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Abstract. To any unit form q(x) =
∑n

i=1 x2
i +

∑
i<j qijxixj , qij ∈

Z, we associate a Lie algebra G̃(q) —an intersection matrix Lie
algebra in the terminology of Slodowy— by means of generalized
Serre relations. For a non-negative unit form the isomorphism
type of G̃(q) is determined by the equivalence class of q. Moreover
for q non-negative and connected with radical of rank zero or one
respectively, the algebras G̃(q) turn out to be exactly the simply-
laced Lie algebras which are finite-dimensional simple or affine Kac-
Moody, respectively. In case q is connected, non-negative of corank
two and not of Dynkin type An, the algebra G(q) is elliptic.

1. Introduction

We recall that a unit form is a quadratic form q : Zn → Z, q(x) =∑n
i=1 x

2
i +

∑
i<j qijxixj, with integer coefficients qij ∈ Z. Each unit

form q : Zn → Z has an associated Cartan matrix C given by Cij =
q(ci+cj)−q(ci)−q(cj), where c1, . . . , cn is the canonical basis of Zn. To
any unit form q : Zn → Z we attach a Zn-graded complex Lie algebra
G(q) with generators ei, e−i, hi (1 ≤ i ≤ n) which are homogeneous of
degree ci, −ci and 0, respectively, and subject to the following relations:

(R1) [hi, hj] = 0, for all i and j,

(R2) [hi, eεj] = εCijeεj, for all i, j and ε = ±1,

(R3) [eεi, e−εi] = εhi, for all i and ε = ±1,

(R∞) [eε1i1 , . . . , eεtit ] = 0, whenever q(
∑t

j=1 εjcij) > 1 for εj = ±1.

For the relations (R∞) we use multibrackets, defined inductively by
[x1, x2, . . . , xt] = [x1, [x2, . . . , xt]]. Clearly, the usual Serre relations,

(R4) (ad eεi)
1+n(eδj) = 0, where n = max{0,−εδCij}, for ε, δ = ±1

and 1 ≤ i, j ≤ n,

are a special case of the infinite set of relations (R∞).
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In section 5, we will extend G(q) by the C-dual of the radical of q to
G̃(q), again a Zn-graded Lie algebra. We note that G̃(q) agrees with
G(q) if q is positive definite.

The algebras G̃(q) associated to a unit form q were studied by Slodowy
in [18], see also [19], under the name intersection matrix Lie algebras.
One aim of the present paper is to connect this concept with recent work
on quadratic forms linked to representation theory of finite-dimensional
algebras, see for example [4, 7].

While in general passage to an equivalent form q′ = q ◦ T , for an auto-
morphism T of Zn, will not preserve unit forms, the class of unit forms
is stable under Gabrielov transformations, hence under Gabrielov equi-
valence (G-equivalence, for short). A unit form is called non-negative
if q(x) ≥ 0 for each x ∈ Zn. Moreover, we associate with q a bigraph,
which has vertices 1, . . . , n (as many as q has variables) and |qij| solid
(resp. dotted) lines between i and j if qij < 0 (resp. qij > 0) and say
that q is connected if this bigraph is connected.

Theorem 1.1. If q and q′ are G-equivalent then G(q) and G(q′) are
isomorphic as graded Lie algebras.

We provide a proof of Theorem 1.1 in the language of unit forms. In a
slightly different setting a proof is also given in Slodowy’s habilitation
thesis [18] which, however, is not easily accessible.

In general, equivalent unit forms are not G-equivalent, see Remark 4.1.
The hypothesis of q and q′ being G-equivalent is thus usually difficult to
verify. However, our investigation mainly concerns non-negative unit
forms. Such a form is determined up to equivalence by its Dynkin
type, which is a disjoint union of Dynkin diagrams, and its corank r,
defined as the rank of the radical of q, see [1] (also [3] for the case of
corank zero). In that case, we have the following characterization of
G-equivalence.

Proposition 1.2. Two connected, non-negative unit forms q and q′

are equivalent if and only if they are G-equivalent.

This result will be used to prove Theorem 1.3.

Theorem 1.3. Let q : Zn → Z be a connected non-negative unit form.
Let r = rank(rad q) and ∆ its Dynkin type.

(a) If r = 0, that is, q is positive definite, then the algebras G(q) =
G̃(q) are exactly the simply-laced finite-dimensional simple Lie
algebras.
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(b) If r = 1, then the algebras G̃(q) are exactly the simply-laced
affine Kac-Moody Lie algebras.

(c) Let r = 2. Then we have:
(i) If ∆ = Dn (n ≥ 4) or ∆ = En (n = 6, 7, 8), then the

algebras G̃(q) are exactly the Lie algebras associated to a
simply-laced elliptic root system Γ(R,G) with ∆(R) = ∆.

(ii) If ∆ = An (n ≥ 2), then the Lie algebra associated to a
simply-laced elliptic root system Γ(R,G) with ∆(R) = ∆
is a quotient of G̃(q).

Finally, we show in Proposition 6.6, that in the three cases (a), (b) and
(c)(i), finitely many relations from (R1)−(R∞) are sufficient for the
definition of G(q). The fact that the assertion in case (c)(ii) is weaker
will be discussed in more detail in Remark 6.4.

For standard information on elliptic Lie algebras we refer to the article
[15] by Saito and Yoshii. For a significant subclass, additional infor-
mation is provided by Lin and Peng [10], respectively Schiffmann [16],
applying a variant of Ringel’s Hall algebra approach [14, 5] to the mod-
ule category over a tubular algebra [13], respectively the category of
coherent sheaves over a weighted projective line of tubular type [11].

2. Relationship to a construction of Borcherds

Let q : Zn → Z be a unit form. The Lie algebra G(q) associated to
q is the quotient of the free Lie algebra in the generators ei, e−i, hi

(1 ≤ i ≤ n) by the ideal generated by the relations (R1), (R2), (R3)
and (R∞).

We note that G(q) is a Zn-graded Lie algebra where the grading is
given by deg(ei) = ci, deg(e−i) = −ci and deg(hi) = 0. In general,
when we consider a morphism of Lie algebras graded over Zn, we mean
by that a morphism of Lie algebras ϕ : G → H such that there exists
a linear map Φ : Zn → Zn satisfying ϕ(Gα) ⊆ HΦ(α). Each monomial,
that is, an element obtained from the generators using iteratively the
bracket only, has a well defined degree. The monomials of the degree
α form the subspace G(q)α. Notice, that G(q)α is generated by the
multibrackets of degree α.

Lemma 2.1. In G(q) we have for εj = ±1 and 1 ≤ ij ≤ n,

[hk, eε1i1 , . . . , eεtit ] =
t∑

j=1

εjCkij [eε1i1 , . . . , eεtit ]
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and for each non-zero vector α of Zn, the vector space G(q)α is gener-
ated by all expressions [eε1i1 , . . . , eεtit ] with

∑t
j=1 εjcij = α.

Proof. The first formula follows easily by induction using (R2). The
second part follows from the fact that G(q)α is generated by the multi-
brackets of degree α. �

Define R1 = q−1(1), R0 = q−1(0) and R = R0 ∪ R1. Further set
Nα = CEα for α ∈ R1, Nα = Cn/Cα for α ∈ R0 and let πα : Cn → Nα

be the canonical projection for any α ∈ R0. Choose a non-symmetric
bilinear form B : Zn ×Zn → Z such that q(x) = B(x, x) for all x ∈ Zn

and set ε(α, β) = (−1)B(α,β). Furthermore, let q(−,−) : Cn × Cn → C
be the C-bilinear form which satisfies q(α|β) = B(α, β) + B(β, α) for
all α, β ∈ Zn. Now, let N =

⊕
α∈RNα and define the following bracket

rules, which depend on the choice of B:

For α, β ∈ R0, γ, δ ∈ R1 and f, g ∈ Cn, let

[πα(f), πβ(g)] = ε(α, β)q(f |g)πα+β(α)(S1)

[πα(f), Eδ] = ε(α, δ)q(f |δ)Eα+δ(S2)

[Eγ, Eδ] =


ε(γ, δ)Eγ+δ, if γ + δ ∈ R1

ε(γ, δ)πγ+δ(γ), if γ + δ ∈ R0

0, else.

(S3)

Proposition 2.2. If q is a connected, non-negative unit form, then
the bracket rules above define a graded Lie algebra structure on the
space N . Moreover, N is independent of the choice of B and there is
a surjective homomorphism of graded Lie algebras G(q) → N .

Proof. The first assertion follows by a lengthy calculation, or by
observing that N is, up to a slight modification, the Lie algebra con-
structed with the vertex algebra approach by Borcherds in [2], see also
[15]. (The modification concerns to extend N by the radical of q, anal-
ogously as this is done in section 5 with G(q).)

Let B′ be any bilinear form with q(x) = B′(x, x), define ε′(α, β) =
(−1)B′(α,β) and denote by N ′ the corresponding graded Lie algebra
with typical elements E ′

α, π′α(h).

Set σ(α) =
∏

i<j (ε(ci, cj)ε
′(ci, cj))

αiαj and define ϕ : N → N ′ linearly

by ϕ(Eα) := σ(α)E ′
α for any α ∈ R1 and ϕ(πα(h)) = σ(α)π′α(h) for

any α ∈ R0 and any h ∈ Cn.

We have σ(α)σ(β)σ(α + β) =
∏

i<j (ε(ci, cj)ε
′(ci, cj))

αiβj+βiαj , since

ε(ci, cj)
2αiαj+2βiβj = 0. Similarly,

∏
i<j ε(ci, cj)

αiβj+βiαj = (−1)B(α,β)
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since (−1)B(ci,ci)·2αiβi = 0. Hence σ(α)σ(β)σ(α + β) = ε(α, β)ε′(α, β),
or equivalently σ(α)σ(β)ε′(α, β) = ε(α, β)σ(α + β), from which it eas-
ily follows that ϕ is a homomorphism of graded Lie algebras. The
bijectivity of ϕ is obvious. Hence, N is independent of the choice of B.

It is further easy to check that the elements Eci
, −E−ci

(1 ≤ i ≤ n)
together withHi = [Eci

,−E−ci
] satisfy the relations (R1)−(R∞). Thus

there is a homomorphism of graded Lie algebras G(q) → N mapping
eεi to εEεci

and hi to Hi. In order to prove that this homomorphism

is surjective, we show that the Lie algebra N̂ ⊂ N generated by the
elements Eci

, E−ci
(1 ≤ i ≤ n) coincides with N .

We first show, that for any α =
∑n

i=1 αici ∈ R1 with |α| =
∑n

i=1 |αi| >
1, there exists a β ∈ R with |β| < |α| and α − β = εci for some i and
some ε = ±1.

Let εi be the sign of αi. Suppose that for any i with αi 6= 0, we have
2 ≤ q(α−εici). Then q(α|εici) ≤ 0 since 2 ≤ q(α)+ε2

i q(ci)−q(α|εici) =
2− q(α|εici). Hence 2 = 2q(α) = q(α|α) =

∑
i:αi 6=0 |αi|q(α|εici) ≤ 0, a

contradiction.

We prove now by induction on |α| that N̂α = Nα. For |α| = 1, we note

that α = εci for some i, and thus Eα ∈ N̂α. For |α| = 0, observe that

π0(ci) = −[Eci
, E−ci

] ∈ N̂ for any i and thus N0 = N̂0.

Let now α ∈ R1 with |α| > 1 and β ∈ R be such that |β| < |α| and

α − β = εci. By induction hypothesis, we may assume that Nβ = N̂β.

If β ∈ R1, we have ±Eα = [Eεci
, Eβ] ∈ N̂ and if β ∈ R0, then ±2Eα =

[Eεci
, πβ(εci)] ∈ N̂α. Thus, in any case N̂α = Nα.

For α ∈ R0, choose i with αi 6= 0 and denote by εi the sign of
αi. Then β = α − εici ∈ R1 and by induction hypothesis Eβ ∈
N̂β. Thus, we obtain that ±πα(ci) = [Eεci

, Eβ] ∈ N̂α. Now, con-
sider any j, such that q(ci|cj) 6= 0 and calculate [Ecj

, E−cj
, πα(ci)] =

ε(α, cj)q(ci|cj)[Ecj
, Eα−cj

] = ±q(ci|cj)πα(cj) and therefore πα(cj) ∈ N̂α.

Since q is connected, we infer inductively that πα(cj) ∈ N̂α for any j
and hence the result. �

Corollary 2.3. If q is non-negative then the Lie subalgebra H of G(q)
generated by h1, . . . , hn is n-dimensional, that is H =

⊕n
i=1 Chi.

Proof. Since H1, . . . , Hn are linearly independent in N , the same
holds for h1, . . . , hn. �

For a different proof of the Corollary 2.3 we refer to Slodowy’s habili-
tation thesis [18, chapter 4].
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3. Gabrielov transformations

Given a unit form q : Zn → Z, we define for any r 6= s and λ ∈ Z a linear
transformation T λ

sr by T λ
srci = ci for any i 6= r and T λ

srcr = cr + λcs.
Another linear transformation Is is given by Is(ci) = ci for any i 6= s
and Is(cs) = −cs.
Note that for λ = −qrs (where we set qrs = qsr in case s < r for the
sake of simplicity), the form q′ = q ◦T λ

sr is again a unit form. Following
[13], we say in this case, that T λ

sr is a Gabrielov transformation for
q; such a transformation is called (weak) braid transformation in [18,
chapter 4], and is sometimes called deflation if qsr = −1 or inflation
if qsr = 1. The effect of a Gabrielov transformation on the quadratic
form is exhibited by the following formulas:

q′rs = −qrs; q′ir = qir − qsrqis (for i 6= r, s); q′ij = qij (for i, j 6= r).

Furthermore, we say that q′ is obtained from q by a sign-inversion if
q′ = q ◦ Is for some s. Two unit forms q and q′ : Zn → Z are Gabrielov
equivalent, or G-equivalent for short, if there exists a sequence of unit
forms q = q(0), q(1), . . . , q(t) = q′ such that q(i) is obtained from q(i−1) by
a Gabrielov transformation, a sign-inversion or a permutation of the
variables for each i = 1, . . . , t. We use the notation q ∼G q′ to indicate
G-equivalence.

Proof Theorem 1.1. Arguing by induction, we only have to verify
the assertion for q′ = q ◦T λ

sr (λ = −qsr) and q′ = q ◦ Ir (this verification
is trivial if q′ = q ◦ T and T is a permutation matrix). In both cases,

we specify elements ẽi, ẽ−i, h̃i (1 ≤ i ≤ n) in G(q) which satisfy the
relations (R1)−(R∞) with respect to q′, and hence obtain a homomor-
phism of graded Lie algebras ϕ : G(q′) → G(q) mapping the generators

e′εi and h′i of G(q′) to ẽεi and h̃i, respectively. By a similar construction,
we define ψ : G(q) → G(q′) and show that it is the inverse of ϕ.

We start with the first case, q′ = q ◦ T λ
sr, and denote by C ′ the Cartan

matrix of q′. Moreover, we set

α = |Csr|, σ = −sign(Csr), and hence Csr = −σα = −λ
and define the following elements in G(q)
(3.1)

ẽεi =

{
εα

α!
(ad eεσs)

α(eεr), if i = r

eεi, if i 6= r
and h̃i =

{
hr + σαhs, if i = r

hi, if i 6= r.

Clearly, these elements satisfy the relations (R1) with respect to q′. If

i, j 6= r then [h̃i, ẽεj] = [hi, eεj] = εCijeεj = εC ′
ij ẽεj and [ẽεi, ẽ−εi] =
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[eεi, e−εi] = εhi = εh̃i, thus only cases involving the index r remain to
be considered for (R2) and (R3). It follows from Lemma 2.1 for any
i, that [hi, ẽεr] = (ασεCis + εCir)ẽεr = ε(Cir − CsrCis)ẽεr. From this,

we conclude for i 6= r, that [h̃i, ẽεr] = εC ′
irẽεr and [h̃r, ẽεr] = [hr −

Csrhs, ẽεr] = ε(Crr − CsrCrs − Csr(Csr − CsrCss))ẽεr = εC ′
rrẽεr, where

we used Css = 2 and Crs = Csr in the last equation. For completing
(R2), we calculate [h̃r, ẽεi] = [hr − Csrhs, eεi] = εC ′

rieεi.

For (R3), it remains to show that [ẽεr, ẽ−εr] = εh̃r, which is the most
difficult part of the proof. If we define ζε

k = (ad eσεs)
k(eεr), then this

follows from statement (3.5) below, in the special case where k = α.

[hs, ζ
ε
k] =εσ(2k − α)ζε

k, for 0 ≤ k ≤ α;(3.2)

[eεσs, ζ
−ε
k ] =

{
0, for k = 0,

k(α− (k − 1))ζ−ε
k−1, for 0 < k ≤ α;

(3.3)

[eεσs, ζ
ε
k−1, ζ

−ε
k ] =(−1)kεσ

α! k!

(α− k)!
hs, for 0 < k ≤ α;(3.4)

[ζε
k, ζ

−ε
k ] =(−1)kε

α! k!

(α− k)!
(hr + kσhs), for 0 ≤ k ≤ α.(3.5)

Notice that ζε
0 = eεr. Statement (3.2) follows directly from Lemma

2.1. For the remaining statements, we use induction and only indi-
cate the crucial Jacobi identity used in the induction step. For (3.3),
use [eεσs, ζ

−ε
k ] = [εσhs, ζ

−ε
k−1] + [e−εσs, eεσs, ζ

−ε
k−1], whereas for (3.4) use

[eεσs, ζ
ε
k−1, ζ

−ε
k ] = [eεσs, eεσs, ζ

ε
k−2, ζ

−ε
k ]− [eεσs, ζ

ε
k−2, eεσs, ζ

−ε
k ] and notice

that the first summand on the right hand side equals zero, because
[ζε

k−2, ζ
−ε
k ] = 0 by (R∞) since its degree is −2εσcs. Finally, for (3.5),

use [ζε
k, ζ

−ε
k ] = [eεσs, ζ

ε
k−1, ζ

−ε
k ]− [ζε

k−1, eεσs, ζ
−ε
k ].

For (R∞), we observe that, if q(α) > 1, then G(q)α = 0, as follows from
Lemma 2.1 and (R∞) with respect to q. Let α′ =

∑t
j=1 εjcij be such

that q′(α′) > 1. We have to show that X = [ẽε1i1 , . . . , ẽεtit ] equals zero.
We have X ∈ G(q)α̃, where α̃ =

∑t
j=1 εj c̃ij with c̃a = ca if a 6= r and

c̃r = cr − Csrcs, or shortly c̃a = T λ
srca, for any a. Therefore α̃ = T λ

srα
′

and hence q(α̃) = q(T λ
srα

′) = q′(α′) > 1. This implies G(q)α̃ = 0 by the
preceding remark.

We hence obtain ϕ : G(q′) → G(q) as desired.

Notice that q′sr = −qsr, thus α = |C ′
sr|. Define τ = −sign(C ′

sr), and
observe that στ = −1. Similarly as in (3.1), we define in G(q′) the

elements ẽ′εr = εα

α!
(ad e′ετs)

α(e′εr), h̃
′
r = h′r + ταh′s and ẽ′εi = e′εi, h̃

′
i = h′i
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for i 6= r and obtain a homomorphism of graded Lie algebras ψ :
G(q) → G(q′), which maps eεi to ẽ′εi and hi to h̃′i, for any i.

We finally show that ϕ ◦ ψ = id; the proof of ψ ◦ ϕ = id is similar.
For i 6= r, we have ϕ ◦ ψ(eεi) = eεi and ϕ ◦ ψ(hi) = hi. Moreover,
ϕ ◦ ψ(hr) = ϕ(h′r − C ′

srh
′
s) = hr − Csrhs − C ′

srhs = hr. It follows from
(3.3) by induction, that (ad e−εσs)

k(ζε
α) = α! k!

(α−k)!
ζε
α−k for 0 ≤ k ≤ α.

Thus (ad eετs)
α(ζε

α) = α!2eεr and we have

ϕ ◦ ψ(eεr) =ϕ

(
εα

α!
(ad e′ετs)

α(e′εr)

)
=
εα

α!
(adϕ(e′ετs))

α
(ϕ(e′εr))

=
εα

α!
(ad eετs)

α

(
εα

α!
(ad eσεs)

α(eεr)

)
=

1

α!2
(ad eετs)

α(ζε
α)

=eεr.

It remains to deal with the case where q′ = q ◦ Ir. Observe that
q′ri = −qri for any i 6= r and q′ij = qij for any i, j 6= r. Again, the
elements

ẽεi =

{
e−εr, if i = r

eεi, if i 6= r
and h̃i =

{
−hr, if i = r

hi, if i 6= r

satisfy the relations (R1)−(R∞) for q′. The verification is similar to the
above, but substantially easier. Therefore we obtain a homomorphism
of graded Lie algebras ϕ : G(q′) → G(q) which maps e′εi to ẽεi and h′i to

h̃i. Similarly, we define in G(q′) the elements ẽ′εr = e−εr, h̃
′
r = −hr and

ẽ′εi = eεi, h̃
′
i = hi for i 6= r and obtain a homomorphism of graded Lie

algebras ψ : G(q) → G(q′) which maps eεi to ẽ′εi and hi to h̃′i, for any i.
It is straightforward to check that ψ is inverse to ϕ. This finishes the
proof. �

Remark 3.1. In the preceding proof, in order to show that the el-
ements ẽεi and h̃i of G(q) satisfy the relations (R1), (R2) and (R3)
with respect to q′, we used the relations (R∞) of G(q) only to show
[ζε

k−2, ζ
−ε
k ] = 0 for (3.4). It will be useful later (in 6.5) to observe that

even the relations (R4) of G(q) are sufficient for deducing this.

Namely, show [ζε
h, ζ

−ε
k ] = 0 by double induction over k ≥ 2 and h =

0, . . . , k − 2. For h = 0, using (R4) we have [eεr, e−εσs] = 0 and hence
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infer inductively [ζε
0 , ζ

−ε
k ] = (ad e−εσs)

i([ζε
0 , ζ

−ε
k−i]). Thus for i = k ≥ 2

we have [ζε
0 , ζ

−ε
k ] = (ad e−εσs)

k(εhr) = 0. For h > 0 (and hence k >
2), we notice that in [ζε

h, ζ
−ε
k ] = [eεσs, ζ

ε
h−1, ζ

−ε
k ] − [ζε

h−1, eεσs, ζ
−ε
k ] the

second summand is a multiple of [ζε
h−1, ζ

−ε
k−1] by (3.3) and hence both

summands are zero by induction. �

4. Equivalence of Unit Forms

In this section we focus on non-negative unit forms, that is, unit forms
q with q(x) ≥ 0 for all x ∈ Zn. Two unit forms q, q′ : Zn → Z,
are equivalent, if there exists a Z−invertible linear transformation T :
Zn → Zn with q′ = q ◦ T . The radical of q is rad q = {x | q(x + y) =
q(y), for all y}, which is a direct summand of Zn.

We recall from [1] that non-negative unit forms are classified completely
up to equivalence by their corank, that is, the rank of the radical,
and their Dynkin type, that is a disjoint union of Dynkin diagrams An

(n ≥ 1), Dn (n ≥ 4), En (n = 6, 7, 8). Notice that a unit form is
connected if and only if its Dynkin type is connected.

Observe, that the coefficients of a non-negative unit form q are bounded:
−2 ≤ qij ≤ 2. Moreover, for such forms Gabrielov transformations in
double edges act like sign inversions, that is if λ = −qsr satisfies |λ| = 2
then q ◦ T λ

sr = q ◦ Ir.
Proof of Proposition 1.2. Let q and q′ be two connected non-
negative unit forms and assume that they are equivalent. If their corank
is zero, then q ∼G Q∆ ∼G q′, where Q∆ is the unit form associated to
a Dynkin diagram ∆, see for example [6, Theorem 6.2].

We prove by induction on the corank r that q ∼G Q∆[r], where ∆ is
the Dynkin type of q and Q∆[r] : Zm+r → Z is the unit form given by

Q∆[r](v1, . . . , vm, w1, . . . , wr) = Q∆(v1 +
∑

j wj, v2, . . . , vm).

For r = 0, this is already stated above. For r > 0, we proceed in 4
steps (i) − (iv), in each showing that there exists a unit form q′ ∼G q,
which satisfies certain conditions.

(i) there exists a vector v ∈ rad q′ with vn = 1, vi ≥ 0 for all i.
(ii) in addition to (i), the restriction q′(n) of q′ to the first n − 1

variables equals Q∆[r − 1] and vj = 0 for m < j < n.
(iii) in addition to (ii), there exits i ≤ m with q′in = −2.
(iv) q′ = Q∆[r].

(i) Choose v ∈ rad q, v 6= 0, such that the support, that is the set of
vertices i with vi 6= 0, is minimal. Since we may apply simultaneous



10 M. BAROT, D. KUSSIN AND H. LENZING

sign-inversions in every vertex i for which vi < 0, we can assume that
vi ≥ 0 for every i, and further, we may assume that the entries of v
are coprime. Consider now the restriction p of q to the support of v,
by setting all other variables zero. By the minimality of the support
of v, the radical of p is of rank one, rad p = Zw. It has been shown
in [8], that w is a vector with wi = 1 for some vertex i. Since the
entries of v are coprime, we conclude that w is the restriction of v to
its support, and thus vi = 1. Using a permutation of the variables, we
might assume i = n.

(ii) We assume that q itself satisfies (i). Let p = q(n) be the restriction
of q to the first n − 1 variables. It has been shown in [1], that p
is connected again with the same Dynkin type ∆ and rank(rad p) =
rank(rad q) − 1. By induction, we assume that there is a sequence of
Gabrielov transformations T taking p into Q∆[r−1]. We may consider
T also as sequence of Gabrielov transformations for q (acting on the

first n− 1 variables only), obtaining q′ = q ◦ T with restriction q′(n) =
Q∆[r − 1]. If we set v′ = T−1v then q′(v′) = q(v) = 0, v′n = vn and
the vector w = v′ −

∑r−1
j=1 v

′
m+j(cm+j − c1) satisfies q(w) = q(v′) = 0,

wj ≥ 0 (for 1 ≤ j ≤ m), wj = 0 (for m < j < n) and wn = 1.

(iii) We assume that q itself satisfies (ii). If vjqjn ≥ 0 for all j ≤ m
then we would have q(v) = v2

n + q(n)(v − cn) +
∑m

j=1 qjnvjvn ≥ 2, a
contradiction. Thus there exists i ≤ m with viqin < 0. If qin = −1
then q̃ = q ◦ T+1

in together with ṽ = T−1
ni v = v − ci satisfies again (ii).

Since |ṽ| < |v| =
∑

j |vj|, after a finite number of such steps we must
end up with a form q′ = q ◦ T where q′ni = −2 for some i ≤ m together
with a vector satisfying (iii).

(iv) We assume that q itself satisfies (iii). Let q̃ = q ◦ In, obtaining
q̃in = 2. If i = 1 we are done: it follows from the non-negativity of q̃
that q̃is = q̃ns for all s 6= i, n, thus q̃ = q̃(n)[1] = (Q∆[r− 1])[1] = Q∆[r].

If i > 1, we choose a shortest walk i = i1, . . . , ia = 1 inside ∆ connecting
the vertex i with 1. Let j = i2. By the non-negativity, we must have
q̃jn = q̃ji = −1 and may thus apply T+1

jn . The resulting unit form

q̃′ = q̃ ◦ T+1
jn satisfies q̃′in = 1, and hence we apply T−1

in to q̃′ in order to

obtain q̃′′ = q̃′◦T−1
in . This form satisfies q̃′′jn = 2, that is, it has a shorter

walk inside ∆ connecting j to 1. Since q̃′(n) = q̃(n) = Q∆[r − 1], we
may apply induction on the length of the walk and obtain the desired
result. �

We mention, that the above result may also be derived from a result
announced by Zeldich in [20].
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Note that the connectivity assumption is important for the validity of
the preceding result. If q, q′ : Z4 → Z are given by q(x) = x2

1 + . . . +
x2

4−x1x2−x2x3−x1x3 and q′(x) = x2
1 + . . .+x2

4−x1x2−x2x3− 2x3x4

then q and q′ are equivalent but not G-equivalent. Moreover, G(q)
and G(q′) cannot be isomorphic as graded Lie algebras since for any
non-zero α′ ∈ Zn, we have dim G(q′)α′ ≤ 1, whereas dim G(q)α = 2 for
non-zero α ∈ rad q, as follows from Proposition 6.1.

Remark 4.1. Proposition 1.2 does not extend to the indefinite case:
let p(x) = x2

1+x2
2+x2

3−5x1x2−2x1x3−9x2x3 and q(x) = x2
1+x2

2+x2
3−

5x1x2 − 5x1x3 − 5x2x3. Then p = q ◦ T , where T (c1) = c1, T (c2) = c2
and T (c3) = 4c1 +3c2−c3, hence p and q are equivalent. But, since the
greatest common divisor of the non-diagonal entries of the associated
Cartan matrix is preserved under Gabrielov transformations, p and q
can not be G-equivalent.

5. Root space decomposition

In this section, we assume q to be non-negative. Let M be the set of
monomials in G(q) and H =

⊕n
i=1 Chi, which is a commutative Lie

subalgebra of G(q) by Proposition 2.3. For any h =
∑n

i=1 λihi, we
define r(h) =

∑n
i=1 λici ∈ Cn. Further, we define 〈h, α〉 = r(h)>Cα for

any α ∈ Cn. By abuse of notation, we denote the obvious extension of
q to Cn by the same symbol.

Proposition 5.1. For all h ∈ H and all m ∈ M , we have [h,m] =
〈h, deg(m)〉m. Moreover, for any α ∈ Zn we have G(q)α ⊆ {x ∈ G(q) |
[h, x] = 〈h, α〉x, ∀h ∈ H}.

Proof. Let Ĝ(q) be the free Lie algebra generated by ei, e−i, hi

(1 ≤ i ≤ n) and let ` be the length function on M̂ , the set of monomials

in Ĝ(q), that is `(eεi) = 1, `(hi) = 1 and inductively `([x′, x′′]) =

`(x′) + `(x′′). The canonical projection π : Ĝ(q) → G(q) preserves the
degree and induces a surjection on the monomials.

We show by induction on `(x) that

[h, π(x)] = 〈h, deg(x)〉π(x)

for all x ∈ M̂ . Let h =
∑n

i=1 λici. If `(x) = 1 then x = hi (this
case is clear) or x = eεj, and then [h, π(x)] =

∑n
i=1 λi[hi, eεj] =

ε
∑n

i=1 λiCijeεj = λπ(x) with λ =
∑n

i=1 λic
>
i Cεcj = r(h)>Cdeg(π(x)) =

〈h, deg(x)〉.
If `(x) > 1, we have x = [x′, x′′] and setm′ = π(x′), m′′ = π(x′′). There-
fore [h, π(x)] = [m′, [h,m′′]] − [m′′, [h,m′]] = 〈h, deg(m′′)〉[m′,m′′] −
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〈h, deg(m′)〉[m′′,m′] by induction hypothesis. Hence, we have [h, π(x)] =
〈h, deg(m′) + deg(m′′)〉[m′,m′′] = 〈h, deg(π(x))〉π(x).

The remaining part follows from this and Lemma 2.1. �

In general the inclusion in Proposition 5.1 is not an equality. In order
to achieve this we pass to an extension of G(q) by the C-dual of rad q.

Choose a projection ρ : Cn → rad q and set G̃ρ(q) = G(q) ⊕ (rad q)∗,
as a vector space, where (rad q)∗ denotes the dual space with respect
to the field C. For ξ, ξ′ ∈ (rad q)∗ and x ∈ G(q)α define

[ξ, ξ′] = 0 and [ξ, x] = −[x, ξ] = ξρ(α)x.

Lemma 5.2. Using the Lie algebra structure on G(q), the above bracket
rules induce the structure of a Lie algebra on G̃ρ(q).

Proof. We check the Jacobi identity. Let ξ, ξ′ ∈ (rad q)∗, x ∈ G(q)α

and y ∈ G(q)β. Then, we have

[ξ, ξ′, x] + [ξ′, x, ξ] + [x, ξ, ξ′] =ξ′ρ(α)[ξ, x]− ξρ(α)[ξ′, x]

=ξ′ρ(α)ξρ(α)x− ξρ(α)ξ′ρ(α)x

=0,

and since [x, y] ∈ G(q)α+β, we obtain

[ξ, x, y] + [x, y, ξ] + [y, ξ, x] =ξρ(α+ β)[x, y]− ξρ(β)[x, y] + ξρ(α)[y, x]

=0.

This shows the statement. �

Now, set

H̃ = H ⊕ (rad q)∗,

deg(ξ) = 0 ∈ Zn for any ξ ∈ (rad q)∗ and define a bilinear form 〈 , 〉 :
H̃ × H → C by 〈h, α〉 = r(h)>Cα for h ∈ H and 〈ξ, α〉 = ξρ(α)
for ξ ∈ (rad q)∗. Note that this form is non-degenerate in the second
variable, since for α 6∈ rad q, we have Cα 6= 0 and thus there is an
i such that 〈hi, α〉 6= 0, whereas for any non-zero α ∈ rad q, we have
〈δα, α〉 6= 0, for some δα ∈ (rad q)∗.

For a slightly different setting the proof for the next proposition is also
contained in [18, chapter 4]. Here, we restrict to a context requested
by the scope of the present paper.

Proposition 5.3. (i) The algebra G̃ρ(q) is, up to isomorphism of
graded Lie algebras, independent of the choice of the projection ρ :
Cn → rad q, and hence denoted G̃(q) from now on.
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(ii) G̃(q) admits a root space decomposition, that is, for any α ∈ Zn,
we have

G̃(q)α = {x ∈ G̃(q) | [h, x] = 〈h, α〉x for all h ∈ H̃}.

Proof. (i) Let ρ, ρ′ be two projections Zn → rad q and denote by
π : Cn → Cn/rad q, α 7→ ᾱ the canonical projection. Note, that for
any ξ ∈ (rad q)∗, the composition ξ ◦ (ρ − ρ′) factors through π, say
ξ◦(ρ−ρ′) = χξ ◦π. Further observe that the linear map Cn → Cn, α 7→
Cα induces an injective map C̄ : Cn/rad q ↪→ Cn. Thus there exists
a linear map λξ : Cn → C with λξ ◦ C̄ = χξ, obtaining the following
commutative diagram:

Cn/rad q

Cn

Cn

C-

?
-....................

6

�
�

�
�

�
���

C̄

ξ ◦ (ρ− ρ′)

π λξ

χξ

Let λξ,i = λξ(ci) and ηξ =
∑n

i=1 λξ,ihi. Choose a base ξ1, . . . , ξr of
(rad q)∗ and let ηξi

be an element of H obtained in this way. Extend
by linearity, that is η(ξ) =

∑r
i=1 µiηξi

if ξ =
∑r

i=1 µiξi. Then, we have
ξρ(α) = ξρ′(α) + rη(ξ)>Cα, for all α ∈ Cn.

Now we are ready to define ϕ : G̃ρ(q) → G̃ρ′(q) by ϕ(x) = x for all
x ∈ G(q) and ϕ(ξ) = ξ + η(ξ) for all ξ ∈ (rad q)∗. For any x ∈ G(q)α,
y ∈ G(q)β and any ξ, ξ′ ∈ (rad q)∗, we have then [ϕ(x), ϕ(y)] = [x, y] =
ϕ([x, y]), [ϕ(ξ), ϕ(ξ′)] = 0 = ϕ([ξ, ξ′]) but also [ϕ(ξ), ϕ(x)] = [ξ +
η(ξ), x] = ξρ′(α)x+ rη(ξ)>Cαx = ξρ(α)x = ϕ([ξ, x]). Therefore ϕ is a
homomorphism of graded Lie algebras. That ϕ is bijective is obvious.

(ii) First, we note that [h, h′] = 0 for any h, h′ ∈ H̃. For any x ∈ G̃(q)α,
we have thus by definition [h, x] = 〈h, α〉x for any h ∈ H̃.

Conversely, let x ∈ G̃(q) be such that [h, x] = 〈h, α〉x for any h ∈ H̃.
Write x = ξ+

∑t
i=1 λimi, with all λi 6= 0, as sum of linearly independent

monomials mi ∈ G(q) and ξ ∈ (rad q)∗. Thus, we have on one hand
[h, x] =

∑t
i=1 λi〈h, deg(mi)〉mi by Lemma 5.1. And on the other hand,

we have [h, x] = 〈h, α〉x = 〈h, α〉ξ +
∑t

i=1 λi〈h, α〉mi. Comparing the

coefficients, we obtain 〈h, α〉 = 〈h, deg(mi)〉 for any h ∈ H̃, and thus
deg(mi) = α for any i. Therefore, if ξ = 0 we have x ∈ G(q)α ⊆ G̃(q)α

and in case ξ 6= 0 we have 〈h, α〉 = 0 for all h ∈ H̃ and hence α = 0,
which implies x ∈ G̃(q)0. �
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6. Non-negative forms of small corank

It is well-known, that the (simply-laced) finite-dimensional simple Lie
algebras L(∆) of Dynkin type ∆ = An (n ≥ 1), Dn (n ≥ 4), En (n =
6, 7, 8) are described by generators and Serre relations, see for example
[17]. Similarly, the affine Kac-Moody Lie algebras are described by
generators and Serre relations. The simply-laced cases are classified by
extended Dynkin diagrams ∆̃, where ∆ is as above, and will be denoted
by L(∆̃), see [9, 12].

Proposition 6.1. For any Dynkin diagram ∆, we have L(∆) = G(Q∆)
and L(∆̃) = G̃(Q∆̃).

Proof. The generators of L(∆) (resp. L(∆̃)) satisfy the Serre relations
(R1)−(R4) and because of the well-known root space decomposition in
L(∆) (resp. L(∆̃)) all relations of (R∞) are fulfilled, thus we get the
result. �

As a third illustration we will show that also the (simply-laced) elliptic
Lie algebras ẽ(Γ(R,G)), described by Saito and Yoshii in [15], are in
fact of the form G̃(q). For that sake, we will keep the notation from
[15], except for multibrackets, which we use in reverse order. Let ∆(R)
be the Dynkin diagram such that the corresponding extended Dynkin
diagram ∆̃ is Γaf .

Before entering the proof, we will show a helpful result. Let M be the
set of monomials in G(q) and ? : M → M the linear map defined by

eεi = e−εi, hi = hi for monomials of length one and [m,n] = −[m,n]
inductively for monomials of greater length (the function is first defined

for the free Lie algbera Ĝ(q) generated by ei, e−i, hi (for 1 ≤ i ≤
n) but passes to the quotient G(q) since m ∈ I for any m ∈ I, the
ideal generated by the relations (R1)−(R∞)). Notice that deg(m) =
− deg(m) for all monomials m. Let M1

εi = {eεi} and inductively for
α ∈ R1, M1

α = {[m,n] | α′, α′′ ∈ R1, α = α′ + α′′ and m ∈ M1
α′ , n ∈

M1
α′′}. Finally, let M1 =

⋃
α∈R1 M1

α.

Lemma 6.2. Let q be a non-negative unit form. For any α =
∑n

i=1 αici
and any m ∈M1

α, we have [m,m] =
∑n

i=1 αihi =: h(α).

Proof. Let x ∈ Ĝ(q) be a monomial with π(x) = m ∈M1
α (as earlier,

π : Ĝ(q) → G(q) denotes the canonical projection). The proof is done
by induction over the length `(x) of x.
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If `(x) = 1 then x = eεi = m and the statement is just (R3). For
`(x) > 1, write x = [x′, x′′] with deg(x′) = α′, deg(x′′) = α′′, α = α′+α′′

and set m′ = π(x′) and m′′ = π(x′′).

Since 1 = q(α) = q(α′)+ q(α′′)+ q(α′|α′′), we infer that q(α′|α′′) = −1.
Therefore we have q(α′− α′′) = 3 and hence [m′,m′′] = 0, [m′′,m′] = 0
by (R∞). Using induction hypothesis in the forth equation, Proposi-

tion 5.1 in the fifth and α′>Cα′′ = q(α′|α′′) = −1 in the seventh, we
obtain

[m,m] =− [[m′,m′′], [m′,m′′]]

=[m′′,m′,m′,m′′]− [m′,m′′,m′,m′′]

=− [m′′,m′′,m′,m′]− [m′,m′,m′′,m′′]

=− [m′′,m′′, h(α′)]− [m′,m′, h(α′′)]

=〈h(α′),−α′′〉[m′′,m′′] + 〈h(α′′),−α′〉[m′,m′]

=− α′
>
Cα′′h(α′′)− α′′

>
Cα′h(α′)

=h(α′) + h(α′′)

=h(α)

This finishes the proof. �

Proposition 6.3. The Lie algebra ẽ(Γ(R,G)), described in [15], with
∆(R) = Dn (n ≥ 4) or ∆(R) = En (n = 6, 7, 8), is isomorphic to G̃(q),
where q is non-negative of corank 2 and Dynkin type ∆(R).

Proof. To the different cases of Γaf = ∆̃, we associate a unit form
q : Zn+1 → Z given by its bigraph, see [1]:

D̃n : b bb b
�

�@
@

b b bb��
��QQ
QQ

1

2

3 = z

3∗

4

n

n− 1
n− 2

Ẽ6 : b b bb b b
�

�@
@

b b
QQ
��1 2

4∗

z = 4

3

5 6

7

Ẽ7 : b b b bb b b b
�

�@
@

b
QQ
��8

5∗

z = 5 4

6

3

7

2

1 Ẽ8 : b b bb b b b b b
�

�@
@

b
QQ
��9

6∗

z = 6 7

5

8

4 3 2 1

In any case we have that q is non-negative of corank 2 and Dynkin type
∆.

In order to define a homomorphism of Lie algebras ϕ : ẽ(Γ(R,G)) →
G̃(q), we define ϕ(E±αi−1) = e±i (1 ≤ i ≤ n), ϕ(E±α∗z−1) = e±z∗ , and

ϕ(h) = h, the latter being an abuse of notation, since we identified h̃

with H̃.
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In case Dn with n > 4, we define inductively for j = 4, . . . , n− 2

ϕ(Eα∗εj) = eεj∗ := [eεj, [eε(j−1)∗ , e−ε(j−1)]]

First notice that deg(ej∗) = cj + cz∗ − cz for any j > z. Thus, by
Lemma 6.2, we have [ej∗ , e−j∗ ] = hj + hz∗ − hz =: hj∗ for all j > z,
since ej∗ = [e−ε(j−1), eε(j−1)∗ , eεj] ∈M1.

We have to verify that the images of Eαi satisfy the relations [15,
(4.1.1)]. The relations 0. are clear. For I., we see that 〈hj∗ , α〉 = 〈hj, α〉
for all j.

That the first equation of II.1. is satisfied, follows from the definition
of hj∗ . The second equation of II.1, as well as II.2., III., IV. follow
from the fact that all the occurring multibracket expressions describe
monomials of degree α with q(α) > 1. Finally, for V., we see that the
condition is empty unless we are in case ∆ = Dn for n > 4. Then we
only have to verify the case where α = j and β = j− 1, since the other
one is just given by the definition of eεj∗ . Indeed, using cz∗− cz ∈ rad q
we have [eεj, eεj∗ ] = 0, [e−εj, eε(j−1)∗ ] = 0 and [[eε(j−1), eεj], eεj∗ , ej] = 0
because of (R∞), and since q is non-negative with Cz∗z = 2 Cz∗i = Czi

holds for all i and therefore [hi, eεj∗ ] = [hi, eεj]. Using our multibracket
notation, we have

[eε(j−1), [eεj∗ , e−εj]] =− [eε(j−1), e−εj, eεj, eε(j−1)∗ , e−ε(j−1)]

=− [e−εj, eε(j−1), eεj, eε(j−1)∗ , e−ε(j−1)]

=− [e−εj, eεj, eε(j−1), eε(j−1)∗ , e−ε(j−1)]

− [e−εj, [eε(j−1), eεj], eε(j−1)∗ , e−ε(j−1)]

=− [e−εj, eεj, eε(j−1)∗ , εhj−1]

− [e−εj, eε(j−1)∗ , [eε(j−1), eεj], e−ε(j−1)]

=− [e−εj, eεj,−2eε(j−1)∗ ]

+ [e−εj, eε(j−1)∗ , eεj, εhj−1]

=− 2[e−εj, eε(j−1)∗ , eεj] + [e−εj, eε(j−1)∗ , eεj]

=− [eε(j−1)∗ , e−εj, eεj]

=ε[eε(j−1)∗ , hj]

=eε(j−1)∗

This calculation shows, that ϕ is indeed a homomorphism. It is clearly
surjective. Conversely, we may define ψ : G̃(q) → ẽ(Γ(R,G)) by
ψ(eεi) = Eεαi−1 for any vertex i of q and ψ(h) = h. In order to see that
ψ is a homomorphism, we have to verify that relations (R1)−(R∞)
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are satisfied. For (R1), (R2) and (R3), this is clear, whereas for (R∞)
it follows from the root space decomposition of ẽ(Γ(R,G)), proved in
[15]: namely, that there is no root space for α with q(α) > 1. That all
Eα∗j lie in the image of ψ follows from [15, (4.1.1) V.]. Thus ψ is also
surjective. Clearly, φ and ψ are inverse to each other. �

Proof of Theorem 1.3. Let q : Zn → Z be a non-negative connected
unit form of corank r ≤ 2 and Dynkin type ∆. Further let q′ = Q∆

in case r = 0, q′ = Q∆̃ if r = 1, or let q′ be the form defined in the
proof of Proposition 6.3 in case r = 2 and ∆ = Dn (n ≥ 4) or ∆ = En

(n = 6, 7, 8). It follows from [1] that q is equivalent to q′, hence by
Proposition 1.2 they are G-equivalent and so by Theorem 1.1, G̃(q)
and G̃(q′) are isomorphic as graded Lie algebras. The assertions (a),
(b) and (c)(i) follow thus from the Propositions 6.1 and 6.3. In the
remaining case where r = 2 and ∆ = An (n ≥ 2) the result follows
from Proposition 2.2 and the fact shown in [15] that ẽ(Γ(R,G)) is
isomorphic to the Borcherds algebra N . �

Remark 6.4. We shall now discuss briefly why we get a weaker result
in the case (c)(ii), where ∆ = An (n ≥ 2).

There is a problem with the relations of type V. which are needed to
ensure the existence of a homomorphism ϕ : ẽ(Γ(R,G)) → G̃(q) in the
proof of Proposition 6.3.

To be more precise, the appropiate quadratic form q is given by the
following bigraph:

Ãn : b b bb b
�

�@
@

PPPPPPb b
z = 1

1∗

2 3 n− 1

n

Proceeeding in complete analogy with the proof of Proposition 6.3,
defining the elements eεj∗ := [eεj, [eε(j−1)∗ , e−ε(j−1)]] for j = 2, . . . , n
one has to check the validity of the relations of type V.

b bb b
�

�@
@

α

α∗

β

β∗

for α = β − 1 (α = 1, . . . , n− 1) and for α = β + 1 (α = 2, . . . , n). In
case {α, β} = {1, n} this could not be done. �

The fact that the relations are described by an infinite set (R∞) is
unsatisfactory. In the discussed cases (a), (b) or (c)(i) of Theorem 1.3,
q is G-equivalent to a form p where a finite set of relations is sufficient.
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As we will show, this implies that also for q a finite subset of relations
(R1)−(R∞) suffices.

More precisely, denote by (Ru)q (u = 1, 2, . . . ,∞) the set of relations

defined by the quadratic form q : Zn → Z, by Ĝ(q) the free Lie algebra

generated by {ei, e−i, hi | 1 ≤ i ≤ n} and by I(q) the ideal of Ĝ(q)
generated by (R1)q−(R∞)q.

Lemma 6.5. If T is a Gabrielov transformation, a sign-inversion or a
permutation for q and q′ = q ◦ T , then the ideal I(q) is generated by a
finite subset of relations (R1)q−(R∞)q if and only if I(q′) is generated
by a finite subset of relations (R1)q′−(R∞)q′.

Proof. For u = 3, . . . ,∞, let Iu(q) be the ideal of Ĝ(q) generated by

(R1)q−(Ru)q and Gu(q) = Ĝ(q)/Iu(q) be the quotient Lie algebra and

set I0(q) = 0, G0(q) = Ĝ(q) We further denote πuv : Gv(q) → Gu(q)
the canonical projection for v ≤ u. Similarly, we define Iu(q

′), Gu(q
′)

and π′uv.

We first deal with the case, where T = T σ
rs is a Gabrielov transformation

for q. Define ẽεi and h̃i as in (3.1) in the proof of Theorem 1.1. We

have then a morphism Φ00 : Ĝ(q′) → Ĝ(q), which maps e′εi to ẽεi and

h′i to h̃i.

The proof of the first part of Theorem 1.1 together with Remark
3.1, show that the elements ẽεi and h̃i in G4(q) satisfy the relations
(R1)q′−(R3)q′ , that is Φ00 induces a surjective morphism Φ43 : G3(q

′) →
G4(q) making the following diagram on the left hand side commutative,
where ϕ is the isomorphism from the proof of Theorem 1.1:

Ĝ(q′) Ĝ(q)

G3(q′)

G4(q)

G(q′) G(q)

PPPPPPq

-

-

?

?

?

?

Φ00

ϕ

Φ43

π′30

π′∞3

π40

π∞4

Ĝ(q′) Ĝ(q)

G3(q′)

G4(q)

G5(q)

G(q′) G(q)

PPPPPPq

������1

-

-

?

?

?

?

?

Φ00

ϕ

Φ43

Φ5∞

π′30

π′∞3

π40

π54

π∞5

Suppose now that there exists a finite subset of relations of (R1)q′−(R∞)q′

generating I(q′), that is I(q′) = 〈(R1)q′ , (R2)q′ , (R3)q′ , ρ
′
1, . . . , ρ

′
N〉, where

each ρ′i belongs to (R∞)q′ .
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Denote by t′j the length and by α′j the degree of ρ′j. Further set
ρj = Φ00(ρ

′
j). Notice that the length tj and degree αj of ρj satisfy

tj ≤ (|qsr| + 1)t′j and Tαj = α′j, since deg(Φ00(x)) = T (deg(x)) for
any monomial x. Therefore, q(αj) = q(deg(ρj)) = q(T (deg(ρ′j))) =
q′(α′j) > 1 and we have that {ρ1, . . . , ρN} ⊂ (R5)q ⊂ (R∞)q, where
(R5)q is the following set of relations

(R5)q [eε1i1 , . . . eεtit ] = 0 if for some j = 1, . . . , N , we have
deg([eε1i1 , . . . eεtit ]) = αj and t ≤ tj.

Then, by construction, the elements ẽεi and h̃i in G5(q) satisfy the re-
lations (R1)q′−(R3)q′ , ρ

′
1, . . . , ρ

′
N and therefore, we obtain a morphism

Φ5∞ : G(q′) → G5(q) making the diagram above on the right hand side
commutative.

Since ϕ = π∞5Φ5∞ is an isomorphism, we have that Φ5∞ is injective
whereas the surjectivity follows from the fact that Φ43 and π54 are both
surjective. Hence Φ5∞ is an isomorphism, which shows that π∞5 is an
isomorphism. Since (R1)q−(R5)q are all finite, we see that I(q) = I5(q)
is generated by a finite subset of relations (R1)q−(R∞)q.

The case, where T is a sign-inversion or a permutation is straightfor-
ward and thus the result follows. �

Proposition 6.6. If q is a non-negative, connected unit form of corank
less or equal than 2, where for corank 2 it is assumed that the Dynkin
type is not An, then there exists a finite subset of relations of (R1)−(R∞)
which is sufficient to define G(q).

Proof. Follows directly from Proposition 1.2, Theorem 1.1, the pre-
ceding lemma and the Propositions 6.1, 6.3. �
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