Tarea 8

Ejercicio 25

Sea $\mathbf{a} \in \operatorname{Mat}(m \times n, \mathbb{F})$ de rango r. Demuestra que entonces por media de una sucesión de transformaciones de renglones \mathbf{a} se puede llevar a una matriz \mathbf{b} de la siguiente forma: Para una (única) sucesión de números naturales $1 \leq j_1 < j_2 < \cdots < j_r \leq n$ se tiene $b_{i,j_i} = 1$ para $i = 1, \ldots, r$ y $b_{i,k} = 0$ en los siguientes casos: si i > r o $k < j_i$ o $(k = j_s \text{ y } i < s \text{ para algún } s)$. En particular, si m = r = n se puede transformar \mathbf{a} por medio de transformaciones de renglones en la matriz unitaria.

Por ejemplo para $\operatorname{Mat}(4\times 6,\mathbb{F})$ y la sucesión (1,3,5) la matriz **b** seria de la siguiente forma:

Ejercicio 26

Sea $U_2 := \{ \mathbf{u} \in \text{Mat}(2 \times 2, \mathbb{C}) \mid \mathbf{u} \cdot \bar{\mathbf{u}}^t = \mathbf{e} \}$ donde

$$\bar{\mathbf{u}}^t := \begin{pmatrix} \bar{u}_{11} & \bar{u}_{21} \\ \bar{u}_{12} & \bar{u}_{22} \end{pmatrix} \text{ si } \mathbf{u} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} \text{ y } \mathbf{e} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Demuestra:

- (a) Si $\mathbf{u}, \mathbf{v} \in U_2$ entonces $\mathbf{u} \cdot \bar{\mathbf{v}}^t \in U_2$ (esto significa que U_2 es un subgrupo de $GL_2(\mathbb{C})$).
- (b) Sea $\mathbf{u} \in U_2$ y $\lambda \in \mathbb{C}$. Si $\det(\mathbf{u} \lambda \mathbf{e}) = 0$ entonces $|\lambda| = 1$.

Ejercicio 27

Calcula la determinante de la siguiente matriz:

$$\mathbf{a} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 7 & 10 \\ 9 & 10 & 11 & 13 \end{pmatrix}$$

Fecha de entrega: Viernes 24 de octubre antes de la clase.