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Abstract. The main purpose of this paper is the study of module
varieties over the class of canonical algebras, providing a rich source
of examples of varieties with interesting properties. Our main tool is
a stratification of module varieties, which was recently introduced by
Richmond. This stratification does not require a precise knowledge of
the module category. If it is finite, then it provides a method to classify
irreducible components. We determine the canonical algebras for which
this stratification is finite. In this case, we describe the algorithm for
calculating the dimension of the variety and the number of irreducible
components of maximal dimension. For an infinite family of examples
we give easy combinatorial criteria for irreducibility, Cohen-Macaulay
and normality.

1. Introduction and Main Results

1.1. Canonical algebras. Throughout, let k be an algebraically closed
field. Any finite-dimensional k-algebra A is then Morita equivalent to kQ/I,
where Q is the quiver of A and I an admissible ideal in the path algebra
kQ, see [1] or [15] for details. We denote by Q0 the set of vertices and by
Q1 the set of arrows of Q. For an arrow α of Q, we denote by s(α) its start
point and by e(α) its end point.

An important class of algebras are the canonical algebras, introduced in [15].
Such an algebra depends on two data, the type p = (p1, · · · , pt) where t ≥ 3
and the pi’s are integers with pi ≥ 2, and a weight sequence λ = (λ3, · · · , λt)
of pairwise different non-zero elements in k. Given p and λ, the associated
canonical algebra C(p, λ) equals kQp/Iλ. Here Qp is the quiver with vertices

Q0 = {α, ω, (i, j) | 1 ≤ i ≤ t, 1 ≤ j ≤ pi − 1}

and arrows
Q1 = {γij | 1 ≤ i ≤ t, 1 ≤ j ≤ pi},

where s(γipi
) = α, s(γij) = (i, j) if j < pi, e(γi1) = ω and e(γij) = (i, j − 1)

if j > 1. The ideal Iλ of kQp is generated by

{γ11 · · · γ1p1
+ λiγ21 · · · γ2p2

− γi1 · · · γipi
| 3 ≤ i ≤ t}.
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Note that we may assume λ3 = 1, see Remark 4.1 for details. Canonical al-
gebras are quasi-tilted, i.e. their global dimension gldim(C) is at most 2 and
each indecomposable finite-dimensional module M has projective dimension
projdim(M) or injective dimension injdim(M) bounded by 1.

1.2. Module varieties. We are now going to define the objects of our
study, which are certain module varieties over a finite-dimensional k-algebra
A = kQ/I.

By modA we denote the category of finite-dimensional (left) A-modules. Re-
call that the vertices of Q correspond to the isomorphism classes of simple A-
modules. For a vertex x of Q we denote the corresponding simple module by
Sx. Hence, the Grothendieck group K0(A) of A may be identified with Z

Q0 .
Namely, for an A-module M and x ∈ Q0, let (dimM)x be the multiplicity
of Sx in a composition series of M . We call dimM : Q0 → Z, x 7→ (dimM)x

the dimension vector of M . A dimension vector d is called sincere if dx ≥ 1
for all x. Finally, we denote |d| =

∑

x∈Q0
dx.

If d = (dx)x∈Q0
is a dimension vector of some A-module, then let modA(d)

be the subcategory of modA containing the modules with dimension vector
d. We identify modA(d) with the category rep(Q,I)(d) of representations

of the bounded quiver (Q, I) with dimension vector d. Thus, we may view
modA(d) as an affine variety, see, for example, [2] or [14].

1.3. Main results. Let R be a minimal set of relations which generate the
ideal I, and for x, y ∈ Q0 let rxy be the number of relations from x to y in
R. It is well known that rxy does not depend on the choice of R. For a
dimension vector d let

a(d) =
∑

α∈Q1

ds(α)de(α) −
∑

x,y∈Q0

rxydxdy.

It follows from a generalization of Krull’s principal ideal theorem that each
irreducible component of modA(d) has dimension at least a(d). It is impor-
tant to know when the dimension of modA(d) equals a(d). In this case, one
can prove in many situations additional properties like Cohen-Macaulay or
normality, see [8] for the definitions of the geometrical concepts used here.

Theorem 1.1. Let C be a canonical algebra, and let d be a sincere dimen-

sion vector. There exists a module M in modC(d) with projdim(M) ≤ 1 if

and only if
∑t

i=1 max{0, dα − dij | 1 ≤ j ≤ pi − 1} ≤ 2dα. In this case, the

following hold:

(1) If dimmodC(d) = a(d), then dα + (m − 2)dω ≤ 1 +
∑m

`=1 di`j`
for

3 ≤ m ≤ t, all 1 ≤ i1 < · · · < im ≤ t and all j1, · · · , jm;

(2) If modC(d) is irreducible, then dα + (m − 2)dω ≤
∑m

`=1 di`j`
for 3 ≤

m ≤ t, all 1 ≤ i1 < · · · < im ≤ t and all j1, · · · , jm.
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Note that one can dualize this theorem by exchanging the values of dα and
dω and by replacing the condition projdim(M) ≤ 1 by injdim(M) ≤ 1.

Theorem 1.2. Let C be a canonical algebra of type (p1, p2, 2), and let d be

a sincere dimension vector. Then the following hold:

(1) If dα+dω ≤ d1j1 +d2j2 +d31+1 for all j1, j2, then dimmodC(d) = a(d);
(2) If dα +dω ≤ d1j1 +d2j2 +d31 for all j1, j2, then modC(d) is irreducible

and a complete intersection. In particular, it is Cohen-Macaulay;

(3) If dα +dω ≤ d1j1 +d2j2 +d31−1 for all j1, j2, then modC(d) is normal.

If C is of type (p1, p2, 2), and if M is a C-module with projdim(M) ≤ 1
or injdim(M) ≤ 1, then one can combine the above theorems in order to
get a necessary and sufficient condition for dim modC(dimM) = a(dimM)
and for the irreducibility of modC(dimM). Compare this with the classical
example given in 4.7. We expect that similar results can be proved by the
same methods as used here for the other subfinite canonical algebras, see 1.5
and Theorem 2.16. However, the proofs will be considerably more technical.

1.4. Remarks on previous works. For small types p the module category
modC over a canonical algebra C = C(p, λ) is well known, that is if the type
p equals (p1, 2, 2), (3, 3, 2), (4, 3, 2), (5, 3, 2), (6, 3, 2), (3, 3, 3), (4, 4, 2) or
(2, 2, 2, 2). In these cases C is tame, see [7] or [9] for a precise definition. In
all other cases C is wild, and a classification of the indecomposable modules
is regarded to be impossible.

Previous work done on the study of module varieties involved the knowledge
on the module category. The examples, which are studied in [2], [3] and [4],
are mainly of the form modA(d), where all indecomposable A-modules are
known, and one assumes additionally that there exists an indecomposable
A-module with dimension vector d. For example, it is shown in [3] that, if
A is tame and quasi-tilted, and if there exists an indecomposable module
in modA(d), then modA(d) is always of dimension a(d), and the number
of irreducible components is at most 2. It seems impossible to apply the
methods, which are used in the proofs of these results, to situations where
the indecomposable A-modules are not known. Also in the situations which
are studied in [6], [11], [12] or [16] there exists a good knowledge of the
corresponding module categories.

The presented work shows, that the above results do no longer hold for
wild quasi-tilted algebras. In 4.5 we provide examples for the following phe-
nomenon: For m ≥ 0 let Cm be the canonical algebra of type (m + 6,m +
6, 2). Then there exists an indecomposable Cm-module M such that dim
modCm(dimM) = a(dimM) + m + 1, and modCm(dimM) is not equidimen-

sional, i.e. there exist irreducible components of different dimensions.

1.5. Richmond’s theorem. Since knowledge on the module category over
a wild algebra A is scarce, we use a different strategy. Our main tool is a
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stratification of the module variety modA(d), which was introduced in [13]
by Richmond and will be explained now.

Let d be a dimension vector with |d| = n. Let SA(d) be a set of represen-
tatives of isomorphism classes of submodules of An which have dimension
vector dim(An)−d. For each L in SA(d) let modA(d)L be the points M in
modA(d) such that there exists a short exact sequence 0 −→ L −→ An −→
M −→ 0 of A-modules. Such a set is called stratum. Note that modA(d)
is the disjoint union of the modA(d)L’s where L runs through SA(d). If U
and V are in SA(d), then define modA(d)U ≤ modA(d)V if modA(d)U is
contained in the closure of modA(d)V . This defines a partial order on the
strata in modA(d). The following theorem can be found in [13] and plays a
central role in all our proofs. We think that it can be applied in many other
important situations as well.

Theorem 1.3 (Richmond). modA(d)L is a smooth, irreducible affine va-

riety of dimension dimk HomA(L,An) − dimk EndA(L) − n2 +
∑

x∈Q0
d2

x.

Furthermore, it is locally closed in modA(d).

Note that this is a slightly modified version of Richmond’s theorem. We
formulate her result for varieties of representations of quivers whereas she
formulates it in terms of the variety of k-algebra homomorphisms from A to
the set of n × n-matrices. The precise connection between these points of
view is described in [5].

It is easy to check that in case SA(d) is finite, the irreducible components
of modA(d) are exactly the closures of the starta which are maximal with
respect to the partial order ≤ as defined above. The algebra A is called
subfinite if SA(d) is a finite set for all d. For m ≥ 0 let J (Am) be a set of
representatives of isomorphism classes of indecomposable submodules of Am.
We assume J (Am) ⊆ J (Am+1) for all m and define JA =

⋃

m≥1 J (Am).

If there exists some minimal integer s(A) such that for all d each module in

SA(d) is isomorphic to a module of the form
⊕m

i=1 Ui with Ui ∈ J (As(A)) for
all i, then we call A subfinite of rank s(A). We call A d-subfinite, if SA(d)
is a finite set.

In Section 2, the subfinite canonical algebras are classified (Theorem 2.16),
and the submodules of free modules are described. Our main results are
proved in Section 3 and follow as special cases from 3.7 and 3.8. In Section
4, we give some examples.

2. Classification of subfinite canonical algebras

Throughout this section, let C = C(p, λ) = kQp/Iλ be a canonical algebra.

2.1. General considerations. We start with a number of simple observa-
tions.
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Lemma 2.1. If there exists an m such that J (Am) is not finite, then A is

not subfinite.

We denote by Px the projective cover of the simple module Sx, associated
to the vertex x ∈ Q0 and abbreviate Pij := P(i,j). Note that for any vertex
x ∈ Q0, x 6= α, all submodules of the projective module Px are again
projective. Therefore, if U is an indecomposable submodule of Cn, which
admits a non-zero morphism to some Px, x 6= α, then U is of the form Py for
some vertex y 6= α. If there is no such morphism U is either isomorphic to
Pα or a submodule of radP n

α . Thus, by 2.1 a canonical algebra is subfinite if
and only if for each natural number n the module radP n

α admits only finitely
many isomorphism classes of submodules. Define R = radPα. To simplify
notations, and just for this section, we call a submodule U of a free module
exceptional if U does not admit a non-zero projective direct summand.

Lemma 2.2. Let U be an indecomposable exceptional C-module. Then ei-

ther U is isomorphic to R, or U admits a non-zero morphism to a maximal

submodule of R.

For a t-tupel h = (h1, · · · , ht) with 0 ≤ hi ≤ pi − 1 and 1 ≤ i ≤ t we define
U(h) to be the submodule of R given by

U(h)(i, j) =

{

0, if j > hi

R(i, j), if j ≤ hi

U(h)(ω) = R(ω),

U(h)(γij) =

{

0, if j > hi

R(γij), if j ≤ hi

.

Let t(h) = |{i | hi 6= 0, 1 ≤ i ≤ t}|. Observe that U(h) is decomposable if
and only if t(h) ≤ 2 if and only if U(h) is projective. Define Hns = {h |
t(h) ≥ 3}.

Lemma 2.3. We have J (C) = {Px, U(h) |x ∈ Q0, h ∈ Hns}.

Proof. Show that any indecomposable non-projective submodule of R is
of the form U(h). This is a straightforward calculation. �

Corollary 2.4. If dα = 1, then C is d-subfinite, and each module in SC(d)
is isomorphic to a module of the form

⊕m
i=1 Ui with Ui ∈ J (C) for all i.

Corollary 2.5. If U ∈ SC(d), then U admits at most dα direct summands

of the form U(h) with h ∈ Hns.

Lemma 2.6. If g, h ∈ Hns, then we have HomC(U(h), U(g)) = k if gi ≤ hi

for all i, and HomC(U(h), U(g)) = 0, else.
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2.2. Canonical algebras with five arms are not subfinite.

Lemma 2.7. If C is subfinite, then t ≤ 4.

Proof. Clearly, it is enough to show that the canonical algebra C of type
(2, 2, 2, 2, 2) with λ = (1, λ4, λ5) is not subfinite. For a ∈ k let Ma be the
representation of Qp given by Ma(α) = 0, Ma(i, 1) = k3 for 1 ≤ i ≤ 4,
Ma(5, 1) = k2 and Ma(ω) = k8, and for 1 ≤ i ≤ 5 the maps Ma(γi1) :
Ma(i, 1) → Ma(ω) are given by the matrices

























0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

























,

























0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 1

























,

























1 0 0
1 0 0
0 1 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 1

























,

























1 0 0
λ4 0 0
0 1 0
0 λ4 0
0 0 1
0 0 λ4

0 0 0
0 0 0

























,

























1 0
λ5 0
0 1
0 λ5

1 1
λ5 λ5

1 a
λ5 aλ5

























.

With some patience, the reader may easily verify that Ma is not isomorphic
to Mb whenever a 6= b. Furthermore, Ma can be embedded into radP 4

α for
any a. �

2.3. Three arms.

Lemma 2.8. Let C be of type (p1, p2, p3), and let U be an exceptional mod-

ule. For i, j ∈ {1, 2, 3}, i 6= j, we have ImU(γi1) ⊕ ImU(γj1) = U(ω).

Proof. Since U is a submodule of Rn for some n, we get ImU(γi1) ∩
ImU(γj1) = 0. For simplicity assume that i = 1 and j = 2, and suppose
that there exists some v ∈ U(ω) \ (ImU(γ11) + ImU(γ21)). If v 6= ImU(γ31),
then Pω is a direct summand of U . Otherwise, if ` is maximal such that
v ∈ ImU(γ31) · · ·U(γ3`), then one easily checks that U is isomorphic to
P3` ⊕ U ′. In both cases, we get a contradiction. �

Corollary 2.9. Let C be of type (p1, p2, p3). If U is an exceptional module

and n minimal such that there exists an embedding f : U → Rn, then f(1, 1),
f(2, 1), f(3, 1) and f(ω) are isomorphisms.

Proof. Let Ui = Imf(i, 1), V = Imf(ω) = k2n, and let φi : Ui → V be
the morphism induced by Rn(γi1). Let b1, · · · , bs be a basis of U1. By the
previous lemma there exist c1, · · · , cs ∈ U2 and d1, · · · , ds ∈ U3 such that

φ1(bj) = φ2(cj) + φ3(dj) for all j,

that is
[

bj

0

]

=

[

0
cj

]

+

[

dj

dj

]

.
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Thus, we get bj = cj = dj for all j. Again by the lemma, we have dimU1 =
dimU2 = dimU3. This implies U1 = U2 = U3 ⊆ kn = Rn(1, 1), and

[

b1

0

]

, · · · ,

[

bs

0

]

,

[

0
b1

]

, · · · ,

[

0
bs

]

is a basis of V = Imf(ω). Since n was chosen minimal, we must have s = n,
hence the result. �

For any positive natural numbers n1, n2 and n3 let Σ(n1, n2, n3) be the
hereditary algebra whose quiver is a star with one sink σ and 3 branches
with n1, n2 and n3 points, respectively. More precisely, let Q′ be the quiver
of Σ(n1, n2, n3) with vertices Q′

0 = {σ, (i, j) | 1 ≤ i ≤ 3, 2 ≤ j ≤ ni}, and
the arrows are Q′

1 = {γij | 1 ≤ i ≤ 3, 2 ≤ j ≤ ni} with s(γij) = (i, j) for all
i, j, e(γi2) = σ and e(γij) = (i, j − 1) for 1 ≤ i ≤ 3 and 3 ≤ j ≤ ni.

Proposition 2.10. Let C be of type (p1, p2, p3), and let A = Σ(p1 − 1, p2 −
1, p3 − 1). Then there exists an equivalence

Φ : modι
A → modexc

C ,

where modexc
C is the full subcategory of modC given by the exceptional C-

modules, and modι
A is the additive hull in modA given by the indecomposable

A-modules M satisfying M(σ) 6= 0.

Proof. We give the explicit construction of Φ. For U ∈ modι
A define

M = Φ(U) by setting M(ω) = U(σ)2, M(i, 1) = U(σ) for 1 ≤ i ≤ 3,
M(i, j) = U(i, j) and M(γij) = U(γij) for 1 ≤ i ≤ 3 and 2 ≤ j ≤ pi − 1 and
finally

M(γ11) =

[

U(γ11)
0

]

, M(γ21) =

[

0
U(γ21)

]

, M(γ31) =

[

U(γ31)
U(γ31)

]

.

For f ∈ HomA(U, V ) with U, V ∈ modι
A, define g = Φ(f) by gω = f2

σ ,
gi1 = fσ for 1 ≤ i ≤ 3 and gij = fij for 1 ≤ i ≤ 3 and 2 ≤ j ≤ pi − 1.

Clearly, Φ is full and faithful. By the previous corollary, Φ is also dense,
hence an equivalence. �

As a direct consequence we obtain the following results.

Corollary 2.11. If C is of type (p1, p2, p3), then C is subfinite if only if

A = Σ(p1 − 1, p2 − 1, p3 − 1) is Dynkin. In this case, C is subfinite of rank

max{dimM(σ) | M ∈ modι
A,M indecomposable}.

Corollary 2.12. If C is of type (p1, p2, 2), then C is subfinite of rank 1.

2.4. Four arms. Finally, we deal with the case where C is a canonical al-
gebra of type (p1, p2, p3, p4). In the following, we will encript the dimension
of the morphism space between two indecomposable modules M and N in
quivers with relations in the following way. Namely, dimk HomC(M,N) =
dimk kQ/I(M,N) where Q is a quiver having M and N as vertices, and
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I is an ideal generated by linearly independent relations indicated by dot-
ted arrows. By τ = Homk(HomC(?, C), k) we denote the Auslander-Reiten
translate.

Lemma 2.13. If C is a canonical algebra of type (2, 2, 2, 2), then C is sub-

finite of rank 2, and the elements of JC are the vertices of the following

quiver, whereas the dimension of the morphism spaces can be read off from

the picture below.

Pω

P11

P21

P31

P41

τ−Pω

U(0, 1, 1, 1)

U(1, 0, 1, 1)

U(1, 1, 0, 1)

U(1, 1, 1, 0)

R Pα

�
���

�
���

@
@@R

@
@@R

��1 ��1

PPq PPq

@
@@R

@
@@R

�
���

�
���

PPq PPq

��1 ��1
-

-

-

-

-

- --

Proof. Let U ∈ J (Cm) for some m. Then U is either projective or excep-
tional. If U is exceptional, but not isomorphic to R, then by 2.2 there exists a
non-zero morphism to a maximal submodule of R. The maximal submodules
of R are U(0, 1, 1, 1) = τ−P11, U(1, 0, 1, 1) = τ−P21, U(1, 1, 0, 1) = τ−P31

and U(1, 1, 1, 0) = τ−P41. Observe that these are postprojective modules.
Since the postprojective component is standard and directed, U is also post-
projective, and U = τ−Px for some x 6= α. A direct calculation shows that
τ−Pω ∈ J (C2), hence the result. �

Denote by C the canonical algebra of type (3, 2, 2, 2) having the same weights
as C. Clearly, a submodule U of C

m
with U(α) = 0 may be viewed as a

module over C◦ = C/(α). The restriction of such a module to C◦ = C/(α)
may be viewed as a submodule U of Cm satisfying U(α) = 0.

Let U (resp. U) be the full subcategory of modC (resp. mod
C
) given by

submodules X of free modules satisfying X(α) = 0. Then U is equivalent
to the subspace category V(U ,HomC(P11, ?)), that is its objects are triples
(V, f,X) consisting of a vector space V , an object X ∈ U and a linear map
f : V → HomC(P11, X). A morphism ϕ = (ϕ0, ϕ1) : (V, f,X) → (V ′, f ′, X ′)
is a pair consisting of a linear map ϕ0 ∈ Homk(V, V ′) and a morphism
ϕ1 ∈ HomC(X,X ′) such that HomC(P12, ϕ1)f = f ′ϕ0.

In the following, we abbreviate U1̂ := U(0, 1, 1, 1), U2̂ := U(1, 0, 1, 1), U3̂ :=
U(1, 1, 0, 1), U4̂ := U(1, 1, 1, 0) and Z := τ−Pω. Further, choose non-zero
morphisms β : P11 → Z, γi : Z → U

î
and δi : U

î
→ R for 1 ≤ i ≤ 4.
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Lemma 2.14. Let C be a canonical algebra of type (3, 2, 2, 2). Then C is

subfinite of rank 3, the indecomposable submodules of free modules are

X◦ := (0, 0, X) for X ∈ U ,

P 11 := (k, id, P11), Z := (k, β, Z), R = (k, δ2γ2β,R),

U î := (k, γiβ, Uî) for 1 ≤ i ≤ 4,

Y1 = (k,





γ2β
γ3β
γ4β



 , U2̂ ⊕ U3̂ ⊕ U4̂), Y2 = (k2,





γ2β 0
0 γ3β

γ4β γ4β



 , U2̂ ⊕ U3̂ ⊕ U4̂),

U
îĵ

:= (k,

[

γiβ
γjβ

]

, U
î
⊕ U

ĵ
) for i < j ∈ {2, 3, 4},

and the morphism spaces can be read off from the following picture.

P ◦
ω

P ◦
11

P ◦
21

P ◦
31

P ◦
41

Z◦

P 11

Z

U◦
2̂

U◦
3̂

U◦
4̂

Y1

U◦
1̂

U 3̂4̂

U 2̂4̂

U 2̂3̂

Y2

R◦

U 2̂

U 3̂

U 4̂

R Pα

�
���

�
���

������* HHHHHHj

�
���

�
���

@
@@R

@
@@R

@
@@R

@
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Proof. Since U is well known, U can be calculated explicitely by the well
known technique of subspace categories. �

Proposition 2.15. Let C be a canonical algebra of type p = (p1, p2, p3, p4).
Then C is subfinite if and only if p equals (2, 2, 2, 2) or (3, 2, 2, 2).

Proof. The sufficiency follows from 2.13 and 2.14. In order to show that
for all other types the canonical algebra is not subfinite, it is sufficient to

show that canonical algebras C of type (4, 2, 2, 2) and of type (3, 3, 2, 2) are

not subfinite. Again, the full subcategory U of mod
C

given by submodules

X of free modules satisfying X(α) = 0 is equivalent to V(U , F ), where
F = Hom

C
(P12, ?) or F = Hom

C
(P21, ?), respectively. In both cases, we

have dimk F (Y2) = 2. Thus, U is not finite, and thus C is not subfinite. �

2.5. Classification of subfinite canonical algebras.

Theorem 2.16. A canonical algebra C is subfinite if and only if it is of

type (p1, p2, 2), (p1, 3, 3), (4, 4, 3), (5, 4, 3), (6, 4, 3), (2, 2, 2, 2) or (3, 2, 2, 2).

It turns out that each canonical algebra is either subfinite of a certain rank
or not subfinite at all. One might ask whether this holds for all finite-
dimensional algebras.
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By the above result, in particular by the description of all submodules of
free modules in the subfinite case, we obtain an algorithm from 1.3 for
computing the dimension of the variety and the irreducible components of
maximal dimension. In fact, for those subfinite cases with t = 3 we realized
this algorithm as a computer program. Note that the subfinite canonical
algebras with t = 3 can be divided according to 2.11 into the cases An, Dn,
E6, E7 and E8. For the rest of this article we mainly focus on the most simple
case (p1, p2, 2), which corresponds to the Dynkin type Ap1+p2−3. However,
we expect similar results for the remaining subfinite cases.

3. Proof of the main results

3.1. Existence of modules of projective dimension at most 1.

Proposition 3.1. Let A = kQ/I, and let d be a dimension vector. There

exists a projective module P ∈ SA(d) if and only if modA(d) contains a

module M with projdim(M) ≤ 1. If this is the case, and if Q has no ori-

ented cycles, then P is uniquely determined, modA(d)P = {M ∈ modA(d) |
projdim(M) ≤ 1} and the closure of modA(d)P is an irreducible component.

If additionally gldim(A) ≤ 2, then dim modA(d)P = a(d).

Proof. The first part is clear. Since the function M 7→ projdim(M) is
upper-semicontineous, we know that {M ∈ modA(d) | projdim(M) ≤ 1}
is an open set in modA(d). In case Q has no oriented cycles, it is obvious
that this set is equal to modA(d)P for some projective module P ∈ SA(d).
This set is irreducible by 1.3. Since it is additionally open, we get that its
closure is an irreducible component of modA(d). The last statement of the
proposition follows from Proposition 2.2 in [2]. �

For the rest of this section, let C = C(p = (p1, · · · , pt), λ) = kQp/Iλ be a
canonical algebra, and let d be a sincere dimension vector with |d| = n.

Let dop be the dimension vector with dop
α = dω, dop

ω = dα and dop
ij = dipi−j

for 1 ≤ i ≤ t and 1 ≤ j ≤ pi − 1. The following two lemmas are an easy
consequence of the fact that C is isomorphic to its opposite algebra C op.

Lemma 3.2. The affine varieties modC(d) and modC(dop) are isomorphic.

Lemma 3.3. There exists a module of injective dimension at most 1 in

modC(d) if and only if there exists a module of projective dimension at

most 1 in modC(dop).

We define a dimension vector d∗ as follows: Let d∗α = d∗ω = 0, for 1 ≤ i ≤ t
let d∗ipi−1 = max{0, dα − dipi−1}, and for 1 ≤ i ≤ t and 1 ≤ j ≤ pi − 2

define d∗ij = max{0, dα − dij −
∑pi−1

`=j+1 d∗il}, see 4.3 for examples. Since d is

sincere, we get
∑pi−1

j=1 d∗ij ≤ dα − 1 for all 1 ≤ i ≤ t. Thus, |d∗| ≤ t(dα − 1)

holds. For a dimension vector d let P (d) be the projective module with
dim topP (d) = d.
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Lemma 3.4. There exists a projective module P ∈ SC(d) if and only if
∑t

i=1 max{0, dα − dij | 1 ≤ j ≤ pi − 1} ≤ 2dα if and only if |d∗| ≤ 2dα.

Proof. The equivalence of the second and the third statement follows from
the fact that

∑pi−1
j=1 d∗ij = max{0, dα − dij | 1 ≤ j ≤ pi − 1}.

Recall that each module in SC(d) has dimension vector dim(Cn)−d. If their
exists a projective module with this dimension vector, then it is isomorphic
to

P n−dα
α ⊕ P

n−dω−(t−2)dα+
∑t

i=1
di1

ω ⊕
t

⊕

i=1

P
n−dipi−1+dα

ipi−1 ⊕
t

⊕

i=1

pi−2
⊕

j=1

P
n−dij+dij+1

ij .

The existence of such a module is equivalent to the condition n − dω − (t −
2)dα +

∑t
i=1 di1 ≥ 0. Assume that we are in this case. Denote the above

module by P . We have to check under which condition P can be embedded
into Cn. Obviously, we have to map the direct summand P n−dα

α injectively
to the direct summand P n

α of Cn. Then we try to embed the remaining
direct summands of P . Note that they are all uniserial. One checks easily
that we can embed almost all of them, exept a direct summand isomorphic
to P (d∗), into the uniserial part of Cn. Then the question is reduced to
the problem to embed P (d∗) into P dα

α . But this can be done if and only if
|d∗| ≤ 2dα.

Finally, note that the condition
∑t

i=1 max{0, dα−dij | 1 ≤ j ≤ pi−1} ≤ 2dα

implies immediately n − dω − (t − 2)dα +
∑t

i=1 di1 ≥ 0. This finishes the
proof. �

3.2. Proof of Theorem 1.1 and Theorem 1.2. For dimension vectors
e and f denote by e · f =

∑

x∈Q0
exfx the scalar product and by e + f

the vector sum. A dimension vector s is called a section, if sα = sω = 0,
sij ≤ 1 for all 1 ≤ i ≤ t and 1 ≤ j ≤ pi − 1, and if siji

= 1 for some ji,
then sij = 0 for all j 6= ji. A section is called non-split if it has at least
3 non-zero entries. Otherwise, it is called split. If s is a non-split section,
then let U(s) = U(h1, · · · , ht) such that s is the dimension vector of the top
of U(h1, · · · , ht). For 1 ≤ m ≤ dα let s = (s1, · · · , sm) be an m-tupel of
non-split sections. Define

Us =
m

⊕

`=1

U(s`) ⊕ P n−dα
α ⊕ P

n−dω−(t−2)dα+
∑

i
di1+

∑

`
(|s`|−2)

ω ⊕

t
⊕

i=1

P
n−dipi−1+dα−(

∑

`
s`)ipi−1

ipi−1 ⊕
t

⊕

i=1

pi−2
⊕

j=1

P
n−dij+dij+1−(

∑

`
s`)ij

ij ,

where the sum over i runs from 1 to t, and the sums over ` run from 1 to
m.
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It is easy to check that dim(Us) = dim(Cn) − d. For 1 ≤ ` ≤ m let n(`) be
the dimension of HomC(U(s`),

⊕m
i=1 U(si)). Note, that we can express n(`)

in combinatorial terms by 2.6.

Proposition 3.5. The module Us lies in SC(d) if and only if P (d∗) embeds

into P dα−m
α ⊕ P (

∑m
`=1 s`). In this case, we have

dimmodC(d)Us
= a(d) +

m
∑

`=1

[dα + (|s`| − 2)dω − n(`) − s` · d] .

Thus, for all canonical algebras we get a description of the modules U in
SC(d) such that U is isomorphic to a module of the form

⊕m
i=1 Ui with Ui ∈

J (C). Furthermore, we get an easy formula for computing the dimension
of the corresponding strata.

Proof. Let P be the projective module with dimension vector dim(Cn)−d.
The module Us is obtained from P by deleting a direct summand isomorphic

to P (
∑m

`=1 s`) and by adding the module P

∑m

`=1
(|s`|−2)

ω ⊕
⊕m

`=1 U(s`). If we
want to embed Us into a free module, we have to embed the direct summand
⊕m

`=1 U(s`) into a direct summand isomorphic to P m
α . Taking this into

account, the same considerations as in the previous lemma yield that Us

embeds into Cn if and only if P (d∗ −
∑m

`=1 s`) embeds into P dα−m
α . This is

the case if and only if P (d∗) embeds into P dα−m
α ⊕ P (

∑m
`=1 s`).

Let P ′ be indecomposable projective, and let h = (h1, · · · , ht) ∈ Hns. Re-
call that HomC(U(h), P ′) = k if P ′ = Pα, and HomC(U(h), P ′) = 0, else.
Furthermore, HomC(Pα, U(h)) = 0, HomC(Pij , U(h)) = k if j ≤ hi, and
HomC(Pij , U(h)) = 0, else. Finally, we have HomC(Pω , U(h)) = k2. Com-
puting the dimensions of the homomorphism spaces between indecompos-
able projective modules is left to the reader as a lengthy but elementary
exercise. Using this information and 1.3, we get the dimension formula for
modC(d)Us

. �

Lemma 3.6. If C is of type (p1, p2, p3), and if dα + dω ≤ s · d + 1 for all

non-split sections s, then |d∗| ≤ 2dα.

Proof. From the inequality in the assumption and from the fact that d is
sincere, we get dα ≤ s · d for all non-split sections s. Let s be a non-split
section such that s · d is minimal. It follows from the definition of d∗ that
|d∗| ≤ 3dα − s ·d. Combining this with our inequality we get |d∗| ≤ 2dα. �

Corollary 3.7. Assume that |d∗| ≤ 2dα. Then the following hold:

(1) If dα + (|s| − 2)dω > s · d + 1 for some non-split section s, then

dimmodC(d) > a(d), and modC(d) is not equidimensional;

(2) If dα + (|s| − 2)dω > s · d for some non-split section s, then modC(d)
is not irreducible.
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Proof. First, assume that dα + (|s| − 2)dω > s · d + 1 for some non-split
section s. We can choose s such that the vector d∗ − s contains no negative
entries.

Next, let P = P (d∗) ⊕ Z be the projective module with dimension vector
dim(Cn)−d. Since |d∗| ≤ 2dα, there exists an embedding ι : P (d∗)⊕Z −→
Cn. We can choose ι such that P (d∗) is mapped to a direct summand
isomorphic to P dα

α .

Combining these facts, we get that the module Us = P (d∗ − s) ⊕ U(s) ⊕

P
|s|−2
ω ⊕Z can be embedded into Cn as well. Since dα+(|s|−2)dω > s ·d+1,

it follows from 3.5 that dim modC(d)Us
> a(d). In particular, there exists

an irreducible component of modC(d) which has dimension greater than
a(d). On the other hand, by 3.1 there exists an irreducible component of
dimension a(d) which is given by the closure of modC(d)P . It follows that
modC(d) is not equidimensional. Next, assume dα + (|s| − 2)dω > s · d for
some non-split s. The same argument as above shows that modC(d) is not
irreducible. �

Corollary 3.8. If dα = 1, or if C is of type (p1, p2, 2), then the following

hold:

(1) Each U in SC(d) is isomorphic to a module of the form
⊕m

i=1 Ui with

Ui ∈ J (C) for all i;
(2) If dα +(|s|−2)dω ≤ s ·d+1 for all non-split sections s, then modC(d)

has dimension a(d);
(3) If dα + (|s| − 2)dω ≤ s · d for all non-split sections s, then modC(d)

is irreducible and a complete intersection. In particular, it is Cohen-

Macaulay;

(4) If dα +(|s|−2)dω ≤ s ·d−1 for all non-split sections s, then modC(d)
is normal.

Proof. Part (1) holds by 2.4 and 2.12. Let Us =
⊕m

`=1 U(s`) ⊕ P be in
SC(d) where P is projective and m ≥ 1. Since dα + (|s`| − 2)dω ≤ s` · d + 1
for all `, it follows from the dimension formula in 3.5 that dim modC(d)Us

≤
a(d). Thus, modC(d) has to have dimension a(d), that is (2).

If we additionally have dα+(|s`|−2)dω ≤ s`·d, then we get dim modC(d)Us
<

a(d). This implies that modC(d) has only one irreducible component,
namely the closure of modC(d)P where P is projective. Thus, Ext2

C(M,M)
vanishes generically. It follows that the associated scheme of modules with
dimension vector d is generically reduced. Together with the fact that
modC(d) has dimension a(d), we get that the scheme is a complete in-
tersection. Thus it is Cohen-Macaulay by Proposition 18.13 in [8]. This
implies that the scheme of modules is reduced and can be indentified with
modC(d). Compare [5] for similar argumentations. This proves part (3).

Observe that each point M in modC(d)P is smooth in modC(d), since
Ext2C(M,M) = 0, see, for example, [12]. If dα + (|s| − 2)dω ≤ s · d − 1
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for all non-split sections s, then we get that each stratum different from
modC(d)P has dimension as most a(d)− 2. Thus, the set of singular points
has codimension at least 2. Since under these conditons we know already
that modC(d) is Cohen-Macaulay and irreducible, we can apply Serre’s nor-
mality criterion and get that modC(d) is normal, see Theorem 8.22A in [10].

�

4. Examples and Remarks

4.1. On the definition of canonical algebras. In the literature, canon-
ical algebras are often defined slightly more general. From the type p =
(p1, · · · , pt) is only requested that t ≥ 2, whereas the integers pi might be
1. In case t = 2, the algebra is hereditary. Thus, the associated module
varieties are just affine spaces. For t ≥ 3 we may assume that pi ≥ 2 for all i
and λ3 = 1. Otherwise, we may consider, instead of C(p, λ), an isomorphic
canonical algebra C(p′, λ′) of type p′ = (p′1, · · · , p′t′) with t′ = t−1, and with
λ′

3 = 1 if t′ ≥ 3.

4.2. Non-sincere dimension vectors. If C is a canonical algebra of type
p and d a dimension vector such that the set {i | 1 ≤ i ≤ t, dij = 0 for
some j} contains more than one element, then we can describe modC(d)
easily. If it contains exactly one element, say i1, then we get this description
only if Ccomm(p \ {i1}) is subfinite. Here, the quiver of Ccomm(p \ {i1})
is obtained by deleting the arm i1 and the admissible ideal is generated
by all commutativity relations. This algebra is subfinite if and only if it
representation-finite.

4.3. Concrete examples. Let C be the canonical algebra of type (3, 3, 2),
and let

d =

dα

d12 d22

d11 d21 d31

dω

=

3
2 2
1 2 1

2

, e =

3
2 2
2 2 1

2

, f =

3
2 2
2 2 2

2

.

We get

d∗ =

0
1 1
1 0 2

0

, e∗ =

0
1 1
0 0 2

0

, f∗ =

0
1 1
0 0 1

0

,

and therefore |d∗| ≤ 2dα. Thus, by 3.4 and 3.1 modC(d) contains an ir-
reducible component of dimension a(d). The same holds for modC(e) and
modC(f). Furthermore, we have dα + dω ≤ s · d + 1, eα + eω ≤ s · e and
fα + fω ≤ s · f − 1 for all non-split sections s. It follows from 1.1 and 1.2
that the variety modC(d) has dimension a(d) = 23 but is not irreducible,
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modC(e) is irreducible of dimension a(e) = 27, and modC(f) is normal of di-
mension a(f) = 32. Using 3.5 one can show that modC(d) has 3 irreducible
components.

4.4. Tame examples. For m,n ≥ 0 let Cn be a canonical algebra of type
(n+2, 2, 2), and let dm,n be a dimension vector with dα = dij = 1 for all i, j
and dω = m + 3. Then the dimension of modCn(dm,n) is a(dm,n) + m, and
there are exactly n + 2 irreducible components, one of dimension a(dm,n)
and n+1 of dimension a(dm,n)+m. This follows from our main results but
can easily be checked directly.

4.5. Wild examples. For m ≥ 0 let Cm be the canonical algebra of type
(m+6,m+6, 2), and let d be the dimension vector with dα = 1, dω = m+5,
d31 = 2 and dij = m + 5 − j + 1 for i = 1, 2 and 1 ≤ j ≤ pi − 1. Then there

exists a module M in modCm(d) such that EndCm(M) = k, Ext1Cm
(M,M) =

0, Ext2Cm
(M,−) = 0, and dim modCm(d) = a(d) + m + 1. In particular, M

is indecomposable, O(M) is open in modCm(d) and its closure in modCm(d)
is an irreducible component of dimension a(d).

We give now the explicit description of the module M as representation
of the bounded quiver of Cm, and we leave the verification of the stated
properties to the reader. Let M(x) = kdx for x ∈ Q0. For i = 1, 2 the maps
M(γipi

) and M(γi1) are the identity, and for 2 ≤ j ≤ pi−1 the maps M(γ1j)
(resp. M(γ2j)) are the inclusions onto the first (resp. last) m + 5 − j + 1
coordinates. Finally, we have

M(γ32) =

[

1
0

]

and M(γ31) =

















1 1
0 1
...

...
0 1
1 0

















.

4.6. Zero-roots for tame cases. If C is of type (p1, p2, 2) and tame con-
cealed or tubular in the sense of [15], and if d is a sincere dimension vector
with qC(d) =

∑

x∈Q0
d2

x − a(d) = 0, then dα + dω ≤ s ·d− 1 for all non-split
sections s. This can be shown by using the description of the dimension
vectors d with qC(d) = 0 as given in [15].

4.7. A classical example. Let A = kQ/I with Q0 = {a, b, c} and Q1 =
{α, β} with s(α) = a, s(β) = e(α) = b and e(β) = c. Assume that I
is generated by the path βα. Let d = (da, db, dc) be a sincere dimension
vector. Then modA(d) has dimension a(d) if and only if da + dc ≤ db + 1,
and it is irreducible if and only if da + dc ≤ db, see, for example, [5].
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