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M. Barot

Abstract

This paper concludes the work begun in [1]. It considers unit forms,
i.e. positive definite integral quadratic froms with unitary coefficients
in the quadratic terms. The equivalence classes of connected unit forms
are given by Dynkin diagrams. The paper presents a characterization of
positive unit forms which are equivalent to Dn for some integer n in terms
of the associated bigraphs and gives a list for the case E6.

1 Introduction and Result

We consider unit forms, that are integral quadratic forms

q : Z
n → Z, q(x) =

n
∑

i=1

qix(i)2 +
∑

i<j

qijx(i)x(j)

such that qi = 1 for all i. Unit forms play an important role in the theory of
representations of algebras as associated forms to a finite dimensional algebra
over an algebraically closed field: the Tits form and in case the algebra has
finite global dimension also the Euler form. Their properties, such as (weak)
positivity or (weak) non-negativity, reflect properties of the algebras, see for
example [4, 6, 2, 3].

A unit form is called positive if q(x) > 0 for all non-zero x. Two unit forms, p
and q, are called Z-equivalent if there exists a Z-invertible linear transformation
T such that p = qT . It is well known, that positive unit forms can be classified,
up to Z-equivalence, by Dynkin diagrams. Namely, one associates to each unit
form q a bigraph B(q) with vertices 1, . . . , n and edges of two types, full and
broken ones, according to the following. Between i and j, there are −qij full
edges, if qij < 0, else there are qij broken edges. Conversely, to any bigraph B
(without loops and not both, broken and full edges, between two fixed vertices)
we may associate a unit form qB such that B(qB) = B. A unit form is called
connected if its bigraph is connected. Each connected, positive unit form q is
Z-equivalent to q∆, where ∆ is a Dynkin diagram, called the Dynkin-type of q
and denoted by Dyn(q). A bigraph is called a cycle if it is connected and every
vertex has exactly two neighbours.
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We denote by Φ(q) the frame of a unit form q, that is the graph obtained
from B(q) by turning the broken edges into full ones. In [1] it was shown that a
connected unit form q is positive of Dynkin type An if and only if B(q) satisfies
the cycle condition (that is, each cycle contains an odd number of broken edges)
and Φ(q) is a tree assemblage of complete graphs (that is, Φ(q) is obtained
from the disjoint union of complete graphs Σ1, . . . , Σn by identifying σi(α) with
σj(α), where α = {i, j} runs over all edges of a tree Γ with points {1, . . . , n}
and σi are injective maps from the set of edges in Γ ending in i to the vertex
set of Σi.)

We now present two new constructions. First, for a given graph Γ and a
vertex x ∈ Γ we define a new graph Γ[x], the mirror extension of Γ by x as
follows. Γ[x] has Γ as full subgraph plus one additional point x∗ which is not
connected to x by an edge but to any other point y of Γ by the same number
of edges as so is x: [x∗, y]Γ[x] = [x, y]Γ[x]. In this situation, the points x and x∗

are called mirror points of Γ[x]. If Γ is a tree assemblage of complete graphs we
call Γ[x] an A-mirror extension.

The second construction is easier. Given a connected graph Γ and two
vertices x, y ∈ Γ with connecting distance dΓ(x, y) > 2 denote by Γ/{x = y} the
graph which is obtained from Γ by identifying x with y and call it the cycling
of Γ in x and y. If x is a vertex of Γ, we denote by Γ(x) the full subgraph given
by all vertices different from x. If Γ is a tree assemblage of complete graphs
and x, y ∈ Γ two vertices such, that Γ(x) and Γ(y) are still connected, we call
Γ/{x = y} an A-cycling.

We are now ready to formulate the main result.

Main Theorem 1 Let q be a unit form. Then q is positive of Dynkin type Dn

if and only if the following three conditions are satisfied:

(i) B(q) has more than 3 points,

(ii) B(q) satisfies the cycle condition and

(iii) Φ(q) is an A-mirror extension or an A-cycling.

We give two examples of bigraphs which define positive unit forms of Dynkin
type D10, where its frame is an A-mirror extension (left side) and an A-cycling
(right side):
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The frames of positive unit forms of Dynkin type E6, E7 and E8 were cal-
culated completely using a computer program. We give here only the list of all
frames for E6.

The author would like to thank the referee for correcting an inaccuracy in
the proof, which led to (2.4 b), and for giving a simpler argument for (4.1).
Also, the author thankfully acknowledges support from CONACyT, Mexico.

2 Reduction of Frames

2.1

A graph Γ will be called positive admissible if there exists a positive unit form
p such that Γ = Φ(p). In that case we call p a positive presentation of Γ. By
[1, Theorem A], a positive admissible graph has a well determined Dynkin type
Dyn(Γ) given by Dyn(Γ) = Dyn(p) for any positive presentation p. Moreover,
it follows from [2] that any full subgraph Γ′ of a positive admissible graph Γ
is again positive admissible and Dyn(Γ′) ≤ Dyn(Γ), where the partial order is
given by

Am ≤ An ≤ Dn ≤ Dp for m ≤ n ≤ p

Dp ≤ Ep ≤ Eq for 6 ≤ p ≤ q ≤ 8.

2.2

Let Γ be a graph and x, y two different vertices of Γ. We define a new graph Γ′

with the same vertices as Γ by the following:

[r, s]Γ′ =











[r, s]Γ if r, s 6= x,

|[r, x]Γ − [x, y]Γ[r, y]Γ| if s = x, r 6= y,

[x, y]Γ if s = x, r = y.

We denote Γ′ also by ΓTxy and say that ΓTxy is obtained by applying to Γ
the flation Txy. Note that if Γ has no double edge, then ΓTxyTxy = Γ. Two
graphs are called flation-equivalent if one is obtained from the other by applying
a sequence of flations. We recall that for ε = ±1 and i 6= j we denote by T ε

ij

the invertible linear transformation given in the canonical base vectors ei by
T ε

ij(es) = es for all s 6= i and T ε
ij(ei) = ei − εej .

Proposition 1 Suppose that Γ and Γ′ are two flation-equivalent graphs. Then
Γ is positive admissible if and only if so is Γ′. Moreover, in this case we have
Dyn(Γ) = Dyn(Γ′).

Proof. Let Γ be positive admissible and T = Tx1y1 · · ·Txtyt
be a sequence

of flations for Γ. Let further q be a positive presentation of Γ and ε = qx1y1 .
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First, if ε = 0 then ΓTx1y1 = Γ. If ε 6= 0, we have either ε = 1 or ε = −1. We
claim that Φ := Φ(qT ε

x1y1
) = ΓTx1y1 . By this the result follows then inductivley,

since ΓTx1y1 is again positive admissible and Dyn(Φ) = Dyn(Γ).
So, let x = x1 and y = y1. If r, s 6= x we have [r, s]Φ = |(qT ε

xy)rs| = |qrs| =
[r, s]Γ = [r, s]ΓTxy

. Further, [x, y]Φ = | − qxy| = [x, y]ΓTxy
. Finally let r 6= x, y.

If qrx = 0 or qry = 0, we again easily verify that [r, x]Φ = [r, x]ΓTxy
. In the

remaining case, we have qrxqxyqyr = 1 since B(q) satisfies the cycle-condition
and hence [r, x]Φ = 0. On the other hand, by definition, we have [r, x]ΓTxy

= 0.
2

2.3

The following Corollary will be very useful for the proof of the Main Theorem.

Corollary 1 Suppose that q is a unit form such that B(q) satisfies the cycle-
condition and Γ a graph wich is flation-equivalent to Φ(q). Then Γ is positive
admissible if and only if q is positive.

Proof. If Γ is positive admissible then so is Φ(q) (2.2). Hence there exists
a positive presentation p of Φ(q). Since B(q) satisfies the cycle-condition, we
obtain by [1, Theorem A] that q is positive. The converse follows directly from
(2.2). 2

2.4

For a given vertex x of a connected graph Γ let vΓ(x) be the connecting valence
of x, that is the number of connected components of Γ(x). A point of connecting
valence bigger than one is called knot of Γ and a graph without knots is called
block. We say that a flation Tyz for Γ avoids (resp. strongly avoids) x if x 6= z
(resp. if x 6= z, y) and we say that a sequence of flations (strongly) avoids x if
each flation in the sequence (strongly) avoids x.

Notice, that if T is a flation for a graph Γ avoiding the vertices x and y and
if dΓ(x, y) > 2 and dΓT (x, y) > 2 then it does not matter if we first cyle Γ in x
and y and apply then T or if we first apply T to Γ and then cycle in x and y,
in both cases we obtain the same graph. Also, if T strongly avoids the vertex x
of Γ then Γ[x]T = (ΓT )[x].

For a sequence of points x1, . . . , xt we set

T[x1,...,xt] = Tx1x2Tx2x3 · · ·Txt−1xt
and

Tx1,[x2,...,xt] = Tx1x2Tx1x3 · · ·Tx1xt
.

In the following, we will use the convention that the points of An (resp. of
Dn) are denoted by 1, . . . , n and the edges are {i, i+1} for i = 1, . . . , n−1 (resp.
{i, i + 1} for i = 1, . . . , n − 2 and {n − 2, n}).

Lemma 1 Let A be a tree assemblage of complete graphs.
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(a) For any two different non-knots x, y of A there exists a sequence T of
flations for A which avoids x and y such that AT = An (and hence x and
y are the end points of An).

(b) For any vertex x of A there exists a sequence T of flations for A which
strongly avoids x such that AT = An and x corresponds to an end point
of An if and only of x is not a knot of A.

Proof. (a) The proof is done by induction over the number t of complete
graphs involved in the definition of A. If t = 1 then A is a block, and we
verify easily that AT[z1,...,zn−1] = An, if the points of A are denoted by x =
z1, z2, . . . , zn − 1, zn = y. Now, assume that A has at least one knot and let
B = {z ∈ A | [x, z]A 6= 0} ∪ {x}. Since x is not a knot of A, we have that B is
a complete graph.

If [x, y]A 6= 0 then let k1, . . . , ks denote the knots of A which belong to
B. By our induction hypothesis there exists a sequence of flations T avoid-
ing all points of B such that A′ = AT is obtained from the disjoint union of
B with An1 , . . . , Ans

by identifying kj with the point 1(j) of Anj
(the points

of Anj
are denoted by by 1(j), . . . , nj(j)). We abreviate the resulting graph by

B[k1, n1] · · · [ks, ns]. Since A′Tk1,[1(2),...,n2(2)] = B(k1)[k2, n1+n2][k3, n3] · · · [ks, ns],
we obtain inductively a sequence of flations T ′ avoiding x and y such, that A′′ =
A′T ′ = B′[ks, n], where n = n1+ · · ·ns and B′ is a complete graph containing x,
y and ks and maybe some other vertices a1, . . . , ar. Since A′′T[x,a1,...,ar]Ty,[1(s),...,n(s)] =
Am, we finish the proof in the case where [x, y]A 6= 0.

If [x, y]A = 0 then there exists a knot k such that x and y belong to different
components of A(k) = B1 ∪ B2, we may assume x ∈ B1 and y ∈ B2. Denote by
B̃i the full subgraph of A given by Bi ∪ {k}. Since k is not a knot of B̃i, for
i = 1, 2 there exists, by induction hypothesis, a sequence of flations T1 avoiding
k and x such such that B̃1T1 = Am1 (hence k and x correspond to the end
points of Am1), and similarly, a sequence of flations T2 for B̃2 avoiding y and
k such that B̃2T2 = Am2 (and hence y and k correspond to the end points of
Am2). Since A is obtained by the disjoint union of B̃1 and B̃2 identifying the
two k in each part, and T1, T2 avoid k we obatin that AT1T2 = Am1+m2−1 and
x and y correspond to the end points of Am1+m2−1.

(b) The proof is done by induction on the number of points. If x ∈ A is a
knot, we have A(x) = B1 ∪ B2 and let B̃i to be the full subgraph of A given by
Bi ∪{x}. Then x is not a knot of B̃i and by hypothesis, there exists a sequence
of flations Ti for B̃i strongly avoiding x such that B̃iTi = Ani

. Hence AT = An

and x is a knot of AT .
If x is not a knot we denote by y1, . . . , yr the neighbours of x in A. If r = 1,

we can apply induction on y1 ∈ Γ(x). Otherwise, we apply T[y1,...,yr] to Γ and
obtain a graph in which x has exactly one neighbour, namely yr. Hence we are
back in the situation before. 2
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2.5

Finally, we also need a positive result for graphs of type Dn.

Lemma 2 A cycle with n ≥ 4 points is positive admissible and of Dynkin type
Dn.

Proof. Let Γ be a cycle with n ≥ 4 points x1, . . . , xn and edges [xi, xi+1]Γ =
1 for i = 1, . . . , n − 1 and [xn, x1]Γ = 1. Then ΓTx1,[x2,...,xn−1] = Dn, and hence
the result follows from (2.2). 2

3 Forbidden subgraphs for Dn

The proof the Main Theorem is combinatorial and bases on the technique of
flations of graphs, by which given graphs will be reduced to special cases. Several
cases have to be excluded. This is done in this section.

Proposition 2 Let Γ be positive admissible graph of Dynkin type Dn. Then Γ
does not contain a full subgraph of the following list.

(F1) Extended Dynkin graphs. (F2)
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βt βt−1
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for

t ≥ 5

(F6)

r r r r r r

r r

p p pα γ
β1

βt βt−1

βt−2

for

t ≥ 4.

Proof. We will show, that a graph of this list is either not positive admissible
or it contains a graph which is positive admissible but has Dynkin type E6. The
result follows then by (2.1) and (2.2).
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Clearly no extended Dynkin graph is positive admissible. Since no bigraph
B with frame (F2) or (F3a) can satisfy the cycle condition, those graphs do not
admit a positive presentation. Let q be the unit form whose bigraph B has frame
(F3b) and where all edges are full except {α, ω} which is broken. Clearly, B
satisfies the cycle-condition, but for the vector v given by v(x) = 1 for all x ∈ B
we have q(v) = 0, hence, by (2.3), the graph of (F3b) is not positive admissible.
In case Γ is of the form (F4), we observe that ΓTα,[β1,...,βr,γ1,...,γs]Tωα contains
E6. If Γ is of the form (F5), we observe that ΓTβ1,[β2,...,βt−1] contains E6. If Γ

is of the form (F6), then if t > 4 we may restrict to Γ(γ), which is of the form
(F5) and if t = 4, then ΓTβ1β4Tβ1β3 = E6. 2

4 Reduction to Blocks

4.1

Lemma 3 Let Γ be a positive admissible graph of Dynkin type Dn and x not a
knot of Γ. Then there exists a sequence of flations T avoiding x for Γ such that
ΓT = Dn. If Dyn(Γ(x)) = An−1 (resp. Dyn(Γ(x)) = Dn−1) the sequence T may
be chosen in such a way that x corresponds to the point n (resp. 1) of ΓT .

Proof. Let q be a positive unit form with frame Γ. By [5, Theorem 6.2] the
length of a sequence of inflations of q is bounded. Let T be be a non-prolongable
sequence of inflations avoiding x for q and set q′ = qT . Then B(q′) = Dn, since
otherwise there would exist a broken edge in B(q′) between x and some other
point i, showing that T could be prolonged with T +

ix, a contradiction. It follows
that ΓT = Dn. 2

The following situation will occur rather often: a given graph Γ is restricted
to Γ(x) which is a disjoint union Γ1 ∪ . . . ∪ Γv, where v = vΓ(x). We then
will denote by Γ̃i the full subgraph of Γ given by Γi ∪ {x} without repeating it
explicitly each time.

4.2

Lemma 4 Let Γ be a positive admissible graph of Dynkin type Dn and suppose
that there exists a knot x in Γ. Let B1, . . . , BvΓ(x) be the connected components

of Γ(x) Then we have vΓ(x) ≤ 3. Furthermore, if vΓ(x) = 3 then Dyn(B̃i) = Ani

for all i, and if vΓ(x) = 2, we have Dyn(B̃1) = An1 and Dyn(B̃2) = Dn2 . (or
Dyn(B̃1) = Dn1 and Dyn(B̃2) = An2).

Proof. Let B(q) be a positive presentation of Γ. As in the proof of the
previous lemma, let T be a non-prolongable sequence of inflations avoiding x for
q and let Γ′ be the frame of qT . It is easy to check that vΓ(x) = vΓ′(x) and that
the graph B̃i is flation-equivalent to C̃i if C1, . . . CvΓ(x) denote the connected
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components of Γ′(x)
in the corresponding enumeration. Hence the result follows

from Γ′ = Dn. 2

4.3

Proposition 3 Let Γ be a positive admissible graph of Dynkin type Dn and
suppose that there exists a vertex x of Γ with connecting valence 3. Then there
exists a tree assemblage A of complete graphs and a vertex y of A such that
Γ = A[y].

Proof. By (4.2) and (2.4) there exists a sequence of flations T strongly
avoiding x such, that ΓT is a star with center x and 3 branches. Hence two
of the branches consist of one single edge. Thus, by the observation in (2.4),
if B1, B2 and B3 are the connected components of Γ(x), we may assume that
B1 = {y} and B2 = {z}. Then we have that Γ(z) is a tree assemblage of full
graphs and z is a mirror point of y. 2

5 D-blocks

5.1

Lemma 5 Let Γ be a block of Dynkin type Dn. Then there exists a vertex x of
Γ such that Dyn(Γ(x)) = An−1.

Proof. Suppose that this is not so and let Γ be a minimal such graph.
Either there exists a vertex x ∈ Γ such that Γ(x) is not block or for any x ∈ Γ
the restriction Γ(x) is a block but there exists y ∈ Γ(x) such, that Dyn(Γ(x)(y)) =
An−2. We will show that both cases lead to a contradiction.

Suppose first that Γ(x) is not a block. Then let y be a knot of Γ(x) and
Γ(x)(y) = B1 ∪ · · · ∪ Bv. Since Γ(y) is connected, we have v = 2 (otherwise
(F3) is contained in Γ). By (4.2), we may assume that Dyn(B̃1) = Dn1 and
Dyn(B̃2) = An2 . Let T1 be a sequence of flations for B̃1 avoiding y such that
B̃1T1 = Dn1 .

Observe that the case, where Dyn(B1) = An1−1 with n1 ≥ 5, is impossible
(choose z ∈ B2 such that [y, z]Γ 6= 0; then the restriction of ΓT1 to {z, y} ∪ B1

contains E6). Thus Dyn((B̃1T1)
(y)) is either A3 or Dn1−1, we will assume that

the y is the point 1 of B̃1T1 = Dn1 .
Let x, z1, . . . , zt, y be a shortest walk from x to y with zi ∈ B2 and let Γ′

be the full subgraph of ΓT1 given by {x, z1, . . . , zt} ∪ B̃1T1. Since T1 avoids y,
we must have [x, b]Γ′ 6= 0 for some b ∈ B̃1 \ {y}. Let C be the full subgraph
of Γ′ given by {x} ∪ B̃1T1 \ {y}. Applying flations of the form Txs, for s ∈ C,
s 6= x, we obtain a sequence of flations T2 for C such that there exists only one
edge in C which ends in x, say {x, i}. Notice that (CT2)

(x) = (B̃1T1)
(y) which

equals A3 or Dn1−1. If i = n1 or i = n1 − 1, then Γ′T2 contains (F5), whereas
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if 3 ≤ i ≤ n1 − 2 then Γ′T2 contains D̃m for some m. It remains to consider
the case i = 2. If there is an edge {x, y} then Γ′T2Tx,[y,zt,...,z2] = D̃n1−1 and

if not, then Γ′T2 contains D̃m for some m. In any case, a contradiction to the
assumptions.

Assume now that for every x ∈ Γ, Γ(x) is a block and there exists a vertex
y ∈ Γ(x) such, that Dyn(Γ(x)(y)) = An−2. By (4.1), we may transform Γ(x) such
that Γ(x)T = Dn−1 and y = n − 1. Again, by applying flations of the form Txz

with z 6= y, x, to Γ we may end up with a graph Γ′ where Γ′(x)
= Dn−1 and

there is exactly one edge ending in x, either {x, 2} or {x, n − 3}. In either case
we must have [x, y]Γ′ 6= 0. If [x, n − 3]Γ′ 6= 0 we apply Txy and observe that
for n > 5 the resulting graph contains E6, whereas if [x, 2]Γ′ 6= 0 we must have
n = 5 because of (F6).

Since Γ(x) is a block for every x ∈ Γ and n = 5, we have Dyn(Γ(x)(y)) = A3

for any x 6= y. However, the case Γ(x)(y) = A3 is not possible: Γ(2) would be a
cycle with four points, so by (F2) and (F3a) we would see that Dyn(Γ(1)) = A4.
This shows that Γ(x)(y) is a complete graph with 3 points for every x 6= y. Thus
Γ is complete and Dyn(Γ) = A5, again a contradiction. 2

5.2

Proposition 4 Let q be a unit form such, that Φ(q) is a block. If q is positive
of Dynkin type Dn then q satisfies (i), (ii) and (iii) of the Main Theorem.

Proof. Properties (i) and (ii) are clear. By Proposition 5.1, there exists a
vertex x ∈ Φ = Φ(q) such that Dyn(Φ(x)) = An−1.

If Φ(x) is a block, then it is a complete graph with vertices y1, . . . , yr, z1, . . . , zs

where r+s = n−1 and [x, yi] = 1 for i = 1, . . . , r and [x, zi] = 0 for i = 1, . . . , s,
see [1, Proposition 3.3]. Observe that Γ = ΦT[y1,...,yr]T[z1,...,zs] is a star with cen-
ter yr and branches {x, yr}, {y1, . . . , yr} and {z1, . . . , zs, yr}. Since the Dynkin
type of Γ is Dn we must have r = 2 or s = 1. In the first case, Φ is an A-cycling
and in the second case Φ is an A-mirror extension of Φ(x). This shows (iii) in
the case where Φ(x) is a block.

So, assume now that Φ(x) is not a block, hence given as tree assemblage of
complete graphs Γ1, . . . , Γt defined by a tree T . If Γi is a leaf, that is i ∈ T
has exactly one neighbour or equivalently there exist exactly one knot ki of Φ(x)

which belongs to Γi, then there exists a vertex yi ∈ Γi\{ki} such that [x, yi] = 1,
since otherwise ki would be a knot of Φ. Let Σ be a minimal tree in Φ(x) which
contains {yi |Γi is a leaf}. Since dΦ(x) (yi, yj) ≥ 2 for i 6= j we obtain by (F3),
that the number of leafs is at most 2, hence equals 2 since Φ(x) is not a block.
This implies that T is linear. Furthermore, by (F4) we have [x, y] = 0 whenever
y does not belong to a leaf.

For simplicity, set T = At, hence Γ1 and Γt are the two leafs of Φ(x). For

i = 1, t denote by y
(i)
1 , . . . y

(i)
ri , z

(i)
1 , . . . z

(i)
si the points of Γi such that [x, yj ] = 1
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and [x, zj ] = 0 for any j. We suppose that either ki = y1 or ki = z1. Note that
ri ≥ 1. Set

Γ = ΦT
[y

(1)
1 ,...,y

(1)
r1

]
T

[z
(1)
1 ,...,z

(1)
s1

]
T

[y
(t)
1 ,...,y

(t)
rt

]
T

[z
(t)
1 ,...,z

(t)
st

]
.

If t > 2 then ri = 1 or si = 0 (for i = 1, t) since otherwise (F5) is contained in
Γ, a contradiction. In all cases, we have that Φ is a cycling.

It remains to consider the case where t = 2, for which we have k1 = k2. If
[x, k1]Φ = 0, then s1 = s2 = 1 or r1 = r2 = 1 since otherwise (F5) is contained
in Γ. In the first case Φ is a mirror extension and in the second a cycling. So
finally assume that [x, k1]Φ = 1. Then we have that r1 ≥ 2 and r2 ≥ 2 and hence
[x, k1]Γ = 1. Thus we have r1 = 2 or r2 = 2, since otherwise (F4) is contained
in Γ, assume r1 = 2 (otherwise switch the roles of Γ1 and Γ2). Observe that for
r2 > 2 we must have s2 = 0 (otherwise (F5) is contained in ΓT

k1y
(1)
2

), hence Φ

is a cycling, whereas if r2 = 2 then s1 = 0 or s2 = 0 (otherwise ΓTx,k1 contains
E6), again Φ is a cycling. 2

6 Proof of the Main Theorem

First, let q : Z
n → Z be a connected unit form which is positive and has

Dynkin type Dn. We have to show that q satisfies the property (iii) of the Main
Theorem, since the first two conditions are trivially satisfied.

If Φ = Φ(q) is a block, this follows from Proposition 5.2. If Φ contains a knot
k of connecting valence 3, the result follows from Proposition 4.3. It remains the
case where there is a knot k with v(k) = 2. Let Φ(k) = Φ1 ∪Φ2. By Lemma 4.2,
we may assume that Dyn(Φ̃1) = Dm and Dyn(Φ̃2) = Ap. It is an easy exercise

to check that in case m = 4 there are the 3 following possibilities for Φ̃1:

qq

q

q

q q

q

q

�
�

�
�@

@

@
@ q q

q

q

�
�

�
�@

@

@
@

In each case Φ satisfies (iii). So let us assume that m > 4. Then by Lemma
4.1, we may exclude the case where Dyn(Φ1) = Am−1. By induction we may
then assume that Φ̃1 satisfies (iii). First suppose that Φ̃1 = Γ[x] is a mirror
extension. Since Dyn(Φ1) = Dm−1, we have that k 6= x, x∗ and hence we have
that Φ = Γ′[x] is a mirror extension, where Γ′ is the glueing of Γ and Φ̃2 in k
which is a graph of Dynkin type An−1.

So assume now that Φ̃1 = Γ/{x = y} is a cycling. Again, since Dyn(Φ1) =
Dm−1 we have that k 6= x = y and that k is not a knot of Γ. Hence we have
that Φ = Γ′/{x = y} is a cycling, where Γ′ is the glueing of Γ and Φ̃2 in k which
is a graph of Dynkin type An+1. In both cases, Φ satisfies (iii).
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Conversely, let now q be a unit form such that (i), (ii) and (iii) are satisfied.
Assume first that Φ := Φ(q) is a cycling Φ = Γ/{x = y}. By Lemma 2.4, there
exist an iterated flation T avoiding x and y for Γ for Φ such that ΓT = An+1

and x, y are the end points. Hence ΦT is a cycle. The result follows therefore
by Lemma 2.5 and Lemma 2.3.

So assume that Φ = Γ[x] is a mirror extension. Let T be an iterated flation
for Γ strongly avoiding x such that ΓT = An−1. If x is not a knot of ΓT then
Γ[x]T = ΓT [x] = Dn and we are done. If x is a knot denote by y1, y2 the two
neighbours of x (and of x∗) in Γ[x]T = ΓT [x]. Then ΓTTy1y2 is still a mirror
extension but contains a point of connecting valence 3, hence we are done also.
�

7 List of positive admissible graphs of Dynkin

type E6

The following list shows all positive admissible graphs of Dynkin type E6. The
list was obtained by a computer program in the most simple way: first a com-
plete list of all connected graphs with 6 points was calculated and then for each
such graph it was checked whether it admits a positive presentation, for which
the Dynkin type was calculated.

1

q q

q q

q q

A
A
Q
QQ

�
�

�
�

2

q q

q q

q q

A
A
Q
QQ

�
�

A
A

3

q q

q q

q q

A
A
Q
QQ

�
��

�
�
A
A

4

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A

5

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A

6

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A

7

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A

8

q q

q q

q q

A
A
Q
QQ

�
��

�
�

A
A

9

q q

q q

q q

A
A

�
�

�
�
A
A

10

q q

q q

q q

Q
QQ

�
��

�
�
A
A

11

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A
Q

QQ

12

q q

q q

q q

A
A
Q
QQ

�
��

�
�

�
�
A
A

13

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A

14

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A

15

q q

q q

q q

A
A

�
�

�
�
A
A

16

q q

q q

q q

A
A
Q
QQ

�
�

�
��
�
�
A
A

17

q q

q q

q q

A
A
Q
QQ

�
��

�
�

�
��
�
�
A
A

18

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A

19

q q

q q

q q

A
A
Q
QQ

�
��

�
�

�
�
A
A

20

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A
Q

QQ

21

q q

q q

q q

A
A
Q
QQ

�
��

�
��
�
�
A
A

22

q q

q q

q q

A
A
Q
QQ

�
�

�
��
�
�
A
A
Q

QQ

23

q q

q q

q q

A
A
Q
QQ

�
��

�
�

�
�
A
A

24

q q

q q

q q

A
A
Q
QQ

�
��

�
��
�
�
A
A

25

q q

q q

q q

A
A
Q
QQ

�
�

�
��
�
�
A
A
AA A
A

26

q q

q q

q q

A
A

�
�

�
��
�
�
A
A
Q

QQ

27

q q

q q

q q

A
A
Q
QQ

�
�

�
�
��

�
�
A
A
Q

QQ

28

q q

q q

q q

A
A
Q
QQ

�
�

�
��
�
�
A
A
AA A
A
Q

QQ

29

q q

q q

q q

A
A
Q
QQ

�
��

�
�

�
��
�
�
A
A
Q

QQ

30

q q

q q

q q

A
A
Q
QQ

�
�

�
�
��

�
�
A
A
AA A
A
Q

QQ

31

q q

q q

q q

A
A
Q
QQ

�
�

�
�
A
A
AA A
A
Q

QQ

32

q q

q q

q q

A
A
Q
QQ

�
��

�
�

�
��

�
�
��

�
�
A
A
Q

QQ

There are 233 positive admissible graphs of Dynkin type E7 and 1242 positive
admissible graphs of Dynkin type E8.
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