Tarea 4

Ejercicio 12

Un grupo G se llama simple si $\{e\}$ y G son los únicos dos subgrupos normales de G. Por ejemplo los grupos $\mathbb{Z}/p\mathbb{Z}$ con p un primo son los únicos grupos abelianos que son simples. Sea $N_{\bullet} := (G = N_0 \geq N_1 \geq N_2 \geq \cdots \geq N_n = \{e\})$ una serie normal de G. La longitud de N_{\bullet} es el número de sus factores no triviales. N_{\bullet} se llama serie de composición de G si todos los factores N_{i-1}/N_i son simples o trivial. Sea $M_{\bullet} := (G = M_0 \geq M_1 \geq \cdots \geq M_m = \{e\})$ otra serie normal. N_{\bullet} se llama refinación de M_{\bullet} si N_0, N_1, \ldots, N_n es una subsecuencia de M_0, M_1, \ldots, M_m . Las series N_{\bullet} y M_{\bullet} son equivalentes, si tienen la misma longitud, y además existe una biyección entre sus factores no triviales respectivos, tal que estos factores sean isomorfos. Demuestra:

- (a) Todo grupo finito tiene una serie de composición.
- (b) Todas las series de composición de un grupo finito soluble son equivalentes. (sin usar (e)).
- (c) Sean $A \triangleleft A'$ y $B \triangleleft B'$ subgrupos de G. Entonces se tiene un isomorfismo de grupos cocientes

$$\frac{A(A' \cap B')}{A(A' \cap B)} \cong \frac{B(B' \cap A')}{B(B' \cap A)}.$$

<u>Pista</u>: $D := (A' \cap B)(A \cap B')$ es un subgrupo normal de $B' \cap A'$. Verifica que el $A(A' \cap B') \to (A' \cap B')/D$, $ax \mapsto xD$ (para $a \in A, x \in A' \cap B'$) esta bien definido y suprayectivo. Su nucleo es $A(A' \cap B)$. Aprovecha la simetría del problema.

(d) Las dos series normales (arbitrarias) N_{\bullet} y M_{\bullet} del grupo G admiten refinaciones que son equivalentes. <u>Pista</u>: Sea $N_{i,j} := N_{i+1}(N_i \cap M_j)$. Entonces

$$N_{0,0} \ge N_{0,1} \ge \dots \ge N_{0,m} \ge N_{1,0} \ge \dots \ge N_{n-1,0} \ge \dots \ge N_{n-1,m} = \{e\}$$

es una refinación de N_{\bullet} . Se puede definir una refinación análoga de M_{\bullet} . Usando (c), demuestra $N_{i,j}/N_{i,j+1}\cong M_{i,j}/M_{i+1,j}$.

(e) Todas las series de composición de un grupo G son equivalentes. <u>Pista</u>: Utiliza (d).

Ejercicio 13

Consideramos el grupo $G := (\mathbb{Q}_+, \cdot)$ de los números racionales positivos con la multiplicación usual. Demuestra:

$$G \cong \bigoplus_{p \in P} \mathbb{Z} := \mathbb{Z}^{(P)},$$

donde Π es un conjunto infinito numerable, y $\mathbb{Z} = (\mathbb{Z}, +)$. <u>Pista</u>: Sea $P \subset \mathbb{N}$ el conjunto de los primos. Si $q \in \mathbb{Q}_+$ entonces existe un único $v = (v_p)_{p \in P} \in \mathbb{Z}^{(P)}$ tal que $q = \prod_{p \in \Pi} p^{v_p}$. Nota que en este producto "infinito" solo un número finito de factores es diferente a 1.

Ejercicio 14

Consideramos el grupo abeliano de los números racionales $\mathbb{Q} = (\mathbb{Q}, +)$, y su cociente \mathbb{Q}/\mathbb{Z} . Sea $P \subset \mathbb{N}$ el conjunto de los primos. Para $p \in P$ tenemos

$$S(p) := \{ \bar{q} \in \mathbb{Q}/\mathbb{Z} \mid \exists k \in \mathbb{N} : p^k \bar{q} = \bar{0} \}$$

el p-grupo de Sylow en \mathbb{Q}/\mathbb{Z} . Demuestra:

- (a) $\mathbb{Z}/\mathbb{Q} = \bigoplus_{p \in P} S(p)$.
- (b) Para cada $k \in \mathbb{N}_+$ existe un único subgrupo C_{p^k} de orden p^k en S(p). Este subgrupo es cíclico, y se tiene $C_p \subset C_{p^2} \subset C_{p^3} \subset \cdots \subset S(p)$.
- (c) Un grupo abeliano A = (A, +) se llama divisible si para cada $a \in A$ y $k \in \mathbb{N}_+$ existe $a' \in A$ con $k \cdot a' = a$. Con esta noción los grupos abelianos \mathbb{Q} y $S(p) < \mathbb{Q}/\mathbb{Z}$ son divisibles. <u>Pista</u>: Nota que por ejemplo $1/2 + \mathbb{Z} = 6 \cdot (1/4 + \mathbb{Z}) \in S(2)$.
- (d) Ningún grupo cíclico es divisible.

Ejercicio 15

Sea $\mathcal{D}_n = \langle \rho, \sigma \rangle$ como en Ejercicio 10. Demuestra:

- (a) Cada subgrupo de $\langle \rho \rangle$ es normal en \mathcal{D}_n .
- (b) $\langle \rho^2 \rangle$ es el subgrupo de conmutadores de \mathcal{D}_n .
- (c) Si $p \in \mathbb{N}_{\geq 3}$ es un primo y $n = p^k m$ con $k, m \in \mathbb{N}$ y $p \nmid m$, entonces $\langle \rho^m \rangle$ es el único p-grupo de Sylow en \mathcal{D}_n .

Ejercicios 12 y 15 para entregar, Ejercios 13 y 14 a discutir en la Ayudantía del *6* de Febrero.