
ROOT-INDUCED INTEGRAL QUADRATIC FORMS

M. BAROT AND J. A. DE LA PEÑA

Abstract. Given an integral quadratic unit form q : Zn → Z and a
finite tuple of q-roots r = (rj)j∈J the induced q-root form qr is con-
sidered as in [3]. We show that two non-negative unit forms are of the
same Dynkin type precisely when they are root-induced one from the
other. Moreover, there are only finitely many unit forms without dou-
ble edges of a given Dynkin type. Root-induction yields an interesting
partial order on the Dynkin types, which is studied in the paper.

1. Introduction and Results

We study integral quadratic forms

q : ZI → Z, v 7→ q(v) =
∑
i∈I

qiv
2
i + 1

2

∑
i6=j∈I

qijvivj

where I is a finite set and its cardinality will be called the number of variables
of q. Often we will have I = [n] = {1, . . . , n}.
Further, q is a unit form (semiunit form) if qi = 1 (qi ∈ {0, 1}, respectively)
for all i ∈ I. We say that q is positive (non-negative) if q(v) > 0 (q(v) ≥ 0,
respectively) for all v 6= 0.

A vector v is called a q-root if q(v) = 1. For instance, for a unit form the
canonical base vectors ei are roots. Given a finite tuple of q-roots r = (rj)j∈J
a new unit form qr : ZJ → Z can be defined as in [3] by

qr(y) = q(
∑
j∈J

yjr
j),

which we shall call the q-root form induced by the tuple r.

Two forms q : ZI → Z and q′ : ZJ → Z are called equivalent if they describe
the same maps up to a change of basis, that is, if there exists a linear Z-
invertible transformation T : ZI → Z

J such that q = q′T . It was shown in
[1], see also 2.2, that the equivalence classes of non-negative unit forms are
parametrized by two data: the corank, a natural number, and the Dynkin
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type, that is the disjoint union of some of the following Dynkin diagrams: An
(n ≥ 1), Dn (n ≥ 4) or En (n = 6, 7, 8). In this work we show the following
result.

Theorem A. Two non-negative unit forms are of the same Dynkin type
precisely when they are root-induced one from the other.

In order to study more closely the relationship between p and pr, we intro-
duce some more notions. Given two forms q : ZI → Z and q′ : ZJ → Z, we
define a new form q ⊕ q′ : ZI∪̇J → Z called the direct sum of q and q′, by

q ⊕ q′(x, y) = q(x) + q′(y).

A form q is called connected if q = q′ ⊕ q′′ implies q = q′ or q = q′′.

In Section 2, we will give precise conditions on the tuple of p-roots r for
which p > 0 and pr share the same Dynkin type. As a consequence, we
get the following result for unit forms without double edges, that is, forms q
whose non-square coefficients qij satisfy |qij | < 2.

Theorem B. There are only finitely many unit forms without double edges
of a given Dynkin type ∆. The number of variables of any such unit from
is (strictly) bounded by the number of positive roots of qf(∆).

We show in Section 4 that double edges of non-negative unit forms may be
reduced in a straightforward way and such forms are thus of little interest
from a combinatorial point of view.

The article is organized as follows: In Section 2, we explain the basic facts
of root induction and recall some results about non-negative unit forms. In
Section 3, we determine the equivalence classes of non-negative unit forms
defined by root induction, in particular we prove Theorem A. In Section 4 we
show Theorem B and in Section 5, we determine the order on the equivalence
classes of non-negative unit forms defined by root-induction, which provides
an interesting order on the Dynkin types.

2. Preparatory results

2.1. Transitivity of root-induction.

Lemma 2.1. Root-induction is transitive.

Proof. Suppose that q : ZI → Z and r = (rj)j∈J is a finite tuple of q-roots
and s = (sk)k∈K is a finite tuple of qr − roots. We show that there exists a
finite tuple t = (th)h∈H such that (qr)s = qt. Now, sk =

∑
j s

k
j e
j ∈ ZJ and
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hence we have for x ∈ ZK that

(qr)s(x) =qr(
∑

k
xks

k)

=q(
∑

j

(∑
k
xks

k
)
j
rj)

=q(
∑

k
xk

(∑
j
skj r

j
)
.

So, by setting tk =
∑

j s
k
j r
j ∈ ZI we get (qr)s = qt provided the vectors tk

are q-roots. This is easily seen: q(tk) = q(
∑

j s
k
j r
j) = qr(sk) = 1. �

2.2. Equivalence classes of non-negative semiunit forms. It is useful
to associate to a semiunit form q : ZI → Z a bigraph bg(q), having I as
vertex set and −qij full edges (respectively qij broken edges) between i and
j if qij < 0 (respectively qij ≥ 0) and one full loop at i if qi = 0. It is
clear that in this way we obtain a bigraph with at most one full loop in each
point, no broken loops and no mixed edges between two points. Conversely
to any bigraph Γ with such properties we may associate a semiunit form
qf(Γ). Notice that q is connected if and only if bg(q) is so.

If q : ZI → Z is a unit form then for any subset J ⊆ I and r = (ej)j∈J
the q-root induced form q′ = qr is called restriction of q and conversely q
is called extension of q′. The fact will be denoted by q′ ⊆ q and happens if
and only if bg(q′) is a full subbigraph of bg(q). In this case we will have a
canonical inclusion ι : ZJ → Z

I and we will identify v ∈ ZJ with its image
under ι if no confusion can arise.

Let q : ZI → Z be a semiunit form. The free abelian subgroup rad q =
{v ∈ ZI | q(v + w) = q(w),∀w ∈ ZI} is called the radical of q, its rank
the corank of q. If q is non-negative then the radical coincides with the
zero fibre of q. We denote by ζ the semiunit from Z → Z, v 7→ 0. It was
shown in [1] that any connected non-negative unit form q is equivalent to
qf(∆) ⊕ ζc, where ζc = ζ ⊕ . . . ζ (c copies), c is the corank of q and ∆ a
Dynkin diagram, uniquely determined by q, called the Dynkin type of q and
denoted by Dyn(q) = ∆ in the sequel.
Lemma 2.2. Let q : Zn → Z be a unit form and r = (r1, . . . , rn) an n-tuple
of q-roots which form a Z-basis of Zn. Then q and qr are equivalent.

Proof. This follows immediatly from the fact that qr = q ◦T , where T is the
linear Z-invertible map defined by T (ei) = ri. �

2.3. Omissible variables. For a unit form q : ZI → Z, we call i ∈ I an
omissible variable or just omissible if there exists a vector v ∈ rad q such
that vi = 1. It was shown in [2], that a non-negative unit form with non-zero
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radical always admits an omissible variable and that the restriction of q to
the remaining variables I \ {i} has the same Dynkin type as q.

Furthermore, it has been shown in [2], that, if q is a non negative unit form
there exists a positive restriction p ⊆ q with Dyn(p) = Dyn(q). In the sequel
we will call p a core of q. Notice that cores are not uniquely determined in
general, but just up to equivalence.

Suppose that p ⊆ q is a core, then for any q-roots v there exists a unique
p-root v1 and a unique radical vector v0 such that v = v0 + v1. This follows
from the fact that cores may be obtained by iteratively deleting omissible
variables. In the following we explain how q may be recovered from its core.

2.4. One-point extensions. Given q a unit form and a v a q-root we define

q[v] := qe(v), where e(v) = (e1, . . . , en, v)

and call it the one-point extension of q by v. We can calculate the new
coefficients explicitely:

(1) q[v]i,n+1 = 2vi +
∑
j 6=i

qijvj ,

where, for convenience, we set qji = qij for i < j.
Lemma 2.3. If q : Zn−1 → Z is a connected non-negative unit form and
v is a q-root, then q[v] is again a connected non-negative unit form and
Dyn(q[v]) = Dyn(q). Moreover, the last variable of q[v] is omissible and
rad q[v] = rad q ⊕ Z(−v + en).

Proof. Clearly, q[v] is a non-negative unit form. Further, if n − 1 is the
number of variables of q then q[v](−v+ en) = q(−v+ v) = 0 shows that the
last variable is omissible. Consequently, Dyn(q[v]) = Dyn(q) and ṽ = −v +
en ∈ rad q[v]. If w ∈ rad q[v] then w = (w−wnṽ)+wnṽ ∈ rad q+Zṽ. Clearly
rad q ∩ Zṽ = 0. Suppose that q[v] is not connected, that is q[v]i n+1 = 0
for all i = 1, . . . , n. Then 0 = q[v](−ιv + en+1) = q(v) + q[v](en+1) = 2, a
contradiction. �

For a unit form q and a tuple of q-roots s = (s1, . . . , st), we denote by
q[s] = q[s1][s2] · · · [st] the multi-point extension of q.
Lemma 2.4. An iterated one-point extension of a non-negative unit form is
a multi-point extension, more precisely if q is a non-negative unit form and
q = q0, q1, . . . qt is a sequence of unit forms such that qi+1 = qi[wi] for some
qi-root wi, then there exists a t-tuple s = (s1, . . . , st) such that qt = q[s].

Proof. By induction on t. The cases t = 0, 1 are clear. For t > 1 assume
q : Zm → Z and let s′ = (s1, . . . , st−1) be such that qt−1 = q[s′].
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Using Lemma 2.3, we see that s̃i = −si + em+i (i = 1, . . . , t− 1) is a radical
vector of q[s′]. Define st = wt−v ∈ Zm, where v =

∑t−1
i=1 w

t
m+is̃

i ∈ rad qt−1.

The assertion follows now from the fact that p[w] = p[w+v] for any v ∈ rad q.
Indeed, since q(v) = 0, the function q assumes a global minimum in v and
therefore all partial derivatives ∂q(x)

∂xi
= 2xi +

∑
j 6=i qijxj vanish in x = v.

Thus by the formula (1), we have q[w + v]i,n+1 = q[w]i,n+1. �

2.5. Unit forms with the same Dynkin type.

Proposition 2.5. Let ∆ be a Dynkin diagram and p = qf(∆) : Zm → Z

be the associated quadratic form. Then the following are equivalent for q :
Z
n → Z.

(i) q is a connected, non-negative unit form with Dynkin type ∆.
(ii) There exists an n-tuple r = (r1, . . . , rn) of p-roots such that q = pr

and there exists a subsequence 1 ≤ i1 < . . . < im ≤ n such that
ri1 , . . . , rim is a Z-basis of Zm.

(iii) There exists a unit form p′ : Zm → Z which is equivalent to p and
there exists a (n−m)-tuple s = (s1, . . . , sn−m) of p′-roots such that
q = p′[s] up to a permutation of the indices.

Proof. (i)⇒(iii). By induction on the corank c of q. If c = 0, that is q is
positive, then take p′ = p and for Π the identity matrix. In case c > 0, let
i be an omissible variable of q and let q′ be the restriction of q to the other
variables. By induction hypothesis, we have q′ = p′[s′] up to permutation of
the indices for some tuple s′ = (s1, . . . , sc−1) of p′-roots. Since i is omissible
there exists a radical vector v ∈ rad q with vi = 1. Then w = v − ei is a
q′-root and q = q′[w] again up to permutation of the indices. Altogether, we
have q = p′[s′][w] = p′[s] by Lemma 2.4.

(iii)⇒(i). It follows by induction from Lemma 2.3, that p′s is connected,
non-negative and of Dynkin-type ∆. These properties clearly do not change
under reordering of the variables.

(ii)⇒(iii). In order to keep notations simple, we assume first that ij = j
for j = 1, . . . ,m and adjust to the general case in the end. For i > m, there
exists integers sij such that

ri = si1r
1 + . . . simr

m,

defining hence vectors si = (si1, . . . , s
i
m) ∈ Zm. Define p′ := pr′ : Zm → Z,

where r′ = {r1, . . . , rm}. Then p′ is equivalent to p, by Lemma 2.2.
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Let s = {sm+1, . . . , sn} and calculate

p′[s](y) =pr′
(
y1e

1 + . . .+ yme
m + ym+1s

m+1 + . . .+ yns
n
)

=pr′
(∑m

a=1
(ya + ym+1s

m+1
a + . . .+ yns

n
a)ea

)
=p
(∑m

a=1
(ya + ym+1s

m+1
a + . . .+ yns

n
a)ra

)
=p
(
y1r

1 + . . .+ ymr
m +

∑n

j=m+1
yj(s

j
1r

1 + . . .+ sjmr
m)
)

=p
(
y1r

1 + . . .+ ymr
m + ym+1r

m+1 + . . .+ ynr
n
)

=pr(y) = q(y).

Furthermore, the vectors sj are p′-roots, since p′(sj) = pr′(s
j
1r

1 + . . . +
sjmrm) = p(rj) = 1.

Now, if ri1 , . . . , rim generate Zm, then let σ be a permutation of {1, . . . , n}
such that σ(ij) = j for j = 1, . . . ,m. Hence q = p′sΠ, where Π is the
permutation matrix associated with σ.

(iii)⇒ (ii) We have q = p′t where t = (e1, . . . , em, s1, . . . , sn−m). Since p is
equivalent to p′ there exists a Z-invertible T such that p = p′T . The vectors
ri = T−1ti ∈ Zm are p-roots and pr = p′t. Clearly r1, . . . , rm is a Z-basis of
Z
m. �

Proposition 2.6. A non-negative unit form q is root induced from qf(Dyn(q)).

Proof. Let q be a non-negative unit form and denote by p its core. Clearly p,
as a restriction of q, has not more variables than q and it is a q-root induced
form. Since p is equivalent to p′ = qf(Dyn(q)), we have that p′ = ps and
hence by Proposition 2.5 (ii), we have q = p′r = pr′ by the transitivity of
root-induction. �

We shall need the following result in the last section.
Corollary 2.7. If q : Zn → Z is a non-negative unit form of corank one
with v ∈ Zn such that rad q = Zv, then |vi| ≤ 6 for any i = 1, . . . , n.

Proof. Let p : Zn−1 → Z be a core of q and w a p-root such that q = p[w].
Then v = ±(w+ en). The assertion follows now from the fact that |wi| ≤ 6,
see [3]. �

3. Root-equivalence of non-negative unit forms

We call two unit forms p and q root-equivalent if p is a q-root induced form
and q is a p-root induced form. Notice that by Lemma 2.1 this is indeed
an equivalence relation on the unit forms, and that this equivalence relation
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generates the usual equivalence under change of basis. We also recall from
the proof of Proposition 2.6 that a non-negative unit form is root-induced
from its core.

Proof of Theorem A. Suppose that p : ZI → Z and q : ZJ → Z are root-
equivalent, that is p = qr for some tuple of q-roots r = (ri)i∈I and q = ps
for some tuple of p-roots s = (sj)j∈J . By Proposition 2.5, p and its core are
root-equivalent and so are q and its core. Hence we can suppose that p and
q are positive.

Hence the vectors ri (i ∈ I) are linearly independent (otherwise there would
exist

∑
i xir

i = 0 for some non-zero x ∈ ZI and hence p(x) = qr(x) = q(0) =
0 in contradiction with the positivity of p). This implies that |I| ≤ |J |.
Similarly we have |J | ≤ |I|. This argument can be refined to hold even for
each connected component. Indeed, if we assume that p = p1 ⊕ . . . ⊕ pm
and q = q1 ⊕ . . . ⊕ qn where each pa and each qb is connected, then any
p-root sj is in fact a paj -root for some aj = 1, . . .m (extended by zero to
the other components). If s(h) = (sj)j∈Jh denotes the tuple of all such roots
where aj = h, we have q = ps = (p1)s(1) ⊕ . . . ⊕ (pm)s(m) and J =

⋃m
h=1 Jh.

Thus it follows from |I| = |J | that s(h) is a Q-basis of the domain of pa

and therefore q = ps has at least as many connected components as p.
By interchanging the roles of p and q, we see that p and q have the same
number of components and there is a permutation π such that ph and qπ(h)

are root-equivalent. Hence we can suppose from the beginning that p and q
are positive and connected.

Again, since the vectors ri (i ∈ I) are linearly independent, we get an
injective linear map

ϕ : ZI → Z
J , x 7→

∑
i∈I

xir
i.

which induces an injective function on the roots p−1(1) → q−1(1) since
q(ϕ(x)) = qr(x) = p(x). Hence p and q are positive connected unit forms
with the same number of variables and the same number of roots. This
implies that they are equivalent, see for example [2]. In particular, p and q
must have the same Dynkin type.

Suppose now that Dyn(p) = Dyn(q). Then, by Proposition 2.5, we see that
p (respectively q) and its core p′ (respectively q′) are root-equivalent and
have the same Dynkin type. Therefore p′ and q′ are positive unit forms
with the same Dynkin type and therefore equivalent, in particular root-
equivalent. �
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4. Unit forms without double edges

Recall that a non-negative unit form q satisfies |qij | ≤ 2 for any i 6= j. We
say that a q has a double edge if there exists i 6= j such that |qij | = 2. The
following result shows that non-negative unit forms with double edges of are
not very interesting from a combinatorial point of view.
Lemma 4.1. Suppose that q : ZI → Z is a non-negative unit form with
a double edge qij = 2ε, for ε = ±1. Then qih = εqjh for any h 6= i, j.
Furthermore, if q′ = qI\i is the restriction to I \ i then q = q′[εej ].

Proof. Since ej−εei is a radical vector of q, we have q(ej +eh) = q(εei+eh)
and therefore qjh = q(ej + eh)− q(ej)− q(eh) = q(εei + eh)− 2 = εqih.

By (1), we have (q′[εej ])ij = 2ε, which implies that q and q′[εej ] are both
non-negative unit forms whose restriction to I \ i coincides and which have
a double edge between the vertices i and j. The remaining coefficients are
therefore completely determined and must coincide also. �

The following result implies immediatly Theorem B.
Proposition 4.2. Let q be a non-negative unit form of Dynkin type ∆ and
p = qf(∆). Then q has no double edge if and only if there exists Σ ⊂ p−1(1)
such that Σ ∩ −Σ = d and q = pΣ.

Proof. Suppose first that q has no double edge. By Theorem A, there exists
a tuple r = (ri)i∈I of p-roots such that q = pr. It remains to show that
ri 6= rj and ri 6= −rj for i 6= j. But, if ri = εrj for ε = ±1, then ε(qr)ij =
qr(ei + εej) − qr(ei) − qr(ej) = q(2ri) − 2 = 2, which shows that q would
have a double edge.

If, conversely there is a tuple r = (ri)i∈I of p-roots satisfying ri 6= rj and
ri 6= −rj for i 6= j, then q = pr can not have a double edge. Indeed,
ri ± rj 6= 0 implies 0 < q(ri ± rj) = qr(ei ± ej) = 2± (qr)ij . �

5. Order of the Dynkin types

5.1. Basic properties of the order. By Proposition 2.5, the partial order
on the equivalence classes defined by root induction yields a partial order
of the Dynkin types. In this section we investigate this order in detail. We
start with some simple observations.
Proposition 5.1. Let Γ, ∆ and Σ be Dynkin diagrams.

(i) Any predecessor of ∆
∐

Σ is of the form ∆′
∐

Σ′ where ∆′ ≤ ∆ and
Σ′ ≤ Σ, possibly one of ∆′ or Σ′ empty.

(ii) If Γ
∐

Σ ≤ ∆
∐

Σ, then Γ ≤ ∆.
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(iii) If Γ is an immediate predecessor of ∆, then for any Dynkin type Σ,
we have that Γ

∐
Σ is an immediate predecessor of ∆

∐
Σ.

(iv) If Γ is an immediate predecessor of ∆, then either ∆ = Γ
∐
A1 or

Γ = Γ′
∐

Γ′′, ∆ = Γ′
∐

∆′′ where ∆′′ is connected and Γ′′ is an
immediate predecessor of ∆′′.

Proof. (i) Suppose that Θ ≤ ∆
∐

Σ. Then we can find positive unit forms
p : ZI → Z and q : ZJ → Z such that ∆ = Dyn(p) and Σ = Dyn(q) and
a tuple r = (rh)h∈H of (p ⊕ q)-roots such that (p ⊕ q)r = Θ. Let sh ∈ ZI
and th ∈ ZJ be such that rh = sh ⊕ th. Then either sh = 0 and th is
a q-root or th = 0 and sh is a p-root. Set H ′ = {h ∈ H | th = 0} and
H ′′ = H \ H ′. Further denote s = (sh)h∈H′ and t = (th)h∈H′′ . Then we
have (p ⊕ q)r = ps ⊕ qt and therefore Θ = ∆′

∐
Σ′ with ∆′ = Dyn(ps) and

Σ′ = Dyn(qt).

(ii) and (iii) follow directly from (i) (without using any other property of
the order) in very similar way. We shall only show here part (iii) and leave
(ii) to the interested reader. It is enough to consider the case where Σ is
connected. Suppose Γ

∐
Σ < Θ < ∆

∐
Σ. We shall show that we can find a

diagram Ξ such that Γ < Ξ < ∆.

Let Θ = ∆′
∐

Σ′ with ∆′ ≤ ∆ and Σ′ ≤ Σ (not both equalities) and
Γ
∐

Σ = ∆′′
∐

Σ′′ with ∆′′ ≤ ∆′ and Σ′′ ≤ Σ′ (not both equalities).

The connected diagram Σ must be a component of Σ′′ or of ∆′′. In the first
case, we obtain Σ′′ = Σ and therfore Γ = ∆′′ < ∆′ < ∆ both inequalities
being strict. In the second case, we have ∆′′ = ∆′′′

∐
Σ and consequently

Γ = ∆′′′
∐

Σ′′ ≤ ∆′′′
∐

Σ′ ≤ ∆′′′
∐

Σ = ∆′′ ≤ ∆′ ≤ ∆.

Now, observe that the first or the third inequality is strict and similarly the
second or the fourth must be strict. In any case we find a Ξ with Γ < Ξ < ∆.

(iv) This follows now directly from (i) and (iii). �

5.2. Immediate predecessors of Dynkin diagrams. Proposition 5.1
(iv) shows that in order to understand the partial order defined by root-
induction, it is enough to describe the immediate predecessors of Dynkin
diagrams. This is done here. Given a Dynkin diagram ∆ we denote by ∆̃
the corresponding extended Dynkin diagram, see for example [3].
Theorem 5.2. If Γ is an immediate predecessor of a Dynkin diagram ∆,
then Γ is a restriction (by one point) of ∆ or of ∆̃.

Proof. Let p : ZI → Z and q : ZJ → Z be a non-negative unit forms such
that Dyn(p) = Γ and Dyn(q) = ∆. Let r = (ri)i∈I be a tuple of q-roots such
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that p = qr. By restricting, if necessary, to the core of p, we can assume
that p is positive.

Since p′ = qf(Γ) = ps for some tuple s of p-roots we can, by the transitivity
of root-induction, also assume that p = qf(Γ). We have to distinguish
two cases: (i) |Γ| < |∆| and (ii) |Γ| = |∆|. For the first case, we observe
that the roots ri are linearly independent for i ∈ I since qr is positive.
Hence we can extend r to a Q-basis r′ of ZJ . Therefore qr is a proper
restriction of qr′ . Since Γ is an immediate predecessor of ∆, we conclude
from Γ = Dyn(qr) < Dyn(qr′) ≤ ∆, that Dyn(qr′) = ∆ and therefore Γ is a
restriction of ∆.

In the second case, where |Γ| = |∆|, we can assume that p is a restriction of
q, since p is a restriction of q[r] and q[r] has the same Dynkin type than q.
So suppose that q : ZJ → Z is a non-negative unit form with Dyn(q) = ∆
and p = qI is the restriction to I ⊂ J .

In the next step we show that it is enough to consider the case where |J | =
|I| + 1. Write J \ I = {j1, . . . , jt} and define Ia = I ∪ {j1, . . . , ja} for
a = 0, 1, . . . , t. Then we have p = qI0 and q = qIt . We get the sequence

Γ = Dyn(p) ≤ Dyn(qI1) ≤ . . . ≤ Dyn(qIt−1) ≤ Dyn(q[r]) = Dyn(q) = ∆,

and by hypothesis there exists a unique index a such that Dyn(qIa−1) <
Dyn(qIa). Hence Dyn(q) = Dyn(qIa) and we can at once assume that a = t.
If t > 1, then we have for q′ = qI1 that Dyn(q′) = Dyn(p) and therefore
the vertex j1 is ommisible for q′. That is, there exists a vector v′ in the
radical of q′ such that q′(v′) = 0 and v′j1 = 1. Hence q(v) = 0, where v
denotes the extension of v′ by zero entries to the remaining vertices. Since q
is non-negative this implies that v is a radical vector of q with vj1 = 1. Thus
j1 is omissible for q and Dyn(qJ\j1) = Dyn(q). Clearly p is a restriction of
qJ\j1 . Thus a reordering of the vertices in J \ I shows that indeed we can
assume that |J | = |I|+ 1. Set j = j1 ∈ J \ I.

Resuming the above, we have I = J \ {j} and p = qI and p = qf(Γ). Since
|Γ| = |∆|, we see that q has corank one, so q is equivalent to qf(∆̃).

In the following, we show that there exists a linear Z-invertible transfor-
mation T : ZJ → Z

J such that the bigraph of q ◦ T is a diagram (that is
(q ◦ T )hi ≤ 0 for any h 6= i) and T (ei) = ei for any i ∈ I. This implies the
result, since on one hand we have that the bigraph of q ◦ T is an extended
Dynkin diagram, since q is non-negative, connected and of corank one. On
the other hand p is a restriction of q ◦ T .

Indeed, let v be the unique vector v ∈ ZJ such that vj > 0 and rad q = Zv.
Suppose there exists an index i 6= j such that qij > 0. Now consider T1

the linear function given by T1(es) = es for s 6= j and T1(ej) = ej − ei. A
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simple calculation shows that q1 = q ◦ T1 is again a unit form. Of course it
is non-negative of corank one. The unique vector v1 such that v1

j > 0 and
rad q1 = Zv1 is T−1

1 v = v + vje
i. In particular we have v1

h = vh for any
h 6= i and v1

i > vi. We proceed with q1 instead of q and obtain iteratively
a sequence of equivalent unit forms qu = q ◦ Tu for u = 1, 2 . . . and where
Tu is linear Z-invertible and Tu(ei) = ei for any i ∈ I. Parallel to this
sequence we obtain a sequence of vectors vu ∈ ZJ (each unique for qu)
with

∑
h∈I v

u−1
h <

∑
h∈I v

u
h . Since

∑
h∈I v

u
h ≤ 6 · |I| by Corollary 2.7, this

sequence must stop when we reach a form qu without positive (off-diagonal)
coefficients. This completes the proof of the statement. �

Dynkin immediate predecessors Γ immediate predecessors Γ
diagram ∆ of ∆ with |Γ| < |∆| of ∆ with |Γ| = |∆|
An An−1

Ai
∐
An−i−1 (1 ≤ i ≤ n− 2)

D4 A3 A
4
1

D5 A4 A
2
1

∐
A3

D4

D6 A5 A
2
1

∐
D4

D5 A
2
3

Dn (7 ≤ n) An−1 A
2
1

∐
Dn−2

Dn−1 A3
∐
Dn−3

Di
∐
Dn−i (4 ≤ i ≤ n− 4)

E6 D5 A1
∐
A5

A
3
2

E7 E6 A7

A1
∐
D6

A2
∐
A5

E8 A8

D8

A1
∐
E7

A2
∐
E6

A3
∐
D5

A
2
4

Table 1: Immediate predecessors of Dynkin diagrams

Table 1 shows the immediate predecessors of all Dynkin diagrams, separated
into two columns according to the two cases described in the Theorem above.

5.3. Remark. We note briefly the relationship of the above defined order
with Lie theory. The semisimple Lie algebras (over C) are up to isomorphism
determined by the Dynkin types, and for each Dynkin type ∆, denote by
g(∆) some fixed representative. We recall that g(∆) is graded by Φ ∪ {0},
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where Φ is a root system. Now, Γ ≤ ∆ precisely when there is a injective
homomorphism of graded Lie algebras f : g(Γ) → g(∆), in the sense that
f(g(Γ)r) ⊆ g(∆)f̂(r) for some linear map f̂ .
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