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1 Introduction and Results

1.1 An integer quadratic form

q : Z
n → Z, q(x) =

n∑

i=1

qix(i)2 +
∑

i<j

qijx(i)x(j)

is called unit form provided qi = 1 for all i. The form is positive if q(x) > 0 for
all non-zero x ∈ Z

n. Clearly, for a positive unit form q we must have |qij | ≤ 1 for
all i < j. Unit forms play an important role in the theory of representations of
algebras as associated forms to a finite dimensional algebra over an algebraically
closed field such as the Tits form and in case where the algebra has finite global
dimension also the Euler form. Their properties such as (weakly) positivity or
(weakly) non-negativity reflect properties of the algebras, see for example ...???.

To a unit form q : Z
n → Z we associate a bigraph Bq with n vertices and edges

as follows. Two different vertices i and j are joined by |qij | full edges if qij ≤ 0
and by qij broken edges if qij > 0. Clearly, any reduced (that is, between two
vertices i and j there are not both full and broken edges) Γ withot loop (that
is an edge form one vertex to itself) is isomorphic to Bq for some unit form q,
which we denote by qΓ. A unit form q is connected if so is Bq. In the following
we assume that bigraphs are reduced and without loop.

1.2 Two unit forms q, q′ : Z
n → Z are called Z-equivalent if there is a Z-

invertible linear map T : Z
n → Z

n such that q′ = qT . The following classical
result is basic for this work.

Theorem. A connected unit form is positive if and only if it is Z-equivalent
to q∆, where ∆ = Am, Dn or Ep (1 ≤ m, 4 ≤ n and 6 ≤ p ≤ 8) is a Dynkin
diagram.

Clearly, for a given quadratic form q the Dynkin diagram ∆ is uniquely deter-
mined up to isomorphism. We denote thus Dyn(q) := ∆ and call it the Dynkin
type of q.
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1.3 Denote by Fm,m′ the bigraph with m + m′ vertices (1, 1),. . .,(1, m),(2, 1),
. . .,(2, m′) and full edges (1, i) (2, j) and broken edges (1, i) (1, i′) and
(2, j) (2, j′) for all i,i′,j,j′.

Let T be a graph with t vertices and B1, . . . ,Bt bigraphs. Further we assume
that for any vertex i of T we have an injective map σi : T (i) → (Bi)◦, where
T (i) denotes the set of edges in T ending in i and (B − I)◦ the vertex set of
Bi. With this data we define the assemblage of the bigraphs B1, . . . ,Bt to be
the bigraph obtained by the disjoint union of the B1, . . . ,Bt by identifying σi(α)
with σj(α) for any edge i α j of T . If T is a tree we call the assemblage a tree
assemblage.

We are now ready to formulate the main result.

Theorem. Let q : Z
n → Z be a unit form. Then q is positive with Dynkin type

An if and only if Bq is a tree assemblage of bigraphs of the form Fm,m′ .

Example. The bigraph in Figure 1 defines a positive quadratic form of Dynkin
type A19. We have marked the hinges by a big dot.
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2 Basic Tools

2.1 We denote by ei the i-th canonical basic vector of Z
n. For ε = ± and

1 ≤ i, j ≤ n, i 6= j let T ε
ij : Z

n → Z
n be the linear transformation given by

T ε
ij(es) = es for all s 6= i and T ε

ij(ei) = ei − εej .

It easy to check, that for a positive unit form q : Z
n → Z with qij = ε1, the

quadratic form q′ = qT ε
ij is again a positive unit form given by the formulas (?)

q′rs = −qrs for r 6= i, q′is = qis − εqjs for s 6= j and q′ij = −qij .

Therefore, T+
ij (resp. T−

ij ) is called an inflation (resp. deflation) for q if qij = 1
(resp. qij = 1).

We call two bigraphs equivalent if the corresponding unit forms are so and for a
bigraph B with n points and a Z-invertible linear transformation T : Z

n → Z
n

we also write BT instead of BqBT .

Lemma. Let B be a bigraph and b, b′ ∈ B two different vertices. Let C1 (resp
C2) be the bigraph which is obtained form the disjoint union of B with a point x

by joining b with x by a full (resp. broken) line and b′ with x by a broken (resp.
full) line.
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Then the two bigraphs C1 and C2 are equivalent.

Proof: Using the formulas (?) it is easy to verify that C2 = C1T
−

bxT+
b′x. 2

2.2 We say that q′ is a restriction of q if Bq′ is isomorphic to a full subbigraph
of Bq . The following result was shown in [1] using the technique of deflations
and inflations.

Theorem. Let q : Z
n → Z be a positive unit form of Dynkin type An. Then

any restriction of q has Dynkin type Am for some m ≤ n.

3 Cycles and Blocks

3.1 A bigraph B is called a cycle if it is connected and any vertex is connected
to exactly two other vertices. For a bigraph B and a vertex x of B we denote
by B(x) the full subbigraph of B which is given by all points different from x.

Lemma. Let q : Z
n → Z be a positive unit form of Dynkin type An. Then Bq

is a cycle if and only if Bq is isomorphic to F3,0 or to F2,1.

Proof: Using deflations it is easy to see that F3,0 and F2,1 define positive definite
unit forms of Dynkin type A3. Clearly they are cycles.

Suppose that q : Z
n → Z be a positive unit form of Dynkin type An such that Bq

is a cycle. By reordering the vertices and (2.1), we may assume that qi i+1 = 1
for all i = 1, . . . , r and qi i+1 = −1 for all i = r + 1, . . . , n, where qn n+1 := q1n.
Denote this bigraph shortly with C(n, r). We will show that n = 3 and that r

is odd.

If r is even we have q(a) = 0, where a ∈ Z
n is defined by a(i) = (−1)i+1 for

i = 1, . . . , r + 1 and by a(i) = a(r + 1) for i ≥ r + 1, a contradiction.

If r > 2 then we have BqT
+
r r+1T

+
r r−1 = C(n, r − 2). By induction it is thus

enough to study the bigraphs C(n, 1).

First, we verify directly that Dyn(qC(4,1)) = D4. For n > 4 we observe that

(C(n, 1)T+
12)

(1) is isomorphic to C(n − 1, 1). Thus by induction and (2.2) we
infer that Dyn(qC(n,1)) 6= An for n > 3. This shows n = 3. 2

3.2 Let B be a bigraph. A sequence of points x1, . . . , xn such that qxixi+1
6= 0

for i = 1, . . . , n − 1 is called a walk in B. Further, we say that a connected
bigraph B is a block if B(x) is connected for all x ∈ B.

Lemma. Let q : Z
n → Z be a positive unit form of Dynkin type An such that

Bq is a block. Then qij 6= 0 for all i 6= j.

Proof: Clearly, it is enough to show that if Bq is a block then B
(x)
q is a block for

any x ∈ Bq . Suppose this is not so, that is Bq is a block, but B
(x)
q is not a block

for some x ∈ Bq . Let B1 and B2 be two connected components of B
(x)(y)
q . Since
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B
(y)
q is connected, there exist vertices zi ∈ Bi such that qxzi

6= 0 for i = 1, 2.
Thus there exist walks x, zi,1, zi,2, . . . , zi,ni

, y with zi,j ∈ Bi for j = 1, . . . , ni

and i = 1, 2. If we take those walks such that n1 and n2 are minimal, we infer
by (3.1), that qxy 6= 0 and that n1 = n2 = 1. Let B be the restriction of
Bq to {x, z1,1, z2,1, y}. There are four possible cases and each of them satisfies
Dyn(q

B
) = D4 in contradiction to (2.2). 2

Remark. It follows directly form (2.1) that if q satisfies the hipothesis of the
lemma, then for all pairwise different i, j, k we have (∗∗): qijqjkqki = 1.

3.3 Proposition. The following conditions are equivalent for a bigraph B.

(i) B is a block and q
B

is positive of Dynkin type An.

(ii) B is isomorphic to Fm,m′ for some m ≥ 1, m′ ≥ 0 with m + m′ = n.

Proof: First assume that Bq is a block. Let x ∈ Bq be a fixed vertex. De-
note (1, 1) = x and denote the vertices of the set {y ∈ Bq | qx,y > 0} by
(1, 2), . . . , (1, m) and the vertices of the set {y ∈ Bq | qx,y > 0} by (2, 1), . . . , (2, m′).

It follows from (∗∗) that for any two different i, i′ ∈ {2, . . . , m we have a broken
edge between (1, i) and (1, i′). and for any two different j, j ′ ∈ {1, . . . , m′} we
have also a broken edge between (2, j) and (2, j ′). Finally it follows by the same
argument that for any i, j as above we have a full edge between (1, i) and (2, j).
Thus Bq is of the form Fm,m′ .

Clearly, the bigraphs B = Fm,m′ are blocks. It remains thus to show that the as-
sociated unit forms are positive of Dynkin type Am+m′ . Indeed, it is easy to see,
that BT+

(1,2)(1,3)T
+
(1,3)(1,4) · · ·T

+
(1,m−1)(1,m)T

+
(2,1)(2,2)T

+
(2,2)(2,3) · · ·T

+
(2,m′−1)(2,m′) is

isomorphic to Am+m′ . 2

In view of Proposition 3.3, we call a bigraph an A-block if it is ismorphic to
Fm,m′ for some m ≥ 1, m′ ≥ 0.

4 Proof of the main result

4.1 Let A(n) be the Dynkin graph with points 1, . . . , n and edges between the
vertices i and i + 1 for i = 1, . . . , n − 1.

Lemma. Let B be a tree assemblage of A-blocks C1, . . . , Ct. Let x be a vertex of
B which is not a hinge. Then there exists a sequence of deflations T +

yizi
, zi 6= x,

with composition T such that BT is isomorphic to A(n) and x corresponds to
the vertex 1 of A(n).

Proof: The proof is done by induction on t. If t = 1 then the assertion follows
by the argument given in the proof of Proposition 3.3 by setting x1 = x.

In the following we say that a deflation T +
yz avoids x if z 6= x.

Now, let t > 1 assume that x belongs to Ci and let h1, . . . , hs be the hinges of
B in Ci. By induction hypothesis, there exist a sequence of deflations avoiding
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x with composition T such that B1 = BT is obtained from the disjoint union of
Ci = Fm,m with A(n1), . . . , A(ns) by identifying hj with the vertex 1 of A(nj).
We abreviate the resulting bigraph by the symbol Fm,m′ [h1, n1] · · · [hs, ns].

Without loss of generality, we may assume that x, h1, . . . , hr (resp. hr+1, . . . , hs)
belong to the first (resp. second) part of Ci. If r > 1 we denote the vertices of
A(n2) by a1, . . . , an2

. The bigraph of B1T
+
h1a1

T+
h1a2

· · ·T+
h1an2

is isomorphic to

the bigraph Fm−1,m′ [h2, n1 + n2][h3, n3] · · · [hs, ns]. So, inductively we obtain a
sequence of deflations avoiding x with composition S1 such that B2 = B1S1 =
Fu,u′ [hr, v][hs, v

′] where u = m − r, u′ = m′ − s + r, v = n1 + · · · + nr and
v′ = nr+1 + · · · + ns.

If y is vertex of Fu with y 6= x, hr then B2T
+
hry is isomorphic to Fu−1,u′ [hr, v +

1][hs, v
′]. Inductively we obtain a sequence of deflations avoiding x with compo-

sition S2 such that B3 = B2T2 is isomorphic to F2,u′ [hr, v+u−2][hs, v
′] where the

two points of F2 are x and hr. Finally, verify that B4 = B3T
+
y1T

+
y2 · · ·T

+
y v+u−2

is isomorphic to F1,u′ [hr, v + u − 1][hs, v
′] and the point x corresponds to the

vertex v + u − 1 of A(v + u − 1).

Similarly, we show that there is a sequence of x-admissible deflations with com-
position S4 such that B4S4 is isomorphic to F1,1[hr, v + u− 1][hs, v

′ + u′ − 2] '
A(u + v + u′ + v′ − 1). 2

4.2 Proof of the Main Result: In the preceeding section we have seen that
each tree assemblage of A-blocks defines a positive unit form of Dynkin type An

for some n. Conversely, let now q : Z
n → Z be a positive unit form with Dynkin

type An. We will show that Bq is a tree assemblage of A-blocks.

If Bq is a block, then then the assertion follows by (3.3). Assume now that

there exists a point x ∈ Bq such that B
(x)
q is not connected. By induction on

the number of vertices we may assume that Bq is obtained from the disjoint
union of C1, . . . , Ct by identifying the points xi ∈ Ci, that each Ci is itself a tree

assemblage of blocks and that C
(xi)
i is connected with ni ≥ 1 vertices. Thus, xi

is not a hinge of Ci and by (4.1), there is a sequence of x-admissible deflations
such that the bigraph B of qT is a star with t branches of length n1, . . . , nt

respectively. Since q is positive and Dyn(q) = An we infer that t = 2 and thus
that B is a tree assemblage of A-blocks. This finishes the proof of the main
result. 2
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