
The repetitive partition of the repetitive category

of a tubular algebra

M. Barot

Abstract. In [8] it was shown that for a given tubular algebra A there exist
only finitely many non-isomorphic tubular algebras T which are reflection-
equivalent to A. We give a concrete recipe to construct all of them. The

recipe also gives, up to isomorphism, all full and convex subalgebras of bA

which are tame concealed. Finally we characterize the sets of points of bA

whose corresponding projectives lie in a given tubular family of mod bA.

1. Introduction and main results

In [8] it was shown that for a tubular algebra A there exist only a finite number

of non-isomorphic tubular algebras T such that the repetitive categories Â and T̂

are isomorphic, or in other words, A and T are reflection-equivalent, i.e. T can
be obtained from A by a sequence of reflections in the sense of [6]. We present a
concrete recipe to construct all of them.

For this sake, we will need some notations. A branch is a tilted algebra of type
An, see for example [7]. The quiver QB with relations of a branch B is a finite, full
and convex subquiver of the infinite fractal quiver given in the figure 1.1 containing
the vertex b with the induced relations.
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Figure 1.1

For each branch B we define the subset B− = {b, bi1···in− ∈ QB | ij = ±} of
vertices of QB.

The author is grateful for the support he received from DGAPA, UNAM México and from
Schweizerischer Nationalfonds. Furthermore he acknoledges the critical comments and suggestions
of the referee from which the article took its present form.
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In [7] it was shown that a tubular algebra A is a tubular extension of a tame
concealed algebra A0 using modules M1, . . . , Mt from the tubular family of mod A0

and branches B1, . . . Bt. We denote as in [7], A = A0[Mi, Bi]
t
i=1.

Theorem 1. Let A be a tubular algebra, A = A0[Mi, Bi]
t
i=1. Then the algebra

obtained from A by reflecting all points in the set B−

1 ∪ · · · ∪ B−

t is tubular again.
By iteration we obtain all tubular algebras which are reflection-equivalent to A.

We recall from [4] that, for a tubular algebra A, the derived category Db(mod A)

and the stable category mod Â are equivalent and consist by [5] of a family (T q)q∈Q

of tubular families (T (κ)
q )κ∈P1k each of the same tubular type which is the extension

type of A. We denote by T
(κ)

q the connected component of mod Â which is sent to

T (κ)
q under the projection of mod Â to mod Â. Thus, we may define µ : Â → Q by

the property Px ∈ Tµ(x), where Px denotes the projective indecomposable Â-module

corresponding to the vertex x ∈ Â. The calculation of the derived category of a
tubular algebra A in [5] also shows, for a canonical tubular algebra A, the position

of the projective Â-modules in the category mod Â. The present paper generalizes
part of the unstated result in [5] to arbitrary tubular algebras giving a description
of the sets of indecomposable projectives which lie in the same tubular family of

mod Â.

Theorem 2. Let A be a tubular algebra and let q ∈ Q be such that µ−1(q)
is non-empty. Then there exists a tubular algebra T = T0[Mi, Bi]

t
i=1, which is

reflection-equivalent to A and such that µ−1(q) = B−

1 ∪ · · · ∪ B−

t .

The partition of the points of Â, for a tubular algebra A, by the fibres of µ will

be called the repetitive partition of Â. Finally we also prove the following result.

Theorem 3. Let A be a tubular algebra. Then any full and convex subalgebra

of Â which is tame concealed is isomorphic to T0 for some tubular algebra T which
is reflection-equivalent to A.

For the definition of tubular algebras and their properties we refer to [7].

2. Example

Let A be the algebra given by the quiver and relations of the figure 2.1 on the
left side, so we have A = A0[Mi, Bi]

2
i=1. We enclose the tame concealed algebra A0

with a square and we mark the points of B−

1 ∪ B−

2 by �.
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Figure 2.1

By reflecting the marked points we obtain the second algebra in the sequence
where we proceed similar in order to obtain the third algebra and so on. The sixth
algebra which we obtain this way is isomorphic to the first and hence, by Theorem
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1, we constructed all tubular algebras which are reflection-equivalent to A. The

construction gives us also the repetitive partition of Â, as shown in the figure 2.2.

where the vertical stripes indicate the points of Â whose corresponding projectives

lie in the same tubular family of mod Â.
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Figure 2.2

Finally, any full and convex subalgebra of Â which is tame concealed is isomor-
phic to one of the algebras given by a rectangle in the figure 2.1.

3. Proofs

A module M over an algebra A is called omnipresent if for all projective A-
modules P we have HomA(P, M) 6= 0.

Proposition 1. Let A be an algebra which is derived equivalent to a tubular
algebra. Then A is tubular if and only if mod A contains a homogeneous tube with
an omnipresent indecomposable module.

Proof. By [1], the algebras of infinite representation type which are derived
equivalent to a tubular algebra are branch-enlargements of a tame concealed alge-
bra T0, i.e. obtained from a tubular algebra T = T0[Mi, Bi]

t
i=1 by a sequence of

reflections in points of B1 ∪ · · · ∪ Bt. If A is not tubular then mod A consists of a
postprojective component, a preinjective component and a family T = (T (κ))κ∈P1k

which is obtained from a stable tubular family by ray insertion and coray insertion,
see [7]. Furthermore, T contains at least one projective Px and at least one injective
Iy and different components of T are pairwise orthogonal. Thus an omnipresent
indecomposable module M satisfies Hom(M, T ) 6= 0 6= Hom(T , M). This implies
that M belongs to T . By the orthogonality, we have that M , Px and Iy belong to

the same component T (κ), which therefore is not a homogeneous tube. �

For each q ∈ Q we denote by Sq the full subalgebra of Â given by the support
of a chosen homogeneous tube of Tq . Furthermore we set

Π = {q ∈ Q | Tq contains a projective module}

and we define the bijective map σ : Π → Π by σ(p) = min{r ∈ Π | r > p}.

Lemma. For any q ∈ Q we have Sq ⊆ {s ∈ Â | µ(Ps) < q < µ(Is)}. If q 6∈ Π
even equality holds.
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Proof. Let s ∈ Sq . Then there exists a non-zero morphism Ps → M for

some Â-module M in a homogeneous tube of Tq . It is not hard to see that

Hom bA
(T

(κ)
q , T

(λ)
q′ ) = 0 whenever q > q′ or q = q′ and κ 6= λ, since in those

cases we have Hom bA
(T (κ)

q , T
(λ)
q′ ) = 0. Thus we have µ(s) < q. This proves

Sq ⊆ {s ∈ Â | µ(Ps) < q < µ(Is)}. If q 6∈ Π we even have equality since Tq

inherits the separartion-property from T q. �

We recall from [6] the following facts. Let A be a finite-dimensional algebra.

The objects of the category Â are pairs (q, i) where q is a point of the quiver QA

of A and i an integer. A subcategory S of Â is called a slice (resp. complete slice)
if for each point q ∈ QA there exists at most one (resp. exactly one) integer i such
that (q, i) belongs to S.

Proposition 2. With the above notations, Sq is a critical (respectively tubular)
algebra if q ∈ Π (respectively if q 6∈ Π).

Proof. Let first q 6∈ Π. Then Sq is a full complete and convex slice of Ŝ

and hence it follows that Ŝq is isomorphic to Ŝ, see [6]. In particular, Sq is de-
rived equivalent to a tubular algebra and by definition it admits an omnipresent
indecomposable module, hence by Proposition 1, the algebra Sq is tubular.

Observe that for p ∈ Π only the stable tubes of Tp belong to the image of

the embedding of modSp in mod Ŝ. For a chosen q ∈ (p, σ(p)) we have that the

homogeneous tubes of Tq′ belong to the image of the embedding of modSq in mod Ŝ
if and only if q′ belongs to the closed interval [p, σ(p)]. Moreover, Sq properly
contains Sp. Hence if we embed modSp into modSq , then correspondingly the
homogeneous tubes of the tubular family of modSp embeds into the homogeneous
tubes of the first tubular family in modSq . Therefore, Sp is one of the two critical
subalgebras of the tubular algebra Sq . �

Proposition 3. For each tubular algebra T , which is reflection-equivalent to
A, there exists a q ∈ Q \ Π such that T is isomorphic to the algebra Sq.

Proof. Choose a homogeneous tube T of mod T which contains an omnipre-

sent module. Then by the embedding of mod T into mod Â this tube is sent to a

homogeneous tube in mod Â. Hence we have that T is isomorphic to Sq for some
q ∈ Q \ Π. �

Proof of Theorem 1. Let A0 be a triangulated algebra (that is, the quiver
of A0 does not contain an oriented cycle), M an A0-module and B a branch. In [3]
it was shown that for a branch-source extension A = A0[M, B] there exists exactly
one branch-sink extension of A0 which can be obtained from A by reflecting points
in B, and the reflected points are exactly B−. Clearly, this argument can be iterated
for a tubular algebra A = A0[Mi, Bi]

t
i=1 and thus we obtain a branch-sink extension

A′ = t
i=1[B

′

i, M
′

i ]A0 by reflecting the points in B−

1 ∪ · · · ∪B−

t . Since A′ and A have
the same extension type, A′ is cotubular and hence tubular, see [7].

In order to prove the second part of the statement, show that for any q 6∈ Π,
the algebra Sq can be obtained from A by a sequence of reflections. Let p be a
number in Π and choose q ∈ (p, σ(p)) and q′ ∈ (σ−1(p), p). Now, Sp is contained in
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Sq and in Sq′ , moreover Sq is a branch-source extension of Sp and Sq′ is a branch-
sink extension of Sp. So, Sq′ can be obtained from Sq by a sequence of reflections.
Iterating this process and applying Proposition 3 we get the desired result. �

Proof of Theorem 2. Let p ∈ Π. Choose q ∈ (p, σ(p)) and q′ ∈ (σ−1(p), p).
By Proposition 2 we know that Sq is tubular, Sq = Sp[Mi, Bi]

t
i=1. As in the proof

of Theorem 1, we see that Sq′ can be obtained from Sq by reflecting points from

B1 ∪ · · · ∪ Bt. Hence [3] implies that the reflected points are B−

1 ∪ · · · ∪ B−

t . On
the other hand we have Sq \ Sq′ = µ−1(p) and thus the result. �

Proof of Theorem 3. Let C be full and convex subalgebra of Â which is
tame concealed. Then the tubes of the tubular family of mod C are embedded

into a tubular family Tp of mod Â and since there are only finitely many non-
homogeneous tubes in Tp we obtain that C is isomorphic to Sp for some p ∈ Q.
By Proposition 2, we thus have p ∈ Π. Therefore we obtain the result by choosing
q ∈ (p, σ(p)) and setting T = Sq. �

4. Application

Once we have written down the so-called repetitive partition as in the in-
troduction, it is very easy to get examples of derived tubular algebras of finite
representation-type. Even more, we can give a recipe to construct all of them.

Proposition. The set of all representation-finite derived tubular algebras is
obtained as follows. First construct any tubular algebra A. Then take any full

complete and convex slice in Â which does not contain any tame concealed algebras
as given by Theorem 3.

Proof. First, by [2], for any derived tubular algebra T there exists a tubular

algebra A such that T is isomorphic to a full complete and convex slice in Â. If T is
representation-infinite then T is a branch-enlargement of a tame concealed algebra

C, see [1]. Hence C is convex in Â. So we are done by applying Theorem 3. �

We consider this procedure in our example. If we delete from Â all points α[i]
for i ∈ Z (compare Figure 1.1) the resulting category is no longer connected (its
quiver is painted in Figure 4.1).
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This makes it easier to list all algebras of finite representation type, which are
derived equivalent to A. Namely, glue any algebra given by one of the quivers with
relations of Figure 4.2
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with one algebra of the list 4.3 in the exceptional points marked by � and divide
by the ideal consisting of all paths which start and end in different parts (the pairs
γ-γ and β-β are excluded since they define representation-infinite algebras).
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6. D. Hughes and J. Waschbüsch: Trivial extensions of tilted algebras, Proc. London
Math. Soc. (3), 46 (1982), 346-364.

7. C. M. Ringel: Tame algebras and integral quadratic forms, Lecture Notes in
Mathematics Vol. 1099, Berlin, Heidelberg, New York, Springer, (1984).
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