Tarea 6

Ejercicio 20

Consideramos el siguiente diagrama conmutativo de espacios vectoriales donde los dos renglones son "exactos", i.e. tenemos $Ker(f_i) = Im(f_{i+1})$ y $Ker(g_i) = Im(g_{i+1})$ para i = 1, 2, 3.

Además, suponemos que los morfísmos "verticales" tengan las propiedades que indicamos, i.e. φ_4 es epimorfismo, φ_3 y φ_1 son isomorfismos y φ_0 es monomorfismo. Demuestra que bajo estas condiciones φ_2 es un isomorfismo.

Ejercicio 21

Consideramos las siguientes matrices en $Mat(2 \times 2, \mathbb{R})$:

$$G_{\varphi} := \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \text{ y } R_{\varphi} := \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$$

Demuestra las siguientes identidades:

(a)
$$G_{\varphi} \cdot G_{\psi} = G_{\varphi + \psi}$$

(b)
$$G_{\varphi} \cdot R_{\psi} = R_{\varphi + \psi} = R_{\varphi} \cdot G_{-\psi}$$

(c)
$$R_{\varphi} \cdot R_{\psi} = G_{\varphi - \psi}$$

(d)
$$G_{\varphi} \cdot R_0 \cdot G_{-\varphi} = R_{2\varphi}$$

Fecha de entrega: Viernes 10 de octubre antes de la clase.