self-equiv-
alence of Db(cohX).

(b)⇒(c). With D = Db(cohX), the right perpendicular category T⊥Di ,
formed in D, equals the derived category of T⊥i .

(c)⇒(d). The Coxeter polynomial is preserved under derived equiva-
lence.

(d)⇔(e). In view of [Len99, Prop. 18.3 and Cor. 18.2] (see also [LdlP08,
Prop. 4.5]) the Coxeter polynomials ψ′i of T⊥i and ψ̄i of the one-point ex-
tension A[Pi] are related by the reciprocity formula

(4.4) PTi =
ψ − xψ′i

ψ
=
ψ̄i − xψ

ψ
,

where ψ denotes the Coxeter polynomial of cohX, and

(4.5) PTi =

∞∑
n=0

〈[Ti], [τnTi]〉xn

denotes the Hilbert–Poincaré series of Ti. The equivalence of conditions (d)
and (e) is now implied by formula (4.4), thus finishing the proof of the first
claim.

We next assume that X is not tubular, and that (d) or (e) holds, which
forces by (4.4) all the PTi to be equal. We claim that all the Ti have the
same rank. Let αm denote the mth coefficient of PTi . Denoting, as usual, by
p̄ the least common multiple of the weights, for each x in K0(cohX) we have

τ p̄x = x+ rk(x)δ(~ω)w,

where w denotes the class of any ordinary simple sheaf on X. This is implied
by the formula p̄~ω = δ(~ω)~c from [GL87]. It follows that

αp̄ − α0 = rk(Ti)δ(~ω)〈[Ti],w〉 = rk(Ti)
2δ(~ω),

and thus rk(Ti)
2 δ(~ω) does not depend on i. By our assumption, δ(~ω) 6= 0,

then the rank of Ti does not depend on i = 1, . . . , n. Therefore by Theo-
rem 2.1 all the Ti are line bundles, forcing T to be homogeneous.
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Proof of Theorem 2.2. By [LM00] each self-equivalence of cohX is rank
preserving. Hence the indecomposable summands of each homogeneous tilt-
ing sheaf have the same rank. Thus by Theorem 2.1 property (i) implies the
claim. For properties (ii) to (iv) the claim follows from Proposition 4.2.

4.4. Maximal amount of bijections. We recall that a module G over
a finite-dimensional k-algebra A is called generic if (i) G is indecomposable,
(ii) G has finite length over End(G), and (iii) G has infinite k-dimension.
Now let A be an almost concealed-canonical algebra, that is, the endomor-
phism algebra of a tilting sheaf T on a weighted projective line X. The injec-
tive hull E(O) of the structure sheaf in the category QcohX of quasicoherent
sheaves on X equals the sheaf of rational functions K. Under the equiva-
lence R Hom(T,−) : Db(QcohX)→ Db(ModA) the sheaf K corresponds to
a generic A-module G, called the T -distinguished generic A-module. It is
known (compare [Len97a, RR06]) that G is the unique generic A-module
if χX 6= 0. In the tubular case χX = 0 the situation is more complicated,
since there exists a rational family (G(q))q of generic A-modules, indexed
by a set of rational numbers; for details we refer to [Len97a]. In the proper
formulation our next result extends also to the generic modules G(q). The
details are left to the reader. Here, we restrict to the T -distinguished case.

Proof of Theorem 2.3. We view G = K as a (contravariant) representa-
tion of the quiver of A. First we show that each arrow α : u→ v induces a
monomorphism or an epimorphism Gα : Gv → Gu. It follows from [Len97a]
that the endomorphism ring of G equals the rational function field K = k(x),
and moreover rkTu = dimK Gu for each vertex u of the quiver of A. By a
result of Happel–Ringel [HR82, Lemma 4.1], the map Tα : Tu → Tv is
a monomorphism or an epimorphism since Ext1(Tv, Tu) = 0. Since G is
injective in the category of quasi-coherent sheaves on X this implies that
Gα = Hom(α,G) : Gv → Gu is an epimorphism or a monomorphism of
K-vector spaces. Hence Gα is bijective if and only if dimK Gv = dimK Gu,
that is, if and only if rkTu = rkTv. In particular, for the canonical tilting
bundle all Gα are bijective. Conversely, assuming that all Gα are bijective,
connectedness of the quiver of A implies that all Tu, u = 1, . . . , n, have the
same rank, and then Theorem 2.1 implies that T equals Tcan up to a line
bundle twist.

4.5. Maximal width. The proof of Theorem 2.5 is based on the fol-
lowing proposition.

Proposition 4.3. Let E and F be non-zero vector bundles on a weighted
projective line X of arbitrary weight type.

(i) If µF − µE > δ(~c+ ~ω) then Hom(E,F ) is non-zero.
(ii) If Ext1(F,E) = 0 then µF − µE ≤ δ(~c).
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Proof. Property (i) is shown in [LdlP97, Thm. 2.7], and (ii) follows from
(i) by Serre duality.

It amounts to a significant restriction for E and F to attain the bound
for the slope in part (ii).

Corollary 4.4. Let E and F be non-zero vector bundles with slope
difference µF − µE = p and satisfying Ext1(F,E) = 0. Then E and F are
semistable.

In particular, if E and F are indecomposable and χX < 0 then E and
F are quasi-simple in their respective Auslander–Reiten components which
have type ZA∞.

Proof of Corollary 4.4. By symmetry it suffices to show that each non-
zero subobject F ′ of F has µF ′ ≤ µF . Indeed, since the category cohX
is hereditary, vanishing of Ext1(F,E) implies that Ext1(F ′, E) = 0. Thus
µF ′ − µE ≤ p by Proposition 4.3. This forces µF ′ ≤ µF and proves the
semistability of F .

Proof of Theorem 2.5. Let T be a tilting bundle on X with µT1 ≤ · · ·
≤ µTn. Since 0 = Ext1(Tn, T1) = D Hom(T1, Tn(~ω)) we deduce by the pre-
ceding proposition that µTn(~ω)−µT1 ≤ p+δ(~ω). Since µTn(~ω) = µTn+δ(~ω)
we conclude that µTn − µT1 ≤ p, showing w(T ) ≤ p.

The bound p is clearly attained for the canonical tilting bundle since
0 = µO and µO(~c) = p.

We now assume that χX ≥ 0 and that T is a tilting bundle on X with
w(T ) = p. We set F = Tn(−~c) and observe that µF = µT1 and [Tn] =
[F ] + rk(F )w in K0(cohX). Since Hom(Tn, T1) = 0 by semistability and
Ext1(Tn, T1) = 0 we get 0 = 〈[Tn], [T1]〉 = −〈[T1], [Tn(~ω)]〉 and therefore

0 = 〈[T1], [Tn(~ω)]〉 = 〈[T1], [F (~ω)]〉+ rkF 〈[T1],w〉(4.6)

= 〈[T1], [F (~ω)]〉+ rkT1 rkF = −〈[F ], [T1]〉+ rkT1 rkTn.

Since T1 and Tn have positive rank this implies that Hom(F, T1) 6= 0. We
will show that F = T1 is a line bundle. If χX = 0, then F and T1 must lie in
the same tube. By exceptionality, they further have a quasi-length less than
the rank of the tube, in particular, dim Hom(F, T1) ≤ 1. Then (4.6) implies
that Ext1(F, T1) = 0 and dim Hom(F, T1) = 1, thus rkT1 = rkF = 1 and
finally F = T1. If χX > 0, then F = T1 follows by stability since F and T1

have the same slope, and rkT1 = 1 follows again by (4.6).
The argument also shows that Tn is the unique indecomposable sum-

mand of T of maximal slope µ(Tn), and dually T1 is the unique indecom-
posable summand of T having minimal slope. By semistability this implies
Hom(Ti, T1) = 0 = Hom(Tn, Ti) for all 1 < i < n, showing that T1 is a source
and Tn a sink of the quiver of End(T ). We finally see that T is the canonical
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tilting bundle, up to a line bundle twist, by applying Proposition 2.6, whose
proof is given below. This will conclude the proof of Theorem 2.5.

Proof of Proposition 2.6. Assertion (i) is a special case of Corollary 4.4.
Concerning (ii) let L and L′ be line bundle summands of T , correspond-

ing to a sink (resp. a source) of the quiver of A and satisfying the maxi-
mality property µL′ − µL = p. Since L′ and L(~c) have the same degree,
we notice first that L′ = L(~c + ~x) for some ~x of degree zero. Because
0 = Ext1(L′, L) = D Hom(L,L′(~ω)) we obtain ~c + ~ω + ~x ≤ ~c + ~ω, hence
~x ≤ 0. Since 0 ≥ ~x and ~x has degree zero, we obtain ~x = 0, implying that
L′ = L(~c). Because of the maximality property µL(~c) = µL+ p, each direct
summand Ti of T satisfies µL ≤ µTi ≤ µL(~c) by Proposition 4.3.

By our assumption, for L (resp. L(~c)) to correspond to a source (resp. a
sink) of A, we may assume that L = T1 and L(~c) = Tn. Thus as in the proof
of Theorem 2.4 we see that S1 = T1 and Sn = τTn[1] = T1(~c + ~ω)[1] and
rkSn = − rkTn = −1, where S1, . . . , Sn denote the simple A-modules corre-
sponding to the indecomposable projective A-modules T1, . . . , Tn. Invoking
Lemma 4.1 we obtain

[T1]− [Tn] +

n−1∑
i=2

rk(Si)[Ti] = −w.

Since T1 is a line bundle, we have the equality [T1(~c)] = [T1] + w, implying

n−1∑
i=2

rk(Si)[Ti] = 0.

Since the classes [T1], . . . , [Tn] are linearly independent in K0(cohX), each
simple A-module Si with i = 2, . . . , n − 1 has rank zero. Hence A has the
maximal possible number of central simple modules. By Theorem 2.4 we
then conclude that T = Tcan up to a line bundle twist.

4.6. An addendum: tubular width. For non-zero Euler characteris-
tic the “distance” |µY −µX| of a pair of objects is an invariant with respect
to the autoequivalences of Db(cohX). This is no longer true for Euler char-
acteristic zero where the “tubular distance” given by the absolute value of

rkX rkY (µY − µX) =

∣∣∣∣∣ rkX rkY

degX deg Y

∣∣∣∣∣ = 〈〈X,Y 〉〉

serves as a proper replacement. Here

〈〈X,Y 〉〉 =
∑
j∈Zp

〈X, τ jY 〉, p = lcm(p1, . . . , pt),

is an average of the Euler form, and the above equality is Riemann–Roch’s
theorem for a tubular weighted projective line X (see [LM93]). For instance,



202 M. BAROT ET AL.

each autoequivalence σ of Db(cohX), when applied to the canonical tilting
bundle Tcan =

⊕
0≤~x≤~cO(~x), yields tubular distance

〈〈σO, σO(~c)〉〉 = p,

while |µ(σO(~c))− µ(σO)| > 0 can get arbitrarily small: see Theorem 6.7(ii)
below.

Assume X is tubular, and T is a multiplicity-free tilting sheaf whose
indecomposable summands T1, . . . , Tn have monotonically increasing slope
(with equality allowed). The question arises whether 〈〈T1, Tn〉〉 = p charac-
terizes Tcan up to autoequivalence of Db(cohX). We note (without proof)
that this is indeed the case for tubular type (2, 2, 2, 2), but fails for the tubu-
lar weight triples (3, 3, 3), (2, 4, 4) and (2, 3, 6), as shown by the examples of
Coxeter–Dynkin algebras of canonical type in Figure 2.
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Fig. 2. Coxeter–Dynkin algebras with 〈〈T1, Tn〉〉 = p

Note that these algebras are Schurian and that the relations are given
by (3.5); moreover, they all have tubular width 〈〈T1, Tn〉〉 = p. Labels at
vertices display the pair (degree, rank) as ‘fractions’. We remark further that
a Coxeter–Dynkin algebra of type (2, 2, 2, 2) is isomorphic to the canonical
algebra of the same type, so it does not qualify as a (counter-)example in
the present context.

5. Two instructive examples. First we present two concealed-cano-
nical algebras A and B, one tubular and the other wild, with interesting
properties. We note that the quivers of A and B have a unique sink and a
unique source.

Example 5.1. This example is the endomorphism ring of a tilting bundle
T on a weighted projective line X of tubular type (3, 3, 3). Figure 3 shows
a branch enlargement A of a canonical algebra of type (2, 3, 3). The pair
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Fig. 3. The algebra A of tubular weight type (3, 3, 3)

(degE, rkE) for each indecomposable summand E of T is displayed in this
figure, and also later, as the (unreduced) fraction degree/rank.

We note that for each indecomposable summand E of T the degree-rank
pair (deg E, rkE) is coprime. By [LM93] this implies that E is quasi-simple
in its tube which has (the maximal possible) τ -period 3. This in turn implies
that for any two indecomposable summands T ′ and T ′′ of T there exists a
self-equivalence u of the triangulated category Db(cohX) sending T ′ to T ′′.
To phrase it differently, the tilting bundle T is homogeneous in Db(cohX).
But End(T ) is not a canonical algebra, implying by Theorem 2.1 that there
is no self-equivalence v of Db(cohX) such that v(T ) is a direct sum of line
bundles.

Example 5.2. For weight type (2, 3, 7) where χX < 0 there exists a tilt-
ing bundle T =

⊕11
i=1 Ti whose indecomposable summands Ti have rank and

degree as shown in Figure 4. Vertices are numbered [1] to [11], (unreduced)
fractions d

r represent the pair (degree, rank). The quiver Q and the (mini-
mal) numbers of relations for the endomorphism algebra B = End(T ) are
displayed in the figure.
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Fig. 4. The algebra B of weight type (2, 3, 7)
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The most efficient way to construct tilting sheaves T as above is to apply
Hübner reflections to the canonical configuration Tcan (see Section 3.10).
Here, one gets back from T to Tcan, up to a line bundle twist, by successive
mutations at the vertices 6, 4, 9, 8, 7, 8, 3, 5, 1, 2, 10, 5, 9, 10, 7, 3, 1, 10, 8, 2, 9,
4, 9, 7, 6, 4. Because we are dealing with ≤ 3 weights, by [LM02] there exists,
up to isomorphism, a unique endomorphism algebra B of a tilting bundle T
with the given quiver and number of relations.

C. M. Ringel has collected in [Rin09] an impressive list of properties
distinguishing canonical algebras within the class of tame concealed algebras,
that is, the endomorphism rings of tilting bundles for a weighted projective
line of Euler characteristic χX > 0. A number of these properties rely on
an inspection of the Happel–Vossieck list classifying the tame concealed
algebras [HV83].

In addition to the characterizing properties from Theorems 2.1, 2.3
and 2.4, Ringel states in [Rin09] that for a tame concealed algebra A (usu-
ally assumed to be not of type (p, q)) each condition of the following list
implies that A is canonical:

(1) A has only one source and one sink.
(2) A is not Schurian.
(3) There exists a 2-Kronecker pair (X,Y ) with X simple in modA.
(4) There exists a 2-Kronecker pair (X,Y ) with Y simple in modA.
(5) There exists a one-parameter family of local modules.
(6) There are local modules with self-extensions.
(7) There exists a one-parameter family of colocal modules.
(8) There are colocal modules with self-extensions.
(9) There exists a projective indecomposable which is not thin.

(10) There exists an injective indecomposable which is not thin.

Here, a pair (X,Y ) is called a 2-Kronecker pair ifX,Y are exceptional, Hom-
orthogonal, and with an extension space Ext1(Y,X) of dimension two. An
A-module X is called local, respectively colocal, if it has a unique maximal
submodule (resp. a unique simple submodule). An A-module X 6= 0 is called
thin if for each indecomposable projective P the space HomA(P,X) has
dimension at most one.

As shown by our next result, characterizations of canonical algebras
within the class of tame concealed algebras have a tendency not to extend
to the case of concealed-canonical algebras in general, the major exceptions
to this rule being those characterizations treated in Section 2.

Proposition 5.3. None of the conditions (1)–(10) yields a characteri-
zation for canonical algebras in general.
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Proof. Both algebras, A and B, have only one source and only one sink
and they are not Schurian, and they satisfy conditions (1), (2), (9) and (10).
We now show that B satisfies condition (3): Let X = S3 be the simple
associated to vertex 3 and Y be the 2-dimensional indecomposable with top
S1 and socle S2. Then X and Y are exceptional objects which are Hom-
orthogonal with dimk Ext1(X,Y ) = 2. For (4) repeat dualizing (3). For
(5), (6), (7) and (8) we look at the A-modules given as representations in
Figure 5.
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Fig. 5. Distinct local, colocal and self-extending A-modules

Note that the family is given by pairwise non-isomorphic indecomposables
which are local and colocal and have self-extensions.

6. Algebras antipodal to canonical. Instead of maximality proper-
ties, as studied in Section 2, we now investigate the corresponding minimality
properties. We start with a couple of properties of general interest.

Useful generalities

Proposition 6.1. Let X be a weighted projective line, T a tilting bundle
and L a line bundle on X. Then either Hom(T, L) = 0 or Ext1(T, L) = 0.

Proof. Assume that Hom(T, L) 6= 0 and Ext1(T, L) 6= 0. Invoking Serre
duality, we obtain non-zero morphisms u : T → L and v : L → T (~ω);
moreover v is a monomorphism since T is a vector bundle. Thus vu is non-
zero in Hom(T, T (~ω)) = D Ext1(T, T ) = 0, contradicting that T is tilting.

The next result is due to T. Hübner [Hüb89] (see also [LR06, Proposi-
tion 6.5]). It will play a central role when investigating minimality properties
for positive Euler characteristic.

Proposition 6.2 (Hübner). Let X be a weighted projective line with
χX > 0. Then the direct sum of (a representative system of ) the indecom-
posable vector bundles E with slope in the range 0 ≤ µE < |δ(~ω)| is a tilting
bundle Ther whose endomorphism ring A is hereditary. Moreover:

(i) If t(X) = 3, then each indecomposable summand E of Ther has slope
0 or |δ(~ω)|/2. Correspondingly, each vertex in the quiver of A is a
sink or a source.
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(ii) If X has weight type (p1, p2), 1 ≤ p1 ≤ p2, then Ther is the direct sum
of all line bundles O(~x) with degree in the range 0 ≤ δ(~x) ≤ |δ(~ω)|−1
= δ(~x1) + δ(~x2)−1. The quiver of A has bipartite orientation if and
only if p1 = p2.

The next result is a reformulation of a result by Kerner and Skowroński
[KS01, Theorem 3].

Theorem 6.3 (Kerner–Skowroński). Let X be a weighted projective line
of negative Euler characteristic. Further let m be a positive integer. Then
there exists a tilting bundle T on X such that for each indecomposable sum-
mand Ti of T and each simple sheaf S on X the space Hom(Ti, S) has di-
mension ≥ m. In particular, each Ti has rank ≥ m.

For a related but different result we refer to Proposition 6.5.

Minimal number of line bundle summands. In this section we
investigate the number of non-isomorphic line bundle summands of a tilt-
ing bundle T on X. Note that the index [L : Z~ω] equals the number of
Auslander–Reiten orbits of line bundles. It is not difficult to see that ±[L :
Z~ω] = p1 . . . ptχX, where the number on the right hand side is known as the
Gorenstein invariant or Gorenstein parameter of the L-graded coordinate
algebra S = S(p, λ) of X. For positive Euler characteristic, we obtain the
following values for [L : Z~ω]:

weight type (p1, p2) (2, 2, n) (2, 3, 3) (2, 3, 4) (2, 3, 5)

[L : Z~ω] p1 + p2 4 3 2 1

Proposition 6.4.

(i) Assume χX > 0. Then each tilting bundle T on X contains at least
one member from each Auslander–Reiten orbit of line bundles. In
particular, T contains at least [L : Z~ω] non-isomorphic line bundles.
This minimal value is attained if End(T ) is hereditary.

(ii) Assume χX ≤ 0. Then there exists a tilting bundle on X without a
line bundle summand.

Note that the converse of the last statement of assertion (i) is not true.
For weight type (2, 3, 5) there exists a tilting bundle T with endomorphism
ring and rank distribution as follows:

3

�� ��

1 // 2 // 3 // 4 // 5

��

4

��

2oo

3
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Proof of Proposition 6.4. We first assume that χX > 0. Given a line
bundle L0, we choose a line bundle L = L0(n~ω), n ∈ Z, such that

(a) Hom(T, L) 6= 0 and (b) Hom(T, L(~ω)) = 0.

This choice is possible since δ(~ω) < 0. Now, (b) expresses that Ext1(L, T )
= 0, while (a) implies in view of Proposition 6.1 that Ext1(T, L) = 0. Alto-
gether, T ⊕ L has no self-extensions, implying that L is a direct summand
of T , since T is tilting. This shows the first claim of assertion (i). Further
the tilting bundle Ther of Proposition 6.2 contains exactly one member from
each Auslander–Reiten orbit of an indecomposable vector bundle, hence in
particular Ther contains exactly [L : Z~ω] non-isomorphic line bundle sum-
mands. Since tilting bundles T with hereditary endomorphism ring form a
slice in the Auslander–Reiten quiver of vectX, the same argument applies
in this case.

We now assume χX = 0. By [LM00] there exists an autoequivalence ρ
of Db(cohX) such that the induced map on pairs (degX, rkX)t is given by
left multiplication with the matrix(

1 0

1 1

)
.

Let T = ρ(Tcan(~u)) and A = End(T ) where ~u has degree one. Note that
A is a canonical algebra; moreover the degree/rank distribution for the in-
decomposable summands of Tcan(~u) along the ith arm of the quiver of the
canonical algebra A is given by

1

1
→ 1 + p/pi

1
→ 1 + 2p/pi

1
→ · · · → 1 + p

1
.

Applying ρ we obtain the corresponding degree/rank distribution for the
indecomposables of the ith arm of T as

(6.1)
1

2
→ 1 + p/pi

2 + p/pi
→ 1 + 2p/pi

2 + 2p/pi
→ · · · → 1 + p

2 + p
.

It follows that all ranks for the indecomposables in the ith arm of T have
rank ≥ 2, so that the claim follows.

Finally assume that χX < 0. Then the claim follows from Theorem 6.3,
or from Theorem 6.7 below.

Minimal number of bijections

Positive Euler characteristic. Here the following cases arise:

(a) Assume weight type (2, 3, p) with p = 3, 4, 5 and consider the tilting
bundle Ther from Proposition 6.2. For each arrow from the quiver Q of
End(T ) the source and the sink have different ranks. Accordingly there are
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no arrows u → v inducing a bijection Gv → Gu for the generic End(T )-
module G.

(b) Assume weight type (2, 2, p) with p ≥ 2. Invoking [HV83] we note
that p−2 is the minimal number of arrows inducing a bijection. This number
is attained for the tilting bundle Ther from Proposition 6.2.

(c) Assume weight type (p1, p2) with 1 ≤ p1 ≤ p2, and let T be any
tilting bundle. Then the quiver Q of End(T ) has n = p1 + p2 vertices and
also n arrows. Since all indecomposable summands of T have rank one, each
arrow u→ v of Q induces a bijection Gv → Gu.

Euler characteristic zero. We have shown in the proof of Proposition 6.4
that there exists a tilting bundle T whose endomorphism ring is the canoni-
cal algebra and such that the degree/rank distribution in the ith arm is given
by (6.1). It follows that all ranks for the indecomposables in the ith arm are
pairwise distinct. Hence no arrow u → v induces a bijection Gv → Gu for
the T -distinguished generic End(T )-module G.

Negative Euler characteristic. For the minimal wild types (3, 3, 4), (2, 4, 5)
and (2, 2, 2, 2, 2), the degree/rank data for the tilting bundles T of Figure 6
show that no arrow u → v of End(T ) induces a bijection Gv → Gu. For
weight type (2, 3, 7) the same conclusion follows by inspection of Figure 4.
Finally, for weight type (2, 2, 2, 3) we modify the example from Figure 6
by Hübner reflection in the sink [7] yielding an example with the desired
properties.

Minimal number of central simple modules. Let T be a tilting
bundle on X with endomorphism ring A. Recall that we identify modA
with a full subcategory of Db(cohX) and call a simple A-module S central
simple if S has rank zero, that is, belongs to coh0 X.

Proposition 6.5. Depending on the Euler characteristic, the following
properties hold:

(i) Assume χX > 0.

(a) If t(X) = 3 then there exists a tilting bundle Ther with a hered-
itary endomorphism ring A and without central simple A-mo-
dules.

(b) Assume weight type (p1, p2) with 1 ≤ p1 ≤ p2. Then for each
tilting bundle T its endomorphism ring A has at least p2 − p1

central simple A-modules, and this bound is attained.

(ii) Assume χX = 0. Then there is a tilting bundle T whose endomor-
phism ring is canonical without central simple modules.

(iii) Assume χX < 0. Then there exists a tilting bundle T whose endo-
morphism ring has no central simple modules.
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Fig. 6. Minimal wild canonical type without central simple modules

Proof. (i)(a) The tilting bundle Ther from Proposition 6.2 has an en-
domorphism ring A whose quiver has bipartite orientation. Let T1, . . . , Tn
denote the (pairwise non-isomorphic) indecomposable summands of T . Thus
the simple A-module Si attached to Ti equals Ti (resp. τTi[1]) if i is a source
(resp. a sink) of the quiver of A. In particular, each Si has non-zero rank,
and A has no central simple modules.

(i)(b) We refer to Lemma 6.6, proved below.
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(ii) We now consider the case where X is tubular. By [LM00] there exists
an autoequivalence ρ of Db(cohX) such that the induced map on slopes is
q 7→ q/(1 + q). Let T = ρTcan and A = End(T ). Then the simple A-modules
all have slope 0, 1, or p

1+p . Hence none of these has rank zero.

(iii) By Theorem 6.3 there exist infinitely many tilting bundles T such
that End(T ) has no central simples.

For illustration, in Figure 6 we present explicit examples for the minimal
wild weight types. For the three algebras of triple weight type the graphical
information determines the algebras up to isomorphism (see [LM02]). For
the remaining two weight types, the explicit relations are given afterwards.

The following sequences of Hübner reflections (see Section 3.10) trans-
form the tilting bundles, depicted above, into Tcan, up to a line bundle twist:
(2, 3, 7): (10, 7, 11, 1, 2, 4, 7, 8, 9, 10, 11); (2, 4, 5): (9, 6, 4, 5, 3, 2, 10, 1); (3, 3, 4):
(6, 5, 4, 3, 2, 9, 1); (2, 2, 2, 3): (6, 4, 3, 2, 7); (2, 2, 2, 2, 2): (7).

Concerning (2, 2, 2, 3), we impose the relations b3a3 = ba1, b4a4 = ba2,
b5a5 = b(a2 − a1), c(a2 − λa1) = 0 where λ is supposed to be different
from 0, 1. Concerning (2, 2, 2, 2, 2), we impose the relations b1ai = λib1a1 for
i = 3, 4, 5; b2ai = b2aj for i, j = 3, 4, 5; bjai = 0 for j 6= 1, 2, i. We assume
that λ3 = 1 and that λ4 6= λ5 are different from 0, 1.

Lemma 6.6. Assume X is of weight type (p1, p2). Let T be a tilting bundle
and Q the quiver of End(T ). Then the number ν(T ) of central simple A-
modules equals the number of vertices of Q which are neither a sink nor a
source. We always have ν(T ) ≥ |p1−p2|, with equality attained for the tilting
object T given by the scheme

◦ x2 // ◦ · · · ◦ x2 //// ◦
x2

��
◦ x1 //

x2
@@

◦ ◦ · · · ◦x2
oo

x1 // ◦ ◦x2
oo

Assuming p1 ≤ p2, the scheme contains p1 pairs ◦ x1 // ◦ ◦x2
oo of arrows

labeled x1 and x2, followed by p2 − p1 arrows labeled x2, with arrows labeled
x2 (resp. x1) having clockwise (resp. anticlockwise) orientation.

Proof. If i ∈ [1, n] is a source (resp. sink) of Q, then the simple A-module
Si, corresponding to Ti, has rank 1 (resp. −1). Assume, conversely, that i
is not a sink or a source of Q, hence locally we have one of the two cases
(a) i+ 1

x1−→ i
x1−→ i− 1 or (b) i− 1

x2−→ i
x2−→ i+ 1 where we say that i is an

interior vertex. We claim that then Si has rank zero. Assuming case (a), let
U be the unique simple sheaf concentrated in the first exceptional point λ1

having the additional property Hom(Ti, U) 6= 0 (and then Hom(Ti, U) = k).
We note that multiplication by x2 (resp. by x1) acts as the identity (resp.
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the zero map) on U . Since all the x1-arrows of Q (there are p1 of them)
have the same orientation, we conclude that Hom(Tj , U) = 0 for each vertex
j 6= i. Under our usual identification of modules and sheaves, U thus equals
the simple A-module Si, which therefore has rank zero. This proves the first
claim and further shows that ν(T ) equals the number of interior vertices i in
the cyclic arrangement of labels x1 and x2. It follows that ν(T ) ≥ |p1 − p2|.
The proof of the last claim is obvious.

Minimal width. Tilting bundles of minimal width only exist for posi-
tive Euler characteristic, as is shown in our next result.

Theorem 6.7. Let X be a weighted projective line.

(i) Assume χX > 0. Then the minimal width for tilting bundles on X
equals |δ(~ω)|/2 for t(X) = 3 and δ(~x1) + δ(~x2) for t(X) ≤ 2.

(ii) If χX ≤ 0 then there exists a sequence (Tn) of tilting bundles on X
such that the sequence (w(Tn)) converges to zero, and moreover each
indecomposable summand E of Tn has rank ≥ n.

Proof. Concerning (i) we use Proposition 6.2 stating that the direct sum
T of (a representative system of) the indecomposable vector bundles E of
slope 0 ≤ µE < |δ(~ω)| forms a tilting bundle. For t(X) = 3, each inde-
composable summand E of T actually has slope 0 or |δ(~ω)|/2, showing that
the width of T equals |δ(~ω)|/2. For t(X) ≤ 2, each indecomposable vec-
tor bundle has rank one, such that T is the direct sum of all line bundles
O(~x) with 0 ≤ ~x ≤ |δ(~ω)| − 1. Thus in this case the width of T equals
|δ(~ω)| − 1 = δ(~x1) + δ(~x2)− 1.

In the tubular case assertion (ii) is covered by Proposition 6.9 below. For
χX < 0 the proof of (ii) is also given afterwards.

We first assume that Y is tubular, and collect some facts on the tubular
mutations σ and ρ from Section 3.9. Let w = [S0] denote the class of any
ordinary simple sheaf S0. Further let p̄ = p̄(Y) denote the largest weight
of Y. We first note that for each y from K0(cohY) we have

(6.2) σnp̄(y) = y + n rk(y)w,

a formula valid for any weight type. (This follows from the formula p̄~x = ~c
if ~x is one of the standard generators ~xi of L of degree one.) By means of
the conjugation formula (3.7), ρ−1 = (ρ−1σ)−1σ(ρ−1σ), we obtain a corre-
sponding formula

(6.3) ρnp̄(y) = y + n deg(y)z

for the action of ρ on members y of K0(cohY), where z denotes the class of
Z = σ−1ρ(S0).

We call a bundle E on a weighted projective line X omnipresent on X if
Hom(E,S) 6= 0 for each simple sheaf S.
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Lemma 6.8. The indecomposable bundle Z = σ−1ρ(S0) is omnipresent
on Y.

Proof. Let S denote any simple sheaf, say of degree d. Then σS is again
simple, having the same degree. Since ρ−1 acts on the degree/rank pair
(d, 0) by right multiplication with

(
1 −1
0 1

)
, we deduce that (d,−d) is the

degree/rank pair for ρ−1σS0. It follows that

dim Hom(Z, S) = 〈Z, S〉 = 〈S0, ρ
−1σS〉 = − rk(ρ−1σS) = d > 0,

as claimed.

Proposition 6.9. Assume that Y is tubular. Let T =
⊕m

i=1 Ti be a
tilting bundle on Y whose indecomposable summands Ti all have strictly
positive slope. For each integer n ≥ 0 put

T (n) = ρnp̄T and Ti(n) = ρnp̄Ti.

Then each T (n) is a tilting bundle on Y with endomorphism ring isomorphic
to End(T ). Moreover, the following hold for each i = 1, . . . ,m:

(a) rk(Ti(n)) > p̄n and the slope sequence (µTi(n))n converges to zero.
In particular, the width sequence (w(T (n))) converges to zero.

(b) For each simple sheaf S on Y we have dim Hom(Ti(n), S) ≥ n.

Proof. We put di = deg Ti, ri = rkTi and use similarly di(n) and ri(n)
for the degree/rank data of Ti(n). Then

(6.4) (di(n), ri(n)) = (di, ri)

(
1 np̄

0 1

)
= (di, ri + np̄ di).

By assumption we have ri > 0 and di ≥ 1, hence rk(Ti(n)) = ri+np̄di > np̄.
Moreover, the sequence of slopes

µ(Ti(n)) =
di

ri + np̄di

obviously converges to zero. This proves assertion (a).

Concerning (b), we apply formula (6.3) to the class y = [Ti] and ob-
tain [Ti(n)] = [Ti] + ndi[Z], hence dim Hom(Ti(n), S) = 〈[Ti(n)], [S]〉 =
〈[Ti], [S]〉 + ndi〈[Z], [S]〉 ≥ n where the inequality uses the fact that di ≥ 1
and Z is omnipresent on Y by Lemma 6.8.

Proof of Theorem 6.7(ii). We assume that χX < 0. In several steps we
are going to construct a sequence of tilting bundles T ∗(n), n ≥ 0, on X
satisfying the claims of Theorem 6.7.

Step 1. Let q̄ = (q1, . . . , qs) be the weight type of X. After reordering
we can write q̄ = p̄ + h̄ where p̄ = (p1, . . . , pt, 1, . . . , 1) is tubular and h̄ =
(0, . . . , 0, hr . . . , hs) has entries hi ≥ 1 for i = r, . . . , s. For each of the
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(distinct) exceptional points xi of X with i = r, . . . , s we fix a linear branch

B(i) of length hi which is concentrated in xi. Thus B(i) =
⊕hi

j=1 Uj(i) where

(6.5) B(i) : Uhi(i) � Uhi−1(i) � · · ·� U1(i)

consists of a chain of finite length sheaves concentrated in xi such that each
Uj(i) has length j, and hence U1(i) is exceptional simple on X. We call
Uhi(i) the root of B(i). Put B = B(r) ⊕ B(r + 1) ⊕ · · · ⊕ B(s). Then the
right perpendicular category B⊥ of B in cohX can be identified with the
category of coherent sheaves on a weighted projective line Y having tubular
type p̄ (see [GL91]). Moreover, if T is a tilting bundle on Y, then T̄ = T ⊕B
is a tilting sheaf on X, whose bundle part ‘lives on’ Y. For further details
we refer to [LM96, Theorems 3.1 and 4.1].

Step 2. Keeping the notations of Proposition 6.9 we extend the tilting
bundles T (n) = ρnp̄T on Y obtained by the preceding step to the tilting sheaf
T̄ (n) = T (n)⊕B on X. Note that the embedding cohY ↪→ cohX preserves
the rank but not the degree. In fact, the association degY Y 7→ degX Y ,
for Y in cohY, does not extend to a mapping K0(cohY) → K0(cohX) (see
[GL91, Section 9]). The following lemma will allow us to bypass this technical
difficulty. We note that we continue to use the notations of Proposition 6.9.

Lemma 6.10. For each i = 1, . . . ,m the sequence (µX(Ti(n)))n of slopes,
formed in cohX, converges to (p̄)−1 degX Z. Here Z = σ−1ρ(S0) is formed
in cohY with S0 an ordinary simple sheaf on Y, and p̄ = lcm(p1, . . . , pt).

Proof. We first note that (6.3) holds in K0(Y), hence in K0(X). Thus for
each y ∈ K0(Y) we have

(6.6) degX(ρnp̄(y)) = degX y + n degY y degX Z.

By (6.4) we obtain rk(ρnp̄y) = degY y + np̄ rk y. Thus the slope sequence

µX(ρnp̄y) =
degX y + n degY y degX Z

rk y + np̄ degY y

converges to (p̄)−1 degX Z.

Step 3. By means of a sequence of Hübner reflections, we next transform
T̄ (n) into a tilting bundle T ∗(n) on X. Let Uh be the root of a branch
B = B(i). Then Uh is a formal sink of T̄ = T̄ (n), and reflection at Uh yields
a new tilting sheaf T̄ /Uh ⊕ U∗h(n), where U∗h(n) is the kernel term of the
reflection sequence

(6.7) 0→ U∗h(n)→
m⊕
j=1

T
κj
j (n)→ Uh → 0

(compare (3.8)). Since some exponent κj is non-zero, we see that U∗h(n)
is an exceptional vector bundle of rank r(n) =

∑m
j=0 κj rk(Tj(n)) > n. We
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next show that the slope sequence µX(U∗h(n)) also converges to (p̄)−1 degX Z.
Clearly,

µX(U∗h(n)) = µX

( m⊕
j=1

T
κj
j (n)

)
− degX Uh

r(n)
.

Now the first summand α(n) on the right hand side is a convex combina-
tion of the slopes µX(Tj(n)), and thus yields a sequence (α(n)) converging
to (p̄)−1 degX Z, while the second summand β(n) yields a sequence (β(n))
converging to zero. This proves the claim for this first step. We now continue
reflecting roots of branches until all branches are exhausted; the resulting
sequence of tilting bundles T ∗(n) then satisfies all claims. This finishes the
proof of Theorem 6.7(ii).

To construct explicit examples, the following result is useful.

Proposition 6.11. Assume Y is tubular, and T =
⊕

0≤~x≤~c T~x is a tilt-
ing bundle on Y with End(T ) canonical, so Hom(T~x, T~y) = Hom(O(~x),O(~y))
for all 0 ≤ ~x, ~y ≤ ~c. Assume that the width w(T ) of T is strictly less than
p̄ = p̄(Y), the maximal possible one. Let further U be any sheaf of finite
length. Then each morphism T~x → U factors through any non-zero mor-
phism u : T~x → T~c.

We note that the assertion is wrong if T attains the maximal possible
width p̄. Indeed, by Theorem 2.5, we may then assume that T~x = O(~x) for
each ~x. If S denotes the exceptional simple sheaf defined by exactness of
0 → O(~c − ~x1) → O(~c) → S → 0, then Hom(O(~c − ~x1), S(~ω)) = k but we
further have Hom(O(~c), S(~ω)) = 0.

Proof of Proposition 6.11. Since End(T ) is canonical, there exists a self-
equivalence φ of Db(cohY) mapping O(~x) to T~x for each 0 ≤ ~x ≤ ~c. Any

triangle µ : T~x
u→ T~c → V~x → is thus the image under φ of a triangle

represented by a short exact sequence η : 0 → O(~x)
v→ O(~c) → U~x → 0 in

cohX. Having finite length, all the U~x have the same slope. Hence all the
V~x = φ(U~x) have the same slope q. If q = ∞, then all V~x have rank zero,
implying rkT~x = rkT~c for each 0 ≤ ~x ≤ ~c. Then Theorem 2.1 shows that
T = Tcan up to a line bundle twist and hence w(T ) = p̄, contradicting our
assumption on T .

Thus each V~x is a vector bundle and so the triangle µ yields an exact
sequence µ : 0 → T~x

u→ T~c → V~x → 0 in cohY whose terms are vector
bundles. Since Ext1(−, U) vanishes on vectY for each U of finite length, the
sequence

0→ Hom(V~x, U)→ Hom(T~c, U)
−◦u−−→ Hom(T~x, U)→ 0

is exact, proving the claim.
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We now construct an explicit sequence of tilting bundles T ∗(n) on the
weighted projective line X of weight type (2, 4, 7) illustrating the arguments
of this section. We start with the tilting bundle T = Tcan(~c) on the tubular
weighted projective line Y of weight type (2, 4, 4), and form the sequence
T (n) of tilting bundles of Proposition 6.9. Fixing a branch B : U3 � U2 �
U1 of length 3 concentrated in the third exceptional point of X we identify
cohY with the perpendicular subcategory B⊥ in cohX, and then enlarge
T (n) to the tilting sheaf T̄ (n) = T (n)⊕B. The endomorphism ring of T̄ (n)
is then given by the following quiver with relations:

~x2
//

〈n〉

2~x2
//

〈n〉
3~x2

��

〈n〉

T̄ (n) : ~0 //

CC

��

〈4n+1〉

~x1
//

〈2n〉
~c 〈8n〉 // b3 // b2 // b1

~x3
//

〈n−1〉

2~x3
//

〈n〉

3~x3

BB

〈n〉

This uses Proposition 6.11. Applying Hübner reflections in the vertices
b3, b2, b1 in this order, we finally obtain a sequence of tilting bundles on X
whose endomorphism rings are given as follows:

2~x2
//

〈n〉

��

〈8n2〉

3~x2

〈n〉

��

〈8n2−1〉~x2

99

〈n〉

��

〈8n2〉

~x1

〈2n〉
%%

〈16n2−1〉

T ∗(n) : ~0

;;

DD

〈4n+1〉 //

��

〈32n2+8n+1〉

b∗1
// b∗2

// b∗3 〈8n〉 // ~c

~x3

%%

〈n−1〉

@@

〈8n2−8n〉

2~x3
//

〈n〉

OO

〈8n2〉

3~x3

〈n〉

YY

〈8n2−1〉
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The degree, rank and slope data for the tilting bundles T ∗(n) are collected
in the following table:

~0 ~x1 ~x2 2~x2 3~x2 ~x3
8n+24
16n+1

12n+38
24n+1

10n+31
20n+1

12n+38
24n+1

14n+45
28n+1

10n+31
20n+1

2~x3 3~x3 ~c b∗1 b∗2 b∗3
12n+44
24n+1

14n+48
28n+1

16n+52
32n+1

128n2+416n−12
236n2+8n

128n2+416n−8
256n2+8n

128n2+416n−4
256n2+8n

We observe that all the slope sequences converge to 1/2. Further, all relations
for T ∗(n) end in the vertex ~c. This can be rephrased as follows: Let Q(n)
be the wild quiver obtained from the quiver of T ∗(n) by removing the last
vertex ~c. Then End(T ∗(n)) is obtained as a one-point extension of the path
algebra kQ(n) of Q(n).
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ond named author was supported by the Max Planck Institute for Mathe-
matics, Bonn.

REFERENCES
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