ONE-POINT EXTENSIONS AND DERIVED EQUIVALENCE

MICHAEL BAROT AND HELMUT LENZING

ABSTRACT. Work of the first author with de la Peña [1], concerned with the class of algebras derived equivalent to a tubular algebra, raised the question whether a derived equivalence between two algebras can be extended to one-point extensions. The present paper yields a positive answer.

Let A be a finite-dimensional algebra (associative with 1) over a field k. Modules, for most of this paper, will be finite dimensional right modules, and mod A denotes the category of such modules over A. Each A-module M we may view as a (k, A)-bimodule $_kM_A$, and form the matrix algebra

$$\left[\begin{array}{cc} k & M \\ 0 & A \end{array}\right] = \left\{ \left[\begin{array}{cc} \alpha & m \\ 0 & a \end{array}\right] \mid \ \alpha \in k, \ m \in M, \ a \in A \right\}$$

which is called the *one-point extension* of A by M. We denote this algebra by \overline{A} if M is clear from the context; moreover \overline{M} will denote the indecomposable projective \overline{A} -module formed by the first row [k, M] of \overline{A} . Note that \overline{M} has trivial endomorphism ring. Forming the module category (resp. the derived category) over the one-point extension algebra is in a sense inverse to forming the perpendicular category with respect to an exceptional object in a module category [4] (resp. in the derived category of a module category [2]). Both processes are important for induction arguments on the number of isomorphism classes of simple modules. Note that we view modules as stalk complexes concentrated in degree zero. A preprint version of the article has been used by a number of authors [3, 13, 8, 9].

Theorem 1. Let A and B be two finite dimensional k-algebras, $M \in \text{mod } A$, $N \in \text{mod } B$ and denote by \overline{A} , \overline{B} the respective one-point extensions. For any triangulated equivalence $\Phi : D^b(\text{mod } A) \to D^b(\text{mod } B)$ which maps the module M to the module N, there exists a triangulated equivalence $\overline{\Phi} : D^b(\text{mod } \overline{A}) \to D^b(\text{mod } \overline{A}) \to D^b(\text{mod } \overline{A})$ which maps \overline{M} to \overline{N} and restricts to a triangulated equivalence from $D^b(\text{mod } A)$ to $D^b(\text{mod } B)$.

For an abelian category \mathcal{A} we denote by $\mathrm{K}^{b}(\mathcal{A})$ the homotopy category and by $\mathrm{D}^{b}(\mathcal{A})$ the derived category of bounded differential complexes in \mathcal{A} , see [12] for definitions and basic facts. Further, we denote by \mathcal{P}_{A} the full subcategory of mod A given by the finitely generated projective A-modules. We identify $\mathrm{D}^{b}(\mathrm{mod} A)$ with the full subcategory $\overline{M}^{\perp} = \{X \mid \mathrm{Hom}(\overline{M}, X[i]) = 0 \text{ for all } i\}$ of $\mathrm{D}^{b}(\mathrm{mod} \overline{A})$.

Before entering the proof, we recall results from Rickard [10]. Any triangulated equivalence $\Phi : D^b(\text{mod } A) \to D^b(\text{mod } B)$ induces a triangulated equivalence $\varphi : K^b(\mathcal{P}_A) \to K^b(\mathcal{P}_B)$, where $K^b(\mathcal{P}_A)$ refers to the homotopy category of bounded complexes in \mathcal{P}_A . In particular, $T = \varphi^{-1}(B[0])$ is a *tilting complex*, that is, for all $n \neq 0$ we have $\operatorname{Hom}_{K^b(\mathcal{P}_{\bar{A}})}(\bar{T}, \bar{T}[n]) = 0$, and moreover add (\bar{T}) , the full subcategory of direct summands of finite direct sums of copies of \bar{T} , generates $K^b(\mathcal{P}_{\bar{A}})$ as a triangulated category. Conversely, a given tilting complex T in $K^b(\mathcal{P}_A)$ with endomorphism algebra B, gives rise to a triangulated equivalence from $D^b(\text{mod } A)$ to $D^b(\text{mod } B)$, sending T to B[0].

Proof. Note that the canonical projection $\bar{A} \to A$ induces an embedding ι_A : mod $A \to \text{mod}\,\bar{A}$ such that (\star) the two functors $\text{Hom}_{\bar{A}}(\iota_{A-},\bar{M})$ and $\text{Hom}_{A}(\underline{\ },M)$ from mod A to mod k are isomorphic and $(\star\star)$ $\text{Hom}_{\bar{A}}(\bar{M},\iota_{A-})$ is the zero functor. Let $\varphi : \mathrm{K}^{b}(\mathcal{P}_{A}) \to \mathrm{K}^{b}(\mathcal{P}_{B})$ be the triangulated equivalence induced by Φ and set $T := \varphi^{-1}(B[0])$ and $\bar{T} := T \oplus \bar{M}[0]$. We are going to show that \bar{T} is a tilting complex in $\mathrm{K}^{b}(\mathcal{P}_{\bar{A}})$. Further, we show that the endomorphism algebra of \bar{T} is isomorphic to \bar{B} . It then follows from [10], as summarized before, that there is a triangulated equivalence $\bar{\Phi} : \mathrm{D}^{b}(\mathrm{mod}\,\bar{A}) \to \mathrm{D}^{b}(\mathrm{mod}\,\bar{B})$ sending T to B[0] and $\bar{M}[0]$ to $\bar{N}[0]$,

We get a sequence of isomorphisms

ł

moreover, in view of $(\star\star)$, $\overline{\Phi}$ extends Φ .

$$\operatorname{Hom}_{\mathrm{K}^{b}(\mathcal{P}_{\bar{A}})}(T, \bar{M}[0]) \cong \operatorname{Hom}_{\mathrm{D}^{b}(\mathrm{mod}\,A)}(T, M[0])$$
$$\cong \operatorname{Hom}_{\mathrm{D}^{b}(\mathrm{mod}\,B)}(B[0], N[0])$$
$$\cong \operatorname{Hom}_{B}(B, N) = N$$

where the first one is due to (\star) and the second to Φ . By construction we have an isomorphism $\operatorname{End}_{K^b(\mathcal{P}_{\bar{A}})}(T) \cong B$ and, passing to the homotopy categories, we derive from $(\star\star)$ that $\operatorname{Hom}_{K^b(\mathcal{P}_{\bar{A}})}(\bar{M}[0],T) = 0$. Since moreover $\operatorname{End}_{\bar{A}}(\bar{M}) = k$ this shows that $\operatorname{End}_{K^b(\mathcal{P}_{\bar{A}})}(\bar{T})$ is in fact isomorphic to \bar{B} .

Because of $(\star\star)$, we have $\operatorname{Hom}_{\mathrm{K}^{b}(\mathcal{P}_{\bar{A}})}(\bar{M}[0], T[n]) = 0$ for all n, and in view of (\star) , we get an isomorphism $\operatorname{Hom}_{\mathrm{K}^{b}(\mathcal{P}_{\bar{A}})}(T, \bar{M}[n]) \to \operatorname{Hom}_{\mathrm{D}^{b}(\operatorname{mod} A)}(T, M[n])$. The latter term is isomorphic to $\operatorname{Hom}_{\mathrm{D}^{b}(\operatorname{mod} B)}(B[0], N[n])$ and thus is zero for all $n \neq 0$. Similarly, $\operatorname{Hom}_{\mathrm{K}^{b}(\mathcal{P}_{\bar{A}})}(T, T[n]) = \operatorname{Hom}_{\mathrm{K}^{b}(\mathcal{P}_{A})}(T, T[n]) = 0$ for all $n \neq 0$. Finally, $\operatorname{Hom}_{\mathrm{K}^{b}(\mathcal{P}_{\bar{A}})}(\bar{M}[0], \bar{M}[n]) = \operatorname{Ext}^{n}_{\bar{A}}(\bar{M}, \bar{M}) = 0$ for all $n \neq 0$. Since, obviously, add \bar{T} generates $\mathrm{K}^{b}(\mathcal{P}_{\bar{A}})$ this proves that \bar{T} is a tilting complex in $\mathrm{K}^{b}(\mathcal{P}_{\bar{A}})$.

Thus we obtain a triangulated equivalence $\bar{\varphi} : \mathrm{K}^{b}(\mathcal{P}_{\bar{A}}) \to \mathrm{K}^{b}(\mathcal{P}_{\bar{B}})$, which maps the tilting complex \bar{T} to $\bar{B}[0]$ and its summand \bar{M} to \bar{N} , and a corresponding triangulated equivalence $\bar{\Phi} : \mathrm{D}^{b}(\mathrm{mod}\,\bar{A}) \to \mathrm{D}^{b}(\mathrm{mod}\,\bar{B})$. Since $\bar{\Phi}(\bar{M}) = \bar{N}$, the functor $\bar{\Phi}$ further sends $\bar{M}^{\perp} = \mathrm{D}^{b}(\mathrm{mod}\,A)$ to $\bar{N}^{\perp} = \mathrm{D}^{b}(\mathrm{mod}\,B)$. \Box

Corollary 1. Let A and H be two finite dimensional k-algebras such that there exists a triangulated equivalence $\Phi : D^b(\text{mod } A) \to D^b(\text{mod } H)$. We assume that H is hereditary. Then for every indecomposable A-module M, there exists an indecomposable H-module N such that there is a triangulated equivalence $\overline{\Phi} : D^b(\text{mod } \overline{A}) \to D^b(\text{mod } \overline{H})$, where \overline{A} and \overline{H} denote the respective one-point extensions of A and H, which restricts to a triangulated equivalence from $D^b(\text{mod } A)$ to $D^b(\text{mod } H)$.

Proof. Since H is hereditary, every indecomposable object of $D^b \pmod{H}$ is given by a stalk complex X[i] for some indecomposable H-module X. Modifying Φ by a suitable shift [i], we may thus assume the existence of an H-module N with $\Phi(M) = N$. The assertion now follows from Theorem 1, observing that derived equivalences commute with the shift functors. \Box We mention two further applications. Let A be a *derived canonical* algebra, that is, A is an algebra which is derived equivalent to a canonical algebra [11]. Note that this includes the case of an algebra derived equivalent to a tame hereditary or a tubular algebra. We call an A-module M derived regular if M belongs to a tube \mathcal{T} in the derived category $D^b(\text{mod } A)$. If M has quasi-length n in \mathcal{T} , we say that M has derived regular length n. If moreover n = 1 we say that M is derived regular simple.

Corollary 2. Let A be a derived canonical algebra, and let M be an A-module which is derived regular simple. Then the one-point extension of A by M is again derived canonical.

Proof. The assertion holds for a canonical algebra [6], hence by Theorem 1 extends to the derived canonical situation. \Box

We recall that any tame hereditary algebra of type \mathbb{D}_n is in the same derived class as the canonical algebra of weight type (2, 2, n-1).

Corollary 3. Assume that A_1 and A_2 are derived canonical of type (2, 2, n) and let M_i be an indecomposable A_i -module of derived regular length two taken from a rank n tube of $D^b(\text{mod } A_i)$, i = 1, 2. Then the resulting one-point extensions \bar{A}_1 and \bar{A}_2 are derived equivalent.

This implies, in particular, that the (strongly simply connected) *polynomial growth* critical algebras introduced by Nörenberg and Skowroński [7] with a fixed number of simple modules are in the same derived class, a result formerly requiring a case by case analysis.

Comments. (a) Assume that A (and hence also the one-point extension \overline{A} with respect to the A-module M) has finite global dimension. Then the category $D^b (\mod \overline{A})$ has Auslander-Reiten triangles [5]. We claim that the A-module M is isomorphic to the "middle term" E of the Auslander-Reiten triangle in $D^b (\mod \overline{A})$

(1)
$$\tau \bar{M} \to E \to \bar{M} \to \tau \bar{M}[1].$$

Moreover, if $r : D^b \pmod{\bar{A}} \to D^b \pmod{A}$ denotes the right adjoint functor to the inclusion $i : D^b \pmod{A} \hookrightarrow D^b \pmod{\bar{A}}$ (cf. [2] for the existence of r), then $M = r\bar{M}$. Indeed, application of Hom $(\bar{M}, -)$ to (1) yields a long exact homology sequence. Invoking Auslander-Reiten duality Hom $(X, \tau Y[n]) = \operatorname{Hom}_k (\operatorname{Hom}(Y[n-1], X), k)$ and the exceptionality of \bar{M} , it follows that Hom $(\bar{M}, E[n]) = 0$ holds for each $n \in \mathbb{Z}$, thus $E \in D^b \pmod{A}$. Moreover, for each $X \in D^b \pmod{A}$ the segment

Hom
$$(X, \tau \overline{M}) \to$$
 Hom $(X, E) \to$ Hom $(X, \overline{M}) \to$ Hom $(X, \tau \overline{M}[1])$

of the long exact homology sequence has vanishing end terms showing that the functors $\operatorname{Hom}(-, E)$ and $\operatorname{Hom}(-, \overline{M})$ agree on $\operatorname{D}^b(\operatorname{mod} A)$, hence implying $E \cong r\overline{M} \cong M$.

(b) The converse of Theorem 1 does not hold. Let A and B be the path algebras of the quivers Q_A and Q_B , respectively.

0

$$Q_A: 1 \bullet \xrightarrow{\alpha} \bullet 2 \qquad Q_B: 1 \bullet \xrightarrow{\alpha} \bullet 2 \qquad Q_C: 1 \bullet \xrightarrow{2} \bullet 3$$

Let $M \in \text{mod } A$ be given by M(1) = M(2) = k, $M(\alpha) = M(\beta) = 1_k$ and $N \in \text{mod } B$ be given by N(1) = k, $N(2) = k^2$, $N(\alpha)$ the diagonal embedding. There does not exist a triangulated equivalence between $D^b(\text{mod } A)$ and $D^b(\text{mod } B)$, but $D^b(\text{mod } \overline{A})$ and $D^b(\text{mod } \overline{B})$ are equivalent as derived categories, since they are both tilted of the hereditary algebra C with quiver Q_C : let $T_A = P_1 \oplus P_3 \oplus S$ and $T_B = S \oplus I_1 \oplus I_3$, where P_x , respectively I_x denotes the projective cover, resp. injective hull of the simple in x and S is the indecomposable with S(1) = S(3) = k and S(2) = 0. Then $\text{End}(T_A) \cong \overline{A}$ and $\text{End}(T_B) \cong \overline{B}$.

(c) We finally formulate an infinite variant of Theorem 1. For any ring A, denote by Mod A the category of *all* right A-modules.

Theorem 2. Let A and B be two algebras over a commutative ring R with unit, $M \in \operatorname{Mod} A$, $N \in \operatorname{Mod} B$ and denote by \overline{A} , \overline{B} the respective one-point extensions. For any triangulated equivalence $\Phi : \operatorname{D}^b(\operatorname{Mod} A) \to \operatorname{D}^b(\operatorname{Mod} B)$ which maps the module M to the module N, there exists a triangulated equivalence $\overline{\Phi} :$ $\operatorname{D}^b(\operatorname{Mod} \overline{A}) \to \operatorname{D}^b(\operatorname{Mod} \overline{B})$ which maps \overline{M} to \overline{N} and restricts to a triangulated equivalence from $\operatorname{D}^b(\operatorname{Mod} A)$ to $\operatorname{D}^b(\operatorname{Mod} B)$.

By Rickard [10], any triangulated equivalence from $D^b(Mod A)$ to $D^b(Mod B)$ induces a triangulated equivalence from $K^b(\mathcal{P}_A)$ to $K^b(\mathcal{P}_B)$. Thus, the proof of Theorem 1 extends to the present setting, replacing each occurrence of mod $A \pmod{B}$ by Mod $A \pmod{B}$, respectively).

Acknowledgements. The authors thank Bernhard Keller for his suggestion to remove the original restriction to the setting of finite global dimension. The first author gratefully acknowledges support of CONACyT, UNAM.

References

- M. Barot and J. A. de la Peña: Derived tubular strongly simply connected algebras. Proc. Amer. Math. Soc. 127 (1999), 647–655.
- [2] A. I. Bondal: Representations of associative algebras and coherent sheaves. Math. USSR, Izv. 34 (1990), 23-42.
- [3] P. Dräxler and A. Krause: Derived Dynkin extensions. Comm. Alg. 27 (1999), no. 9, 4337-4346.
- W.Geigle and H. Lenzing: Perpendicular categories with applications to representations and sheaves. J. Algebra 144 (1991), 273-343.
- [5] D. Happel: Triangulated categories in the representation theory of finite dimensional algebras. London Math. Soc. Lect. Notes 119 (1988).
- [6] H. Lenzing and H. Meltzer: Tilting sheaves and concealed-canonical algebras. CMS Conf. Proc. 18 (1996), 455-473.
- [7] R. Nörenberg and A. Skowroński: Tame minimal non-polynomial growth strongly simply connected algebras. CMS Conf. Proc. 18 (1996), 519-538.
- [8] J. A. de la Peña: Algebras whose derived category is tame Contemporary Math. 229 (1998), 117-127.
- [9] J. A. de la Peña and S. Trepode: Quasitilted one-point extensions of tilted algebras. To appear in: Proceedings of the ICRA VIII.
- [10] J. Rickard: Morita theory for derived categories. J. London Math. Soc. (2) 39 (1989), 436-456.
- [11] C. M. Ringel: Tame algebras and quadratic forms. Lecture Notes Math. 1099 (1984).

[12] J. L. Verdier: Catégories dérivées, etat 0. Lecture Notes Math. 569 (1977), 262-311.
[13] D. Vossieck: The Algebras with Discrete Derived category J. Alg. 243 (2001), 168-176.

MICHAEL BAROT, INSTITUTO DE MATEMÁTICAS, UNAM, MEXICO, 04510 D.F., MEXICO *E-mail address*: barot@matem.unam.mx

Helmut Lenzing, Fachbereich Mathematik-Informatik, Universität Paderborn, D-33095 Paderborn, Germany

 $E\text{-}mail\ address:\ \texttt{helmut@math.uni-paderborn.de}$