Tarea 5

Ejercicio 21

Sea (G, +) un grupo abeliano, y T(G) el subconjunto de G de todos los elementos de orden finito. Se dice que G es libre de torsion si $T(G) = \{0\}$. Demuestra que T(G) es un subgrupo de G y que G/T(G) es libre de torsión.

Ejercicio 22

- (a) Demuestra: El grupo abeliano $(\mathbb{Q}, +)$ es libre de torsion pero no es libre; cada subgrupo finitamente generado de $(\mathbb{Q}, +)$ es ciclico. Un grupo con esta última propiedad se llama localmente cíclico.
- (b) Demuestra: Subgrupos y cocientes de un grupo localmente cíclico tambien son localemte ciclicos.
- (c) Si $\phi: U \longrightarrow V$ es un homomorfismo entre dos subgrupos de $(\mathbb{Q}, +)$, entonces existe $q \in \mathbb{Q}$ tal que $\phi(u) = qu$ para todo $u \in U$.

Ejercicio 23

Sea $U \subseteq \mathbb{Z}^3$ el subgrupo generado por los elmentos $u_1 = (4, 3, 1)$, $u_2 = (8, 3, -1)$ y $u_3 = (2, 2, 2)$. Determina una base $\{b_1, b, 2, b_3\}$ de \mathbb{Z}^3 y elementos $\epsilon_1, \epsilon_2, \epsilon_3 \in \mathbb{N}$ con $\epsilon_1 \mid \epsilon_2, \epsilon_2 \mid \epsilon_3$ tal que $\{\epsilon_1 b_1, \epsilon_2 b_2, \epsilon_3 b_3\}$ sea una base de U. Escribe \mathbb{Z}/U como suma directa de grupos ciclicos. (Recomendación: Proceder como en la demostración del teorema pricipal sobre grupos abelianos.)

Ejercicio 24

Determina el número de clases de isomorfía de grupos abelianos de orden n para $n \in \{2002, 2003, 2048\}$. Encuentra el mínmo $n \in \mathbb{N}$ tal que existen precisamente 6 clases de isomrfía de grupos abelianos de orden n.

Entrega: Lunes 20 de enero 2003, antes de la clase