Tarea 8

Ejercicio 20

Sean x y y números algebraicas con $x^m + \sum_{i=0}^{m-1} a_i x^i = 0$ y $y^n + \sum_{j=0}^{m-1} b_j y^j = 0$ para ciertos números racionales $a_0, \ldots, a_{m-1}, b_0, \ldots, b_{n-1}$. Ademas, sea z := x + y. Supongamos, que para un número natural k se tiene

$$z^{k} = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} c_{i,j}(k) x^{i} y^{j}$$

para ciertos números racionales $c_{i,j}(k)$ con $0 \le i \le m-1$ y $0 \le j \le n-1$. Demuestra que entonces

$$z^{k+1} = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (c_{i-1,j}(k) + c_{i,j-1}(k) - a_i c_{m-1,j}(k) - c_{i,n-1}(k)b_j)x^i y^j$$

si ponemos $c_{-1,j}(k) := 0$ para $0 \le j \le n-1$ y $c_{i,-1}(k) = 0$ para $0 \le i \le m-1$.

Ejercicio 21

Sean x, y números algebraicos con $x^3 - 2x - 1 = 0$ y $y^2 + 3y + 1 = 0$ respectivamente. Ademas sea z := x + y. Encuentra para $k = 0, 1, \ldots, 6$ números (enteros) $c_{i,j}(k)$ con $0 \le i \le 2, 0 \le j \le 1$ y tales que

$$z^k = \sum_{i=0}^{2} \sum_{j=0}^{1} c_{i,j}(k) x^i y^j.$$

Pista: Trivialmente $c_{0,0}(0) = 1$ y $c_{i,j}(0) = 0$ si $(i,j) \neq (0,0)$. Ahora se puede usar el resultado del Ejercicio anterior para calcular recursivamente los $c_{i,j}(k)$ para k = 1, 2, 3, 4, 5, 6.

Ejercicio 22

Con los definiciones del ejercicio anterior, determina siete números racionales r_0, r_1, \ldots, r_6 (no todas iguales a 0) tales que con las definiciones del ejercicio anterior se tenga

$$r_0 + r_1 z + r_2 z + \dots + r_7 z^7 = 0$$

Pista: (r_0, r_1, \dots, r_7) es solución del siguiente sistema de seis ecuaciones lineales:

$$(\mathbf{E}_{i,j}): \sum_{k=0}^{6} c_{i,j}(k) r_k = 0 \quad \text{ para } 0 \le i, \le 2, 0 \le j \le 1$$

con los $c_{i,j}(k)$ que se determinaron en el ejercicio anterior (resolver este sistema tomará algo de tiempo).

Fecha de entrega: 03-05-2007 antes de la ayudantia.