
TUBULAR CLUSTER ALGEBRAS II: EXPONENTIAL

GROWTH

M. BAROT, CH. GEISS, AND G. JASSO

Abstract. Among the mutation finite cluster algebras the tubular ones
are a particularly interesting class. We show that all tubular (simply
laced) cluster algebras are of exponential growth by two different meth-
ods: first by studying the automorphism group of the corresponding
cluster category and second by giving explicit sequences of mutations.

1. Introduction

Tubular cluster algebras where introduced in [2] as a proper family of cluster
algebras, due to their categorification by tubular cluster categories. These
cluster algebras represent three of the 11 exceptional mutation finite cluster
algebras with skew symmetric exchange matrix [8] and one is the surface
algebra corresponding to the 4-punctured sphere. Figure 1 shows represen-
tatives of their exchange matrices in quiver form.
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Figure 1. Quivers associated to some elliptic root systems

We refer to [2] for more details and context on tubular cluster algebras.

The tubular cluster algebra of type (2, 2, 2, 2) coincides with the surface al-
gebra of the 4-punctured sphere. From a mapping class group argument [14,
Sec. 11] it follows that this algebra is of exponential growth. In other words,
the number of seeds which can be obtained from a fixed initial seed by at
most n mutations is bounded from below by an exponentially growing func-
tion of n. Due to the similarity in their categorification one expects this to
be true also in the remaining three cases which are not related to surfaces.

Theorem 1.1. Tubular cluster algebras are of exponential growth.
1
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We present in this paper two quite different proofs of this result. We think
that both proofs are interesting by themselves as they yield two different
approaches to this phenomenon.

The first proof, given in Section 3, is based on the result [3, Prop. 7.4]
which states that the group of (isomorphism classes of) triangulated self-
equivalences of a tubular cluster category contains the group PSL2(Z). We
show that this descends to an inclusion of PSL2(Z) into the corresponding
cluster modular group. This is, in some sense, an extension of the above
argument which uses the mapping class group.

The second proof, given in Section 4, provides in each of the four cases
explicit mutation sequences which directly exhibit the exponential growth.
This argument is based on a careful analysis of the lift of mutations (of
cluster tilting objects in the tubular cluster category) to Hübner-mutations
(of tilting objects in the corresponding category of coherent sheaves over a
weighted projective line). Another important ingredient in this approach is
the close connection between the exchange graph of Farey triples (a 3-regular
tree) and the classification of tilting sheaves over a weighted projective line
of tubular type.

We would like to mention that Felikson, Shapiro and Tumarkin recently
completed their above mentioned classification of mutation finite cluster al-
gebras by covering also the skew symmetrizable cases [9]. Moreover, they
determine in [10] (for the orbifold cases) and in [11] (with H. Thomas for the
remaining exceptional cases) the growth rate for all mutation finite cluster
algebras. In particular, [11] provides an independent proof for the exponen-
tial growth of all tubular cluster algebras which is based on a direct study of
the corresponding cluster modular groups. This includes also the non-simply
laced cases.

Acknowledgments. The second proof is essentially a part of the third
author’s master thesis [18]. This research was partially supported by the
grants PAPIIT No. IN117010-2 and CONACYT No. 81948.

2. Preliminaries

2.1. Exponential growth of graphs. In our setting a graph G = (G0, G1)
consists of a vertex set G0 and a edge set G1 which is a subset of the set of
two-element subsets of G0. A path in G of length n is a sequence of vertices
(v0, v1, . . . , vn) such that {vk−1, vk} ∈ G1 for all k ∈ {1, . . . , n}. For a vertex
v ∈ G0 we denote by v[n] ⊂ G0 the set of vertices which are connected to
v by a path of length less than n. Finally, we say that G is of exponential
growth if for some v ∈ G0 we can find a function f of exponential growth
such that #(v[n]) ≥ f(n) for all n ∈ N.

For example, we have #(v[n]) = 3(2n − 1) for each vertex v of the 3-regular
tree T3. Thus T3 is of exponential growth.
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Let k ∈ N≥1 and G,H be two graphs. By a k-embedding of G into H we
mean an injective map i : G0 → H0 such that for each edge {v, w} ∈ G1 there
exists a path in H of length at most k, connecting i(v) and i(w). Obviously,
H is of exponential growth if for some k, there exists a k-embedding of T3

into H.

2.2. Beginning of the proof. By the main result of [2], for a tubular clus-
ter algebra the exchange graph of seeds is isomorphic to the exchange graph
G of cluster tilting objects (in the corresponding tubular cluster category).
Thus, by the considerations in Section 2.1, it is sufficient to construct a
k-embedding of a tree T of exponential growth into the exchange graph G.
This will be done in the next two sections by different methods. In the first
proof T is a rooted binary tree and in the second proof it is T3.

3. Cluster modular group and self equivalences

3.1. Generalities. Let C be a 2-Calabi-Yau triangulated category, see [20],
with split idempotents over some field. We denote the suspension functor
of C by Σ. We suppose that in C there exists a cluster tilting object T
such that there is a cluster structure in the sense of [6] on the cluster tilting
objects reachable from T . Without further mentioning all cluster tilting
objects will be assumed to be basic. We fix a cluster tilting object with its
decomposition into indecomposable direct summands T = T1⊕· · ·⊕Tn ∈ C.

Following Keller [21, Sec. 5.5], we consider the groupoid Clt of cluster tilting
sequences in C reachable from T . Its objects are the sequences ([T ′

1], . . . , [T
′
n])

of isomorphism classes of indecomposable objects such that T ′ = ⊕n
k=1T

′
k

is a cluster tilting object in C reachable from T . Note that this implies
that the summands T ′

i are rigid, i.e. C(T ′
i ,ΣT

′
i ) = 0. Morphisms are formal

compositions of (per-)mutations of cluster tilting objects, subject only to
the obvious relations: µ2

k = Id and σµk = µσ(k)σ for k ∈ {1, . . . , n} and each
permutation σ ∈ Sn. For convenience we abbreviate ([T ′

1], . . . , [T
′
n]) =: [T ′].

We say that a triangulated self-equivalence F of C is reachable if we have
([FT1], . . . , [FTn]) ∈ Clt. In this case it is not hard to see that F induces
a self-equivalence F of Clt which we call induced. For a sequence of indices
i = (is, . . . , i2, i1) with ia ∈ {1, . . . , n} we define µi = µis · · ·µi1 . For a
permutation σ ∈ Sn we set σ(i) = (σ(is), . . . , σ(i1)).

Proposition 3.1. Let F and G be two reachable self-equivalences of C,

(a) F = G if and only if ([FT1], . . . , [FTn]) = ([GT1], . . . , [GTn]).
(b) Suppose that for two sequences of indices i and j and permuta-

tions σ, τ ∈ Sn we have F ([T ]) = σµi([T1], . . . , [Tn]) and G([T ]) =
τµj([T1], . . . , [Tn]) in Clt. Then F ◦G([T ]) = τσµσ−1(j)µi([T ]).

Proof. (a) Recall that for each X ∈ C there exists a distinguished triangle
T ′′
X → T ′

X → X → ΣT ′′
X with T ′

X , T ′′
X ∈ add(T ). The index indT (X)
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of X with respect to T is [T ′
X ] − [T ′′

X ] in the split Grothendieck group of
add(T ). In [7, Sec. 2] it is shown that in case X is rigid, X is determined
up to isomorphism by its index indT (X). Moreover, each triangulated self-
equivalence of C sends cluster tilting objects to cluster tilting objects. Thus
our claim follows since the cluster tilting objects reachable from T have by
hypothesis a cluster structure.

(b) Since F is a self-equivalence of Clt we have

F (G([T ])) = F (τµj([T ])) = τµj(F ([T ])) = τµjσµi([T ]) = τσµσ−1(j)µi([T ]).

�

By the above proposition, the induced self-equivalences of Clt form a group,
which we call the refined cluster modular group Autι(Clt).

Remark 3.2. The group Autι(Clt) seems to be related to the cluster modular
group defined by Fock and Goncharov [13, 1.2.5], see also [12, p.28]. Note
that the endomorphism ring of a cluster tilting object in C is in general not
determined by its quiver. For example, this occurs for the tubular cluster
category of weight type (2, 2, 2, 2), see [5, Expl. 6.12]. This category can
be used to categorify the cluster algebra associated to the sphere with four
punctures [2, Rem. 1.2].

Corollary 3.3. (a) We have an injective map

Autι(Clt) → {([T ′
1, ], . . . , [T

′
n]) ∈ Clt | [T ′] ≡ [T ]}, F 7→ F ([T ]),

where [T ′] ≡ [T ] means that the assignment Ti 7→ T ′
i for i = 1, . . . , n

induces an equivalence of categories between add(T ) and add(T ′).
(b) Suppose, that Autι(Clt) contains a free (non-abelian) subgroup in two

generators. Then there is a k-embedding of the (rooted) binary tree
into the exchange graph of cluster tilting objects.

Proof. Part (a) follows immediately from Proposition 3.1 (a) whereas part
(b) follows from part (a) and Proposition 3.1 (b). �

Remark 3.4. It follows from [22], that in case C is the generalized cluster
category associated to a non-degenerate, Jacobi-finite quiver with potential,
the above map is also surjective.

3.2. The tubular case. Let C be a tubular cluster category. Thus C is
the orbit category of D := Db(cohX) modulo the self equivalence τ−1[1],
for a weighted projective line X of tubular type. Here we denoted by τ
the Auslander-Reiten automorphism and by [1] the shift automorphism of
D. The canonical projection π : D → C is a triangle functor. In this sit-
uation, C fulfills all the requirements of Section 3.1. Moreover, all cluster
tilting sequences are reachable from any given cluster tilting object, see [3,
Thm. 8.8].
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It is shown in [3, Lemma 6.6] that all triangulated self-equivalences of D
are standard. Thus the isomorphism classes of such self-equivalences form
a group which can be identified with the derived Picard group Auts(D)
of the corresponding canonical algebra [26]. Furthermore, it is shown in [3,
Corollary 6.5] that each triangulated self-equivalence of C can be lifted along
π to a triangulated self-equivalence of D. In particular, the isomorphism
classes of triangulated self-equivalences Aut(C) of C form a factor group of
Auts(D).

Proposition 3.5. For a tubular cluster category C the map

Aut(C) → Autι(Clt), F 7→ F

is an isomorphism of groups.

Proof. By the above observations and the definition, the map F 7→ F is a
well-defined, surjective group homomorphism.

Let F ∈ Aut(C) be such that F = IdClt. As explained above, there

exists a standard self-equivalence F̃ of D which lifts F along π. Let
M = M1 ⊕ · · · ⊕ Mn be a tilting complex such that π(Mi) = Ti for
i = 1, . . . , n. Since X is tubular, we may assume that E := EndD(M) is
schurian, i.e. dimD(Mi,Mj) ≤ 1 for all 1 ≤ i, j ≤ n. By our hypothesis we

may also assume that F̃ (Mi) ∼= Mi for all i = 1, . . . , n. Since F̃ is standard,
it is determined by an element ω ∈ Out(E) (the group of outer automor-
phisms of E) that fixes the standard primitive idempotents of E, see [26,

Prop. 2.3]. Since E is schurian it follows that ω is the identity. Thus F̃ and
F are isomorphic to the respective identities. �

3.3. First proof of Theorem 1.1. By Section 2.2 and Corollary 3.3 (b)
it is sufficient to show that in the tubular case Autι(Clt) contains a free
subgroup in two generators. In fact, by Proposition 3.5 we have Autι(Clt) ∼=
Aut(C) and in [3, Prop. 7.4] it is shown, that Aut(C) is a semidirect product
of a finite group by PSL2(Z), see also [23, Thm. 6.3]. �

4. Explicit verification using Farey triples

4.1. Hübner mutations. In his Ph.D. thesis [17], Hübner investigated tilt-
ing objects in the category cohX of coherent sheaves over a weighted pro-
jective line X. In this section, we collect the results from [17] which are
relevant in our context.

Let T =
⊕n

i=1 Ti be a tilting sheaf in cohX. Let QT be the quiver of the
endomorphism algebra of T . For simplicity, we shall identify the vertices of
Q with the summands T1, . . . , Tn. For each index i = 1, . . . , n we define the
morphism

σi =
[
σi1 · · · σin

]
:

n⊕

h=1

T rih
h → Ti
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where the entries of σih =
[
σ
(1)
ih · · · σ

(rih)
ih

]
constitute a set of morphisms

σ
(a)
ih : Th → Ti which are mapped to a basis under the canonical projection

rad(Th, Ti) → rad(Th, Ti)/ rad
2(Th, Ti).

Note that rih is the number of arrows h → i in QT . Similarly we define a
morphism

ρi =



ρi1
...

ρin


 : Ti →

n⊕

h=1

T rhi
h ,

where ρih = σ⊤
ih.

Proposition 4.1. [17, Prop. 2.6, 2.8] With the previous notation, we have
the following results.

(a) For each index i the morphism σi (resp. ρi) is either a monomor-
phism or an epimorphism in cohX.

(b) For each index i the morphism σi is mono (resp. epi) if and only if
ρi is a mono (resp. epi).

(c) Let T ∗
k = Kerσk ⊕ Coker ρk. Then T ∗

k ⊕
⊕

j 6=k Tj is again a tilting
object in cohX.

In view of Proposition 4.1(b), exactly one of Kerσk and Coker ρk is non-zero.
This allows us to separate the vertices of QT into two classes: Tk is called a
Hübner-source (resp. a Hübner-sink) in case σk and ρk are mono (resp. epi).

Remark 4.2. The following warning seems in place, see also [17, Bem. 3.3]:
it is possible to have two tilting sheaves T =

⊕n
i=1 Ti and T ′ =

⊕n
i=1 T

′
i with

isomorphic quivers QT and QT ′ , such that some vertex Ti is a Hübner-source
of Qi whereas its corresponding vertex T ′

i is a Hübner-sink of QT ′ .

Definition 4.3. Let T =
⊕n

i=1 Ti be a tilting sheaf in cohX. Then for each
index k ∈ {1, . . . , n} we define the mutation of T in direction k to be the
tilting sheaf

µk(T ) = T ∗
k ⊕

⊕

j 6=k

Tj ,

where T ∗
k = Kerσk ⊕ Coker ρk.

Remark 4.4. In [17] the tilting sheaf µk(T ) is called reflection at the source
or sink due to the similarity with the Bernstein-Gelfand-Ponomarev reflec-
tions [4]. However, given the role they play as lifts of mutations in the
context of cluster algebras we prefer this new terminology.

In view of Remark 4.2, conditions which characterize Hübner-sinks and
Hübner-sources are important.
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Proposition 4.5. [17, Bem. 2.10, Kor. 3.5] A sink (resp. source) of a quiver
is always a Hübner-sink (resp. Hübner-source). A successor of a Hübner-
sink is again a Hübner-sink and a predecessor of a Hübner-source is again
a Hübner-source. Furthermore if the endomorphism algebra is given by its
quiver and some relations, then any relation starts in a Hübner-source and
ends in a Hübner-sink.

The preceding conditions are not sufficient to decide always whether a given
vertex is a Hübner-source or a Hübner-sink. To give a sufficient characteri-
zation we need some notions.

We recall that we denote by D = Db(cohX) the bounded derived category
of cohX. Recall from [16] that there are two Z-linear forms, rk and deg on
K0(cohX) = K0(D

b(cohX)), called the rank and degree. Furthermore the

slope is defined as S = deg
rk . Note that each tilting sheaf T in cohX gives

rise to a triangulated equivalence between the bounded derived categories
Db(cohX) and Db(modA) where A = End(T ). Since such an equivalence
induces an isomorphism between the corresponding Grothendieck groups,
we can evaluate rank and degree on (classes of) A-modules.

Proposition 4.6. [17, Bem. 3.3] Let T =
⊕n

i=1 Ti be a tilting sheaf in
cohX. Further denote by Si the simple right End(T )-module associated to
Ti. Then Ti is a Hübner-source if and only if rk(Si) > 0 or rk(Si) = 0 and
deg(Si) > 0.

Example 4.7. Let (p1, p2, . . . , pt) be the weight sequence of X and p =
lcm(p1, p2, . . . , pt). The canonical configuration Tcan, see [16], is a tilting
sheaf whose endomorphism algebra is a canonical algebra in the sense of
Ringel [25, Sec. 3.7]. The following picture shows its quiver. There are t− 2
relations from the unique source to the unique sink of the quiver.

✲

✲

✲

✲

✲

✲

�
�
��✒

✘✘✘✿

❅
❅
❅❅❘

❅
❅
❅❅❘❳❳❳③

�
�
��✒

0

p
p1

p
p2

p
pt

2p
p1

2p
p2

2p
pt

(p1−1)p
p1

(p2−1)p
p2

(pt−1)p
pt

...
...

...

p

The indecomposable direct summands of Tcan have rank 1 and degree j p
pi

as shown in the picture above.

The next result, though interesting in its own, permits to calculate the rank
in concrete examples.

Proposition 4.8. [17, Thm. 4.6] For each tilting sheaf T the rank function
is an additive function on the quiver QT with relations. More precisely, if
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T =
⊕n

i=1 Ti then for each indecomposable direct summand Ti we have

2 rk(Ti) =
∑

j ✲ i

rk(Tj) +
∑

i ✲ j

rk(Tj)−
∑

j ✲ i

rk(Tj)−
∑

i ✲ j

rk(Tj),

where the summation has to be taken over all arrows and relations ending
in i.

The thesis of Hübner [17] contains also a precise description of the effect
on the endomorphism algebra of tilting sheaves under mutation, in terms of
arrows and relations. Let T =

⊕n
i=1 Ti be a tilting sheaf for cohX and let

µk(T ) =
⊕

i 6=k Ti ⊕ T ′
k be the mutation in direction k. We state here only

the version for the Hübner-source — the one for a Hübner-sink is completely
dual and therefore left to the interested reader.

Proposition 4.9. [17, Kor. 4.16] If Ti is a Hübner-source, then the quiver
with relations Q′ for µk(T ) is obtained from Q as follows.

(i) The quiver Q′ has the same vertices as Q.
(ii) For each pair of arrows i ✲ k ✲ j an arrow i ✲ j is added.
(iii) For each pair of an arrow k ✲ i and a relation k ✲ j a relation

i ✲ j is added.
(iv) Each arrow i ✲ k is replaced by a relation i ✲ k.
(v) Each arrow k ✲ i is replaced by an arrow i ✲ k.
(vi) Each relation k ✲ i is replaced by an arrow k ✲ i.
(vii) Pairs of parallel relations and arrows are successively canceled.
(viii) All remaining arrows and relations remain unchanged.

Remark 4.10. If each relation i ✲ j is replaced by an arrow j ✲ i then
the corresponding mutation rule is precisely the mutation of diagrams as
formulated in [15]. Further we note that this definition is compatible with
the mutation of Z2-graded quivers, introduced by Amiot and Oppermann
in [1, Def. 6.2].

Example 4.11. We consider the weight sequence (2, 2, 2, 2). Let Tcan be the
canonical configuration, see Example 4.7. We label the vertices of the quiver
of End(Tcan) by 1, 2, . . . , 6 such that 1 is the source and 6 is the sink. We

consider the mutation sequence µ6µ3µ2, and indicate the slope deg(Ti)
rk(Ti)

in the

quivers:

0
1

1
1

1
1

1
1

1
1

2
1

✟✯
❍❥

✡✡✣

❏❏❫

❍❥
✟✯

❏❏❫

✡✡✣

✲µ2 0
1

1
1

1
1

1
1 2

1

1
0✟✯✟✯

❍❥
❏❏❫

❍❥
✟✯

✡✡✣

✲µ3 0
1 1

1

1
1 2

1 1
0

1
0✟✯

❍❥
✟✯
❍❥

❍❥
✟✯

✲µ6

0
1

0
1

1
1

1
1

1
0

1
0

❅❅❘��✒✲

✲
❅❅❘��✒✲

✲

4.2. Farey triples. We resume some basic properties of Farey triples, see
also [24, Sec. 2]. First, we extend Q to Q∞ = Q ∪ {∞} and observe that
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each element q ∈ Q defines uniquely two integers d(q) and r(q) which are
relatively prime and such that

q =
d(q)

r(q)
, r(q) > 0.

Furthermore, we define d(∞) = 1 and r(∞) = 0.

Definition 4.12. For a pair p, q ∈ Q∞ the Farey distance is defined as

∆(p, q) = |d(p)r(q)− d(q)r(p)| .

If ∆(p, q) = 1, then p, q are called Farey neighbours. A triple {q1, q2, q3} of
elements of Q∞ which are pairwise Farey neighbours is called a Farey triple.

Given p, q ∈ Q∞ the Farey sum ⊕ and Farey difference ⊖ are defined by

p⊕ q =
d(p) + d(q)

r(p) + r(q)
, p⊖ q =

d(p)− d(q)

r(p)− r(q)
.

If q = {p, q, r} is a Farey triple then the mutation µp(q) in direction p is
defined by

µp(q) =

{
{q ⊖ r, q, r}, if q < p < r or r < p < q,

{q ⊕ r, q, r}, if p < min(q, r) or p > max(q, r).

Lemma 4.13. To any two Farey neighbours there exist exactly two Farey
triples containing them. If q is a Farey triple then µp(q) is again a Farey
triple for any p ∈ q. Moreover, the mutation of Farey triples is involutive,
in the sense that µp′µp(q) = q if q = {p, q, r} and µp(q) = {p′, q, r}.

Proof. Let p = a
b
and q = c

d
be Farey neighbours. We may assume that

p > q, that is ad − bc = 1. Now suppose that {a
b
, c
d
, e
f
} is a Farey triple.

Then

af − be = ε ∈ {1,−1}(1)

cf − de = ϕ ∈ {1,−1}(2)

By multiplying (2) by a and using (1) we get e = εa− ϕc. Similarly we get
f = εb− ϕd.

Therefore, the four possible choices for the signs ε, ϕ ∈ {1,−1} lead to
precisely two possible solutions for e

f
. This proves the first statement and

the rest of the proof of the following result is straightforward and left to the
interested reader. �

Remark 4.14. Similarly as in [2] we define the complexity c(q) of q ∈ Q∞ to
be |d(q)|+ r(q) + |d(q)− r(q)|. It follows easily that {1, 0,∞} is the unique
Farey-triple of minimal sum of the complexities, and that each other Farey
triple can be mutated in a unique direction so that its sum of complexities
decreases. Consequently, the exchange graph of the Farey triples form a
3-regular tree under mutations.
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Lemma 4.15. If {p, q, r} is a Farey triple with p < q < r then

2q ⊖ p = q ⊕ r, 2q ⊖ r = q ⊕ p, 2p⊖ q = 2r ⊖ q = p⊖ r,

where 2a
b
⊖ c

d
= 2a−c

2b−d
.

Proof. Write p = a
b
, q = c

d
and r = e

f
. The statements follow easily by

applying the equations cb− ad = 1, eb− af = 1 and ed− cf = 1. �

4.3. Tilting sheaves realizing a Farey triple. Given a tilting sheaf T =⊕n
i=1 Ti we define its slope set to be S(T ) = {S(Ti) | i = 1, . . . , n}. We say

that a tilting sheaf T realizes a Farey triple q if S(T ) = q. In Example 4.11
we have given a tilting sheaf realizing the Farey triple {0, 1,∞} for the
weight sequence (2, 2, 2, 2). We now consider the remaining weight sequences
(3, 3, 3), (4, 4, 2) and (6, 3, 2). In each case we indicate how a tilting sheaf
T realizing the Farey triple {0, 1,∞} may be obtained from the canonical
configuration Tcan by a sequence of mutations. For this, we label the vertices
of the quiver of End(Tcan) by 1, . . . , n in such a way that 1 is the source, n
is the sink, and the remaining vertices are labeled 2, . . . , n − 1 from left to
right and top to bottom in the picture of the quiver given in Example 4.7.

For the (tubular) weight sequence (3, 3, 3) we use the sequence 7, 5, 3, 8, 1
of mutations (i.e. the composition of mutations µ1µ8µ3µ5µ7) to obtain from
Tcan a tilting sheaf T realizing {0, 1,∞}. The quiver of End(T ) is isomorphic
to the first quiver in Figure 2. The following table contains the information
about degree and rank of the indecomposable direct summands of T .

i

deg(Ti)
rk(Ti)

u1 u2 u3

1
1

1
1

1
1

v1 v2

0
1

0
2

w1 w2 w3

1
0

1
0

1
0

v2

u1

w3

u2

w2

u3

w1

v1

✻

◗◗s
◗◗s

✑✑✰
✑✑✰

✑✑✰ ◗◗s

✻✻ ✲

u1 v3 w1

u2 w2

v2w3 u3

v1

✡
✡✢

❏
❏❫

❏
❏❫✡

✡✣

✡
✡✣ ❏

❏❫

✛ ✛
✻

v3

u3

w2

u1

v2

w1 w4

u2

v1

w3

❄ ❄

❄✑✑✸

✑✑✸

◗◗❦

◗◗❦

◗◗❦✑✑✸

✛ ✲

Figure 2. Examples of quivers of End(T ) for T realizing
a Farey triple. The weight sequences from left to right are
(3, 3, 3), (4, 4, 2) and (6, 3, 2).

For the (tubular) weight sequence (4, 4, 2) we use the mutation sequence
3, 6, 9, 4, 7, 9, 7, 8, 1, 3 to obtain from Tcan a tilting sheaf T realizing {0, 1,∞}.
The quiver of End(T ) is isomorphic to the second quiver in Figure 2. The
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following table contains the information about degree and rank of the inde-
composable direct summands of T .

i

deg(Ti)
rk(Ti)

u1 u2 u3

0
1

0
1

0
2

v1 v2 v3

1
1

1
1

2
2

w1 w2 w3

1
0

1
0

2
0

For the (tubular) weight sequence (6, 3, 2) we use the mutation sequence
5, 10, 8, 6, 10, 3, 4, 8, 9, 7, 2, 4, 6, 5 to obtain from Tcan a tilting sheaf T real-
izing {0, 1,∞}. The quiver of End(T ) is isomorphic to the third quiver in
Figure 2. The following table contains the information about degree and
rank of the indecomposable direct summands of T .

i

deg(Ti)
rk(Ti)

u1 u2 u3

0
1

0
1

0
2

v1 v2 v3 v4

1
1

1
1

2
2

2
2

w1 w2 w3

1
0

1
0

2
0

4.4. Explicit mutation sequences. For each of the tubular weight se-
quences (2, 2, 2, 2), (3, 3, 3), (4, 4, 2) and (6, 3, 2) we give explicit mutation
sequences which transform a given tilting sheaf realizing a Farey triple into
another one realizing a mutated Farey triple.

We start by considering the case where the weight sequence of X is (2, 2, 2, 2).
Let T2,2,2,2 be the set of (isomorphism classes of) tilting sheaves

T =
⊕

i∈I

Ti with I = {u1, u2, v1, v2, w1, w2},

such that

• S(Tx1
) = S(Tx2

) for all x ∈ {u, v, w},
• S(T ) is a Farey triple,
• the quiver Q with relations of End(T ) looks as follows:

u1

u2

v1

v2

w1

w2

�
�
�✒

�
�
�✒

✲ ✲

❅
❅
❅❘

❅
❅
❅❘

✲ ✲

Note that T2,2,2,2 is not empty as shown in Section 4.3. Define the mutation
sequences µu = µu1

µu2
, µv = µv1µv2 and µw = µw1

µw2
.

Proposition 4.16. Let X be a weighted projective line with weight sequence
(2, 2, 2, 2). Then for any T ∈ T2,2,2,2 and x ∈ {u, v, w} we have that µx(T ) ∈

T and S(µx(T )) = µqx(S(T )), where qx = S(Tx1
).

Proof. Let S(T ) = {qu, qv, qw} with qu < qv < qw. Since S(Tui
) < S(Tvi) <

S(Twi
) for each i = 1, 2 it follows that S(Tui

) = qu, S(Tvi) = qv and S(Twi
) =

qw for i = 1, 2.
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If x = u (resp. x = w) then the mutation takes place in two Hübner-sources
(resp. Hübner-sinks). It follows from Proposition 4.8 and the symmetry
of the quiver that rk(Tu1

) = rk(Tu2
) and similarly rk(Tv1) = rk(Tv2) and

rk(Tw1
) = rk(Tw2

). Therefore the corresponding equalities hold also for the
degree. We denote ru = rk(Tui

), df = rk(Tui
) and similarly define rv, dv,

rw and dw.

Now assume that x = u. By mutation in u2 we obtain the following quiver.

u1 u2

v1

v2

w1

w2

✑✑✸ ✑✑✸◗◗s

◗◗s ◗◗s✑✑✸

Thus by Proposition 4.5 the vertex Tu1
is a Hübner source of the quiver

of µu2
(T ). Hence the quiver of µu(T ) is isomorphic to Q. Using that the

rank and the degree are additive on exact sequences we get easily that
rk(T ′

ui
) = 2rv − ru and deg(T ′

ui
) = 2dv − du for i = 1, 2, where T ′

u1
, and T ′

u2

denote the two summands of µu(T ) which are obtained instead of Tu1
and

Tu2
by mutation. Using Lemma 4.15 we get

S(T ′
ui
) =

2dv − du
2rv − ru

=
dv + dw
rv + rw

= qv ⊕ qw.

This shows that S(µf (T )) = µqu(S(T )) and hence the result in case x = u.

The case where x = w is completely similar and the case x = v is also similar
with the unique difference that it is possible for the vertices Tv1 , Tv2 to be
a Hübner-source or a Hübner-sink (both of the same kind). �

We now focus on the case where the weight sequence is (3, 3, 3). Here we
look at three possible quivers with relations.

Qu:

v2

u1

w3

u2

w2

u3

w1

v1

✻

◗◗s

◗◗s

✑✑✰

✑✑✰

✑✑✰ ◗◗s

✻✻ ✲

Qv:

v2

u1

w3

u2

w2

u3

w1

v1

✻

◗◗s

◗◗s

✑✑✰

✑✑✰

✑✑✰ ◗◗s

✻✻ ✲

Qw:

v2

u1

w3

u2

w2

u3

w1

v1

✻

✻

◗◗s ✑✑✰

◗◗s✑✑✰
✲

Figure 3. Quivers with relations for the weight sequence (3, 3, 3).

Let T(3,3,3) be the set of (isomorphism classes of) tilting sheaves

T = ⊕i∈ITi with I = {u1, u2, u3, v1, v2, w1, w2, w3},

such that

• the rank and degree of the indecomposable summands of T are re-
lated as shown in the following table:
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i

deg(Ti)
rk(Ti)

u1 u2 u3

a
b

a
b

a
b

v1 v2

c
d

2c
2d

w1 w2 w3

e
f

e
f

e
f

• S(T ) = {a
b
, c
d
, e
f
} is a Farey triple,

• the quiver with relations of End(T ) is one of the three quivers of
Figure 3.

Note that T3,3,3 is not empty by the construction in Section 4.3.

We define the mutation sequences

µu = µu3
µu2

µu1
,

µv = µu3
µv2µv1µu2

µw3
µu1

µv2 ,

µw = µw1
µw2

µw3
.

Proposition 4.17. Let X be a weighted projective line with weight sequence
(3, 3, 3). Then for any T ∈ T(3,3,3) and x ∈ {u, v, w} we have µx(T ) ∈ T(3,3,3)
and S(µx(T )) = µqx(S(T )), where qx = S(Tx1

).

Proof. Let T ∈ T(3,3,3) and denote T ′ = µx(T ). We start with the case x = u.
Let us first assume that the quiver of End(T ) is Qc. Then c

d
< a

b
< e

f
and

therefore a
b
= c

d
⊕ e

f
. Using Proposition 4.8 we get that b = d+ f and then

a = c + e. We will distinguish whether Tu1
is a Hübner-source or Hübner-

sink using Proposition 4.6 and observe that if b = 2d then it follows that
a > 2c. Hence we get the two cases:

(a) Tfi is a Hübner-source, which is equivalent to b ≥ 2d, or
(b) Tfi is a Hübner-sink, which is equivalent to b < 2d.

In case (a), the effect of the mutation sequence µu on the quiver of End(T )
is as depicted in the next illustration. We observe that by Proposition 4.6
also Tu2

is a Hübner-source in µu1
(T ) and similarly Tu3

is a Hübner-source
of µu2

µu1
(T ).

µu1
(T ):

v2

u1

w3

u2

w2

u3

w1

v1

◗◗s ✑✑✰

✑✑✸ ◗◗❦

✑✑✰ ◗◗s
✻✻ ✲

µu2
µu1

(T ):

v2

u1

w3

u2

w2

u3

w1

v1

◗◗❦ ✑✑✰

✑✑✸ ◗◗❦

◗◗❦

◗◗s
✻

❄
✲

µu3
µu2

µu1
(T ):

v2

u1

w3

u2

w2

u3

w1

v1

◗◗❦ ✑✑✸

✑✑✸ ◗◗❦

◗◗❦ ✑✑✸

❄❄

❄

✲

The new summands T ′
ui

are obtained as cokernels:

Tui
→ Twj

⊕ Twh
→ T ′

ui
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where j, h are such that {h, i, j} = {1, 2, 3}. Consequently, for each i = 1, 2, 3
the rank and the degree of T ′

ui
equals 2f − b = f − d and 2e − a = e − c

respectively. Hence µ(T ′
ui
) = e

f
⊖ c

d
. This shows that S(µu(T )) = µa

b
(S(T )).

In case (b) we obtain the following sequence where we now observe that Tu2

is a Hübner-sink of µu1
(T ) and Tu3

is a Hübner-sink of µu2
µu1

(T ).

µu1
(T ):

v2

u1

w3

u2

w2

u3

w1

v1
❄

✑✑✰◗◗s

✑✑✰ ◗◗s
✻✻ ✲

µf2µf1(T ):

v2

u1

w3

u2

w2

u3

w1

v1
❄

✑✑✰

✑✑✸ ◗◗s

◗◗❦ ✻✲

µf3µf2µf1(T ):

v2

u1

w3

u2

w2

u3

w1

v1
❄

❄
◗◗❦✑✑✸

✑✑✸◗◗❦ ✲

For each i = 1, 2, 3 the rank and the degree of T ′
ui

equal 2d− b = d− f and

2c − a = c − e respectively. Hence µ(T ′
ui
) = c

d
⊖ e

f
and again S(µu(T )) =

µa
b
(S(T )) follows.

Still having x = u we now look at the case where End(T ) has as quiver Qu

(resp. Qw). Then it is easily observed that µu yields the inverse process
as in case (a) (resp. in case (b)) above. This concludes the assertion if
x = u. The case x = w is handled completely similar. We now assume that
x = v. Since the arguments are the same as used for x = u except that the
mutation sequence is substantially longer we will use certain abbreviations.

We start considering first the case where End(T ) has quiver Qw. Then
e
f
< c

d
< a

b
and therefore we conclude as before that c = a+e and d = b+f .

We shall distinguish the following three cases:

(a) f ≤ b, (b) 1
2f ≤ b < f, (c) 1

2f < b.

In case (a) the summand Tv2 is a Hübner-source and Tu1
a Hübner source

of µv2(T ). The first two steps in the mutation sequence look as follows.
We have indicated the rank of each summand as superscript. The degree is
obtained by replacing b by a and f by e.

µv2(T ):

w
f
2

w
f
1

w
f
3

v
b+f
1

ub
2

ub
1

ub
3

v
2b−f
2

❅
❅❘

❅
❅❘

�
�✒

�
�✒

✏✏✶ ✏✏✶

✲

✲

✲

✲

µu1
µv2(T ):

w
f
2

w
f
1

w
f
3

v
b+f
1

ub
2

u
b−f
1

ub
3

v
2b−f
2

❅
❅❘

❅
❅❘

�
�✒

�
�✒

✏✏✶ PPq

✲

✲

✲
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Now Tw3
is a Hübner-source of µu1

µv2(T ) since a relation starts in w3. The
resulting quiver after mutation is shown in the next illustration on the left.
Then Tu2

is a Hübner-source of µw3
µu1

µv2(T ) since f ≥ b.

µw3
µu1

µv2(T ):

w
f
2

w
f
1

w2b
3

v
b+f
1

ub
2

u
b−f
1

ub
3

v
2b−f
2

❅
❅❘

❅
❅❘

✟✟✯ ❍❍❥

✲

✻

✲ ✲

µu2
µw3

µu1
µv2(T ):

w
f
2

w
f
1

w2b
3

v
b+f
1

u
b−f
2

u
b−f
1

ub
3

v
2b−f
2

❅
❅❘

✟✟✯ ❍❍❥

�
�✒

✻

✲ ✲

Proceeding further this way, we see that Tv1 is a Hübner-source of
µu2

µw3
µu1

µv2(T ), again since b ≥ f . The resulting quiver after mutation is
shown below on the left. Then Tv2 is a Hübner-sink of µv1µu2

µw3
µu1

µv2(T )
since 2f − b − 2f = −b < 0 since b = 0 is not possible (b = 0 would imply
f = 0 and then a

b
= e

f
= ∞).

µv1µu2
µw3

µu1
µv2(T ):

w
f
2

w
f
1

w2b
3

v
b−f
1

u
b−f
2

u
b−f
1

ub
3

v
2b−f
2

❅
❅❘

✟✟✯ ❍❍❥

�
�✒

✻

✛ ✲

µv2µv1µu2
µw3

µu1
µv2(T ):

w
f
2

w
f
1

w2b
3

v
b−f
1

u
b−f
2

u
b−f
1

ub
3

v
f
2

❅
❅❘

✟✟✯ ❍❍❥

�
�✒

✻

✛ ✛

The final step just changes the direction of the arrow u3 ✲ w3 but not the
slope. We therefore see that in case (a) we have µv(T ) ∈ T and S(µv(T )) =
µ c

d
(S(T )).

We now consider case (b), where we can copy the first step and start with
µv2(T ) already calculated as in case (a) since again Tv2 is a Hübner-source
of T . Now Tu1

is a Hübner-sink of µv2(T ).

µv2(T ):

w
f
2

w
f
1

w
f
3

v
b+f
1

ub
2

ub
1

ub
3

v
2b−f
2

❅
❅❘

❅
❅❘

�
�✒

�
�✒

✏✏✶ ✏✏✶

✲

✲

✲

✲

µu1
µv2(T ):

w
f
2

w
f
1

w
f
3

v
b+f
1

ub
2

u
f−b
1

ub
3

v
2b−f
2

❅
❅❘

❅
❅❘

�
�✒

�
�✒

✏✏✶
✏✏✶

✲

✲

✲

Clearly Tw3
is a Hübner-source of µu1

µv2(T ) and then Tu2
is a Hübner-sink

of µw3
µu1

µv2(T ) since b < f .
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µw3
µu1

µv2(T ):

w
f
2

w
f
1

w2b
3

v
b+f
1

ub
2

u
f−b
1

ub
3

v
2b−f
2

❅
❅❘

❅
❅❘

✟✟✯

✟✟✯

✲

✻

✲ ✲

µu2
µw3

µu1
µv2(T ):

w
f
2

w
f
1

w2b
3

v
b+f
1

u
f−b
2

u
f−b
1

ub
3

v
2b−f
2

✟✟✯

✟✟✯

❍❍❥

❍❍❥

✻

✲ ✲

Now, since b−f < 0 we have that Tv1 is a Hübner-sink of µu2
µw3

µu1
µv2(T ).

The resulting quiver is shown on the left hand side in the next picture.
Clearly Tv2 is a Hübner-sink in µu2

µw3
µu1

µv2(T ).

µv1µu2
µw3

µu1
µv2(T ):

w
f
2

w
f
1

w2b
3

v
f−b
1

u
f−b
2

u
f−b
1

ub
3

v
2b−f
2

✟✟✯

✟✟✯

❍❍❥

❍❍❥

❍❍❥
✟✟✯

✻

✲

µv2µv1µu2
µw3

µu1
µv2(T ):

w
f
2

w
f
1

w2b
3

v
f−b
1

u
f−b
2

u
f−b
1

ub
3

v
2b−f
2

�✒ �✒

❅❘ ❅❘

✛

✛

✛
�✒

❅❘ ✻

Again, the last step only changes the direction of the arrow u3 ✲ w3 but
no slope. Hence we have shown that also in case (b) we have µv(T ) ∈ T and
that S(µv(T )) = µ c

d
(S(T )).

We consider now the case (c) where Tv2 is a Hübner-sink of T . The resulting
situation is shown in the next picture on the left. Clearly Tu1

is a sink of
µv2(T ).

µv2(T ):

w
f
2

w
f
1

w
f
3

v
b+f
1

ub
2

ub
1

ub
3

v
f−2b
2

❅
❅❘

❅
❅❘ �

�✒

�
�✒

✏✏✶PPq

✲

✲

✲

µu1
µv2(T ):

w
f
2

w
f
1

w
f
3

v
b+f
1

ub
2

u
f−b
1

ub
3

v
f−2b
2

◗
◗
◗s

◗
◗
◗s✑

✑
✑✸

✑
✑
✑✸✏✏✶PPq

✲

✲

✲

Since b ≥ 0 we have that Tw3
is Hübner-source of µu1

µv2(T ). Also Tu2
is a

Hübner-sink of the resulting µw3
µu1

µv2(T ).

µw3
µu1

µv2(T ):

w
f
2

w
f
1

w2b
3

v
b+f
1

ub
2

u
f−b
1

ub
3v

f−2b
2

✻◗
◗

◗s✑
✑
✑✸

�
�✒

�
�✒

❅
❅❘

✲

✲

µw3
µu1

µv2(T ):

w
f
2

w
f
1

w2b
3

v
b+f
1

u
f−b
2

u
f−b
1

ub
3v

f−2b
2

✻❅
❅❘�

�✒

�
�✒

�
�✒

❅
❅❘

✲

✲
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Again, since b− f < 0 we have that Tv1 is a Hübner-sink of µw3
µu1

µv2(T ).
Clearly Tv2 is a Hübner-source of µv1µu2

µw3
µu1

µv2(T ).

µv1µu2
µw3

µu1
µv2(T ):

w
f
2

w
f
1

w2b
3

v
f−b
1

u
f−b
2

u
f−b
1

ub
3

v
f−2b
2

�✠

❅■

❅■

�✠

✲

✲

�✒

❅❘ ✻

µv2µv1µu2
µw3

µu1
µv2(T ):

w
f
2

w
f
1

w2b
3

v
f−b
1

u
f−b
2

u
f−b
1

ub
3

v
f−2b
2

�✠

❅■

❅■

�✠

✲

✲

�✠

❅■ ✻

✲

And again the last mutation in the sequence does only revert the direction
of the arrow u3 ✲ w3 without changing any slope. Hence we have proved
the assertion in case (c) and therefore in all possible cases where the quiver
of End(T ) is Qw.

A similar calculation deals with the cases where End(T ) has as quiver Qu or
Qv. However these cases need distinction since in no step there is a possible
choice for a vertex to be a Hübner-source or a Hübner-sink. These cases
are therefore left to the interested reader. This concludes the proof of the
statement. �

Since the remaining two tubular weight sequences require no new type of
argument we restrict to give the proper definition and statement and leave
the verification to the interested reader.

If the weight sequence is (4, 4, 2), let T(4,4,2) be the set of (isomorphism
classes of) tilting sheaves

T = ⊕i∈ITi with I = {u1, u2, u3, v1, v2, v3, w1, w2, w3},

such that

• the rank and degree of the indecomposable summands of T are re-
lated as shown in the following table:

i

deg(Ti)
rk(Ti)

u1 u2 u3

a
b

a
b

2a
2b

v1 v2 v3

c
d

c
d

2c
2d

w1 w2 w3

e
f

e
f

2e
2f

• S(T ) = {a
b
, c
d
, e
f
} is a Farey triple,

• the quiver with relations of End(T ) is one shown in the middle of
Figure 2.

Note that T4,4,2 is not empty by the construction in Section 4.3.
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The mutation sequences in this case are then defined to be

µu = µw1
µu3

µv3µv1µu2
µv2µu2

µw2
µu2

µv3 ,

µv = µu1
µv3µw3

µw1
µv2µw2

µv2µu2
µv2µw3

,

µw = µv1µw3
µu3

µu1
µc2µu2

µw2
µv2µw2

µu3
.

Proposition 4.18. Let X be a weighted projective line with weight sequence
(4, 4, 2). Then for any T ∈ T(4,4,2) and x ∈ u, v, w we have µx(T ) ∈ T(4,4,2)
and S(µx(T )) = µqx(S(T )), where qx = S(Tx1

).

In case the weight sequence is (6, 3, 2) we need to define three quivers Qx

for x ∈ {u, v, w} as follows:

Qu:

v3

u3

w2

u1

v2

w1 w4

u2

v1

w3

❄ ❄

❄�✒

�✒

❅■

❅■

❅■�✒

✛ ✲

Qv:

v3

u3

w2

u1

v2

w1 w4

u2

v1

w3

❄ ❄

❄ ❄

�✒

�✒

❅■

❅■✛ ✲

Qw:

v3

u3

w2

u1

v2

w1 w4

u2

v1

w3

❄ ❄

❄

�✒

�✒

❅■

❅■

❅■�✒✛ ✲

Figure 4. Quivers with relations for the weight sequence (6, 3, 2).

Let T(6,3,2) to be the set of (isomorphism classes of) all tilting sheaves

T = ⊕i∈ITi with I = {u1, u2, u3, v1, v2, v3, v4, w1, w2, w3},

such that

• the rank and degree of the indecomposable summands of T are re-
lated as shown in the following table:

i

deg(Ti)
rk(Ti)

u1 u2 u3

a
b

a
b

2a
2b

v1 v2 v3 v4

c
d

c
d

2c
2d

2c
2d

w1 w2 w3

e
f

e
f

2e
2f

• S(T ) = {a
b
, c
d
, e
f
} is a Farey triple,

• the quiver with relations of End(T ) is one of the three quivers of
Figure 4.

Note that T6,3,2 is not empty by the construction in Section 4.3.

The mutations sequences are defined as

µu = µu3
µu2

µu1
,

µv = µv3µv2µv1 ,

µw = µw3
µw1

µv3µw4
µu2

µw3
µw4

µw2
µu1

µw1
µw2

.
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Proposition 4.19. Let X be a weighted projective line with weight sequence
(6, 3, 2). Then for any T ∈ T(6,3,2) and x ∈ {u, v, w} we have µx(T ) ∈ T(6,3,2)
and S(µx(T )) = µqx(S(T )), where qx = S(Tx1

).

Remark 4.20. Another warning seems in place: Although the mutation
sequences µu, µv and µw are involutive on Farey triples in the sense of
Lemma 4.13, they are not involutive on the isomorphism classes of tilting
sheaves in the four tubular cases.

4.5. Second proof of Theorem 1.1. For the four tubular types (2, 2, 2, 2),
(3, 3, 3), (4, 4, 2) and (6, 3, 2) the Propositions 4.16, 4.17, 4.18 and 4.19 re-
spectively provide a recursive procedure to construct a k-embedding of the
3-regular tree T3 (identified with the exchange graph of Farey-triples) into
the exchange graph of tilting sheaves over the weighted projective line of
the corresponding tubular weight type. Now, this exchange graph can be
identified by [3] with the exchange graph of cluster tilting objects in the re-
spective tubular cluster category. Thus, in view of Section 2.2 we are done.
�
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