ONE-POINT EXTENSIONS AND DERIVED EQUIVALENCE

MICHAEL BAROT AND HELMUT LENZING

Abstract

Work of the first author with de la Peña [1], concerned with the class of algebras derived equivalent to a tubular algebra, raised the question whether a derived equivalence between two algebras can be extended to onepoint extensions. The present paper yields a positive answer.

Let A be a finite-dimensional algebra (associative with 1) over a field k. Modules, for most of this paper, will be finite dimensional right modules, and $\bmod A$ denotes the category of such modules over A. Each A-module M we may view as a (k, A)-bimodule ${ }_{k} M_{A}$, and form the matrix algebra

$$
\left[\begin{array}{cc}
k & M \\
0 & A
\end{array}\right]=\left\{\left.\left[\begin{array}{cc}
\alpha & m \\
0 & a
\end{array}\right] \right\rvert\, \alpha \in k, m \in M, a \in A\right\}
$$

which is called the one-point extension of A by M. We denote this algebra by \bar{A} if M is clear from the context; moreover \bar{M} will denote the indecomposable projective \bar{A}-module formed by the first row $[k, M]$ of \bar{A}. Note that \bar{M} has trivial endomorphism ring. Forming the module category (resp. the derived category) over the one-point extension algebra is in a sense inverse to forming the perpendicular category with respect to an exceptional object in a module category [4] (resp. in the derived category of a module category [2]). Both processes are important for induction arguments on the number of isomorphism classes of simple modules. Note that we view modules as stalk complexes concentrated in degree zero. A preprint version of the article has been used by a number of authors $[3,13,8,9]$.
Theorem 1. Let A and B be two finite dimensional k-algebras, $M \in \bmod A$, $N \in \bmod B$ and denote by \bar{A}, \bar{B} the respective one-point extensions. For any triangulated equivalence $\Phi: \mathrm{D}^{b}(\bmod A) \rightarrow \mathrm{D}^{b}(\bmod B)$ which maps the module M to the module N, there exists a triangulated equivalence $\bar{\Phi}: \mathrm{D}^{b}(\bmod \bar{A}) \rightarrow \mathrm{D}^{b}(\bmod \bar{B})$ which maps \bar{M} to \bar{N} and restricts to a triangulated equivalence from $\mathrm{D}^{b}(\bmod A)$ to $\mathrm{D}^{b}(\bmod B)$.

For an abelian category \mathcal{A} we denote by $\mathrm{K}^{b}(\mathcal{A})$ the homotopy category and by $\mathrm{D}^{b}(\mathcal{A})$ the derived category of bounded differential complexes in \mathcal{A}, see [12] for definitions and basic facts. Further, we denote by \mathcal{P}_{A} the full subcategory of $\bmod A$ given by the finitely generated projective A-modules. We identify $\mathrm{D}^{b}(\bmod A)$ with the full subcategory $\bar{M}^{\perp}=\{X \mid \operatorname{Hom}(\bar{M}, X[i])=0$ for all $i\}$ of $\mathrm{D}^{b}(\bmod \bar{A})$.
Before entering the proof, we recall results from Rickard [10]. Any triangulated equivalence $\Phi: \mathrm{D}^{b}(\bmod A) \rightarrow \mathrm{D}^{b}(\bmod B)$ induces a triangulated equivalence φ : $\mathrm{K}^{b}\left(\mathcal{P}_{A}\right) \rightarrow \mathrm{K}^{b}\left(\mathcal{P}_{B}\right)$, where $\mathrm{K}^{b}\left(\mathcal{P}_{A}\right)$ refers to the homotopy category of bounded complexes in \mathcal{P}_{A}. In particular, $T=\varphi^{-1}(B[0])$ is a tilting complex, that is, for all $n \neq 0$ we have $\operatorname{Hom}_{\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)}(\bar{T}, \bar{T}[n])=0$, and moreover add (\bar{T}), the full subcategory of direct summands of finite direct sums of copies of \bar{T}, generates $\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)$
as a triangulated category. Conversely, a given tilting complex T in $\mathrm{K}^{b}\left(\mathcal{P}_{A}\right)$ with endomorphism algebra B, gives rise to a triangulated equivalence from $\mathrm{D}^{b}(\bmod A)$ to $\mathrm{D}^{b}(\bmod B)$, sending T to $B[0]$.

Proof. Note that the canonical projection $\bar{A} \rightarrow A$ induces an embedding $\iota_{A}:$ $\bmod A \hookrightarrow \bmod \bar{A}$ such that (\star) the two functors $\operatorname{Hom}_{\bar{A}}\left(\iota_{A-}, \bar{M}\right)$ and $\operatorname{Hom}_{A}(-, M)$ from $\bmod A$ to $\bmod k$ are isomorphic and $(\star \star) \operatorname{Hom}_{\bar{A}}\left(\bar{M}, \iota_{A-}\right)$ is the zero functor.
Let $\varphi: \mathrm{K}^{b}\left(\mathcal{P}_{A}\right) \rightarrow \mathrm{K}^{b}\left(\mathcal{P}_{B}\right)$ be the triangulated equivalence induced by Φ and set $T:=\varphi^{-1}(B[0])$ and $\bar{T}:=T \oplus \bar{M}[0]$. We are going to show that \bar{T} is a tilting complex in $\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)$. Further, we show that the endomorphism algebra of \bar{T} is isomorphic to \bar{B}. It then follows from [10], as summarized before, that there is a triangulated equivalence $\bar{\Phi}: \mathrm{D}^{b}(\bmod \bar{A}) \rightarrow \mathrm{D}^{b}(\bmod \bar{B})$ sending T to $B[0]$ and $\bar{M}[0]$ to $\bar{N}[0]$, moreover, in view of $(\star \star), \bar{\Phi}$ extends Φ.

We get a sequence of isomorphisms

$$
\begin{aligned}
\operatorname{Hom}_{\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)}(T, \bar{M}[0]) & \cong \operatorname{Hom}_{\mathrm{D}^{b}(\bmod A)}(T, M[0]) \\
& \cong \operatorname{Hom}_{\mathrm{D}^{b}(\bmod B)}(B[0], N[0]) \\
& \cong \operatorname{Hom}_{B}(B, N)=N
\end{aligned}
$$

where the first one is due to (\star) and the second to Φ. By construction we have an isomorphism $\operatorname{End}_{\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)}(T) \cong B$ and, passing to the homotopy categories, we derive from $(\star \star)$ that $\operatorname{Hom}_{\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)}(\bar{M}[0], T)=0$. Since moreover End $\bar{A}(\bar{M})=k$ this shows that $\operatorname{End}_{\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)}(\bar{T})$ is in fact isomorphic to \bar{B}.
Because of $(\star \star)$, we have $\operatorname{Hom}_{K^{b}\left(\mathcal{P}_{\bar{A}}\right)}(\bar{M}[0], T[n])=0$ for all n, and in view of (\star), we get an isomorphism $\operatorname{Hom}_{K^{b}\left(\mathcal{P}_{\bar{A}}\right)}(T, \bar{M}[n]) \rightarrow \operatorname{Hom}_{D^{b}(\bmod A)}(T, M[n])$. The latter term is isomorphic to $\operatorname{Hom}_{\mathrm{D}^{b}(\bmod B)}(B[0], N[n])$ and thus is zero for all $n \neq 0$. Similarly, $\operatorname{Hom}_{\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A})}\right.}(T, T[n])=\operatorname{Hom}_{\mathrm{K}^{b}\left(\mathcal{P}_{A}\right)}(T, T[n])=0$ for all $n \neq 0$. Finally, $\operatorname{Hom}_{\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)}(\bar{M}[0], \bar{M}[n])=\operatorname{Ext}_{\bar{A}}^{n}(\bar{M}, \bar{M})=0$ for all $n \neq 0$. Since, obviously, add \bar{T} generates $\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)$ this proves that \bar{T} is a tilting complex in $\mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right)$.
Thus we obtain a triangulated equivalence $\bar{\varphi}: \mathrm{K}^{b}\left(\mathcal{P}_{\bar{A}}\right) \rightarrow \mathrm{K}^{b}\left(\mathcal{P}_{\bar{B}}\right)$, which maps the tilting complex \bar{T} to $\bar{B}[0]$ and its summand \bar{M} to \bar{N}, and a corresponding triangulated equivalence $\bar{\Phi}: \mathrm{D}^{b}(\bmod \bar{A}) \rightarrow \mathrm{D}^{b}(\bmod \bar{B})$. Since $\bar{\Phi}(\bar{M})=\bar{N}$, the functor $\bar{\Phi}$ further sends $\bar{M}^{\perp}=\mathrm{D}^{b}(\bmod A)$ to $\bar{N}^{\perp}=\mathrm{D}^{b}(\bmod B)$.

Corollary 1. Let A and H be two finite dimensional k-algebras such that there exists a triangulated equivalence $\Phi: \mathrm{D}^{b}(\bmod A) \rightarrow \mathrm{D}^{b}(\bmod H)$. We assume that H is hereditary. Then for every indecomposable A-module M, there exists an indecomposable H-module N such that there is a triangulated equivalence $\bar{\Phi}: \mathrm{D}^{b}(\bmod \bar{A}) \rightarrow$ $\mathrm{D}^{b}(\bmod \bar{H})$, where \bar{A} and \bar{H} denote the respective one-point extensions of A and H, which restricts to a triangulated equivalence from $\mathrm{D}^{b}(\bmod A)$ to $\mathrm{D}^{b}(\bmod H)$.

Proof. Since H is hereditary, every indecomposable object of $\mathrm{D}^{b}(\bmod H)$ is given by a stalk complex $X[i]$ for some indecomposable H-module X. Modifying Φ by a suitable shift [i], we may thus assume the existence of an H-module N with $\Phi(M)=N$. The assertion now follows from Theorem 1, observing that derived equivalences commute with the shift functors.

We mention two further applications. Let A be a derived canonical algebra, that is, A is an algebra which is derived equivalent to a canonical algebra [11]. Note that this includes the case of an algebra derived equivalent to a tame hereditary or a tubular algebra. We call an A-module M derived regular if M belongs to a tube \mathcal{T} in the derived category $\mathrm{D}^{b}(\bmod A)$. If M has quasi-length n in \mathcal{T}, we say that M has derived regular length n. If moreover $n=1$ we say that M is derived regular simple.

Corollary 2. Let A be a derived canonical algebra, and let M be an A-module which is derived regular simple. Then the one-point extension of A by M is again derived canonical.

Proof. The assertion holds for a canonical algebra [6], hence by Theorem 1 extends to the derived canonical situation.

We recall that any tame hereditary algebra of type $\widetilde{\mathbb{D}}_{n}$ is in the same derived class as the canonical algebra of weight type $(2,2, n-1)$.

Corollary 3. Assume that A_{1} and A_{2} are derived canonical of type $(2,2, n)$ and let M_{i} be an indecomposable A_{i}-module of derived regular length two taken from a rank n tube of $\mathrm{D}^{b}\left(\bmod A_{i}\right), i=1,2$. Then the resulting one-point extensions \bar{A}_{1} and \bar{A}_{2} are derived equivalent.

This implies, in particular, that the (strongly simply connected) polynomial growth critical algebras introduced by Nörenberg and Skowroński [7] with a fixed number of simple modules are in the same derived class, a result formerly requiring a case by case analysis.

Comments. (a) Assume that A (and hence also the one-point extension \bar{A} with respect to the A-module M) has finite global dimension. Then the category $\mathrm{D}^{b}(\bmod \bar{A})$ has Auslander-Reiten triangles [5]. We claim that the A-module M is isomorphic to the "middle term" E of the Auslander-Reiten triangle in $\mathrm{D}^{b}(\bmod \bar{A})$

$$
\begin{equation*}
\tau \bar{M} \rightarrow E \rightarrow \bar{M} \rightarrow \tau \bar{M}[1] . \tag{1}
\end{equation*}
$$

Moreover, if $r: \mathrm{D}^{b}(\bmod \bar{A}) \rightarrow \mathrm{D}^{b}(\bmod A)$ denotes the right adjoint functor to the inclusion $i: \mathrm{D}^{b}(\bmod A) \hookrightarrow \mathrm{D}^{b}(\bmod \bar{A})(c f .[2]$ for the existence of $r)$, then $M=r \bar{M}$.
Indeed, application of $\operatorname{Hom}(\bar{M},-)$ to (1) yields a long exact homology sequence. Invoking Auslander-Reiten duality $\operatorname{Hom}(X, \tau Y[n])=\operatorname{Hom}_{k}(\operatorname{Hom}(Y[n-1], X), k)$ and the exceptionality of \bar{M}, it follows that $\operatorname{Hom}(\bar{M}, E[n])=0$ holds for each $n \in \mathbb{Z}$, thus $E \in \mathrm{D}^{b}(\bmod A)$. Moreover, for each $X \in \mathrm{D}^{b}(\bmod A)$ the segment

$$
\operatorname{Hom}(X, \tau \bar{M}) \rightarrow \operatorname{Hom}(X, E) \rightarrow \operatorname{Hom}(X, \bar{M}) \rightarrow \operatorname{Hom}(X, \tau \bar{M}[1])
$$

of the long exact homology sequence has vanishing end terms showing that the functors $\operatorname{Hom}(-, E)$ and $\operatorname{Hom}(-, \bar{M})$ agree on $\mathrm{D}^{b}(\bmod A)$, hence implying $E \cong$ $r \bar{M} \cong M$.
(b) The converse of Theorem 1 does not hold. Let A and B be the path algebras of the quivers Q_{A} and Q_{B}, respectively.

Let $M \in \bmod A$ be given by $M(1)=M(2)=k, M(\alpha)=M(\beta)=1_{k}$ and $N \in$ $\bmod B$ be given by $N(1)=k, N(2)=k^{2}, N(\alpha)$ the diagonal embedding. There does not exist a triangulated equivalence between $\mathrm{D}^{b}(\bmod A)$ and $\mathrm{D}^{b}(\bmod B)$, but $\mathrm{D}^{b}(\bmod \bar{A})$ and $\mathrm{D}^{b}(\bmod \bar{B})$ are equivalent as derived categories, since they are both tilted of the hereditary algebra C with quiver Q_{C} : let $T_{A}=P_{1} \oplus P_{3} \oplus S$ and $T_{B}=S \oplus I_{1} \oplus I_{3}$, where P_{x}, respectively I_{x} denotes the projective cover, resp. injective hull of the simple in x and S is the indecomposable with $S(1)=S(3)=k$ and $S(2)=0$. Then $\operatorname{End}\left(T_{A}\right) \cong \bar{A}$ and $\operatorname{End}\left(T_{B}\right) \cong \bar{B}$.
(c) We finally formulate an infinite variant of Theorem 1. For any ring A, denote by $\operatorname{Mod} A$ the category of all right A-modules.
Theorem 2. Let A and B be two algebras over a commutative ring R with unit, $M \in \operatorname{Mod} A, N \in \operatorname{Mod} B$ and denote by \bar{A}, \bar{B} the respective one-point extensions. For any triangulated equivalence $\Phi: \mathrm{D}^{b}(\operatorname{Mod} A) \rightarrow \mathrm{D}^{b}(\operatorname{Mod} B)$ which maps the module M to the module N, there exists a triangulated equivalence $\bar{\Phi}$: $\mathrm{D}^{b}(\operatorname{Mod} \bar{A}) \rightarrow \mathrm{D}^{b}(\operatorname{Mod} \bar{B})$ which maps \bar{M} to \bar{N} and restricts to a triangulated equivalence from $\mathrm{D}^{b}(\operatorname{Mod} A)$ to $\mathrm{D}^{b}(\operatorname{Mod} B)$.

By Rickard [10], any triangulated equivalence from $\mathrm{D}^{b}(\operatorname{Mod} A)$ to $\mathrm{D}^{b}(\operatorname{Mod} B)$ induces a triangulated equivalence from $\mathrm{K}^{b}\left(\mathcal{P}_{A}\right)$ to $\mathrm{K}^{b}\left(\mathcal{P}_{B}\right)$. Thus, the proof of Theorem 1 extends to the present setting, replacing each occurrence of $\bmod A(\bmod B)$ by $\operatorname{Mod} A(\operatorname{Mod} B$, respectively).

Acknowledgements. The authors thank Bernhard Keller for his suggestion to remove the original restriction to the setting of finite global dimension. The first author gratefully acknowledges support of CONACyT, UNAM.

References

[1] M. Barot and J. A. de la Peña: Derived tubular strongly simply connected algebras. Proc. Amer. Math. Soc. 127 (1999), 647-655.
[2] A. I. Bondal: Representations of associative algebras and coherent sheaves. Math. USSR, Izv. 34 (1990), 23-42.
[3] P. Dräxler and A. Krause: Derived Dynkin extensions. Comm. Alg. 27 (1999), no. 9, 43374346.
[4] W.Geigle and H. Lenzing: Perpendicular categories with applications to representations and sheaves. J. Algebra 144 (1991), 273-343.
[5] D. Happel: Triangulated categories in the representation theory of finite dimensional algebras. London Math. Soc. Lect. Notes 119 (1988).
[6] H. Lenzing and H. Meltzer: Tilting sheaves and concealed-canonical algebras. CMS Conf. Proc. 18 (1996), 455-473.
[7] R. Nörenberg and A. Skowroński: Tame minimal non-polynomial growth strongly simply connected algebras. CMS Conf. Proc. 18 (1996), 519-538.
[8] J. A. de la Peña: Algebras whose derived category is tame Contemporary Math. 229 (1998), 117-127.
[9] J. A. de la Peña and S. Trepode: Quasitilted one-point extensions of tilted algebras. To appear in: Proceedings of the ICRA VIII.
[10] J. Rickard: Morita theory for derived categories. J. London Math. Soc. (2) 39 (1989), 436-456.
[11] C. M. Ringel: Tame algebras and quadratic forms. Lecture Notes Math. 1099 (1984).
[12] J. L. Verdier: Catégories dérivées, etat 0. Lecture Notes Math. 569 (1977), 262-311.
[13] D. Vossieck: The Algebras with Discrete Derived category J. Alg. 243 (2001), 168-176.

Michael Barot, Instituto de Matemáticas, UNAM, Mexico, 04510 D.F., Mexico
E-mail address: barot@matem.unam.mx

Helmut Lenzing, Fachbereich Mathematik-Informatik, Universität Paderborn, D-33095 Paderborn, Germany

E-mail address: helmut@math.uni-paderborn.de

