Tarea 4

Ejercicio 10

Demuestra que $\sqrt{3}$ y $\sqrt{10}$ no son números racionales.

Ejercicio 11

Definamos para pares de números racionales una adición y una multiplicación:

$$(a_1, a_2) + (b_1, b_2) := (a_1 + b_1, a_2 + b_2)$$

$$(a_1, a_2) \cdot (b_1, b_2) := (a_1b_1 + 2a_2b_2, a_1b_2 + a_2b_1)$$

Verifica con estas "reglas" lo siguiente:

(a)
$$(0,0) + (b_1,b_2) = (b_1,b_2) y (1,0) \cdot (b_1,b_2) = (b_1,b_2)$$

- (b) Si $(a_1, a_2) \neq (0, 0)$ existe una única solución (x_1, x_2) de la ecaución $(a_1, a_2) \cdot (x_1, x_2) = (b_1, b_2)$.
- (c) Encuentra una solución (y_1, y_2) de la ecuación $(y_1, y_2) \cdot (y_1, y_2) = (2, 0)$.

Ejercicio 12

Para números racionales a_1, a_2 dados encuentra racionales a y b tal que la ecuación cuadrática $x^2 + bx + c = 0$ tiene a $a_1 + a_2\sqrt{2}$ como solución.