Tarea 4

Ejercicio 14

Consideramos el grupo $G := (\mathbb{Q}_+, \cdot)$ de los números racionales positivos con la multiplicación usual. Demuestra:

$$G \cong \coprod_{p \in P} \mathbb{Z} := \mathbb{Z}^{(P)},$$

donde P es un conjunto infinito numerable, y $\mathbb{Z}=(\mathbb{Z},+)$. <u>Pista</u>: Sea $P\subset\mathbb{N}$ el conjunto de los primos. Si $q\in\mathbb{Q}_+$ entonces existe un único $v=(v_p)_{p\in P}\in\mathbb{Z}^{(P)}$ tal que $q=\prod_{p\in\Pi}p^{v_p}$. Nota que en este producto "infinito" solo un número finito de factores es diferente a 1.

Ejercicio 15

Consideramos el grupo abeliano de los números racionales $\mathbb{Q} = (\mathbb{Q}, +)$, y su cociente \mathbb{Q}/\mathbb{Z} . Sea $P \subset \mathbb{N}$ el conjunto de los primos. Para $p \in P$ tenemos

$$S(p) := \{ \bar{q} \in \mathbb{Q}/\mathbb{Z} \mid \exists k \in \mathbb{N} : p^k \bar{q} = \bar{0} \}$$

el p-grupo de Sylow en \mathbb{Q}/\mathbb{Z} . Demuestra:

- (a) $\mathbb{Z}/\mathbb{Q} = \bigoplus_{p \in P} S(p)$.
- (b) Para cada $k \in \mathbb{N}_+$ existe un único subgrupo C_{p^k} de orden p^k en S(p). Este subgrupo es cíclico, y se tiene $C_p \subset C_{p^2} \subset C_{p^3} \subset \cdots \subset S(p)$.
- (c) Un grupo abeliano A=(A,+) se llama divisible si para cada $a\in A$ y $k\in\mathbb{N}_+$ existe $a'\in A$ con $k\cdot a'=a$. Con esta noción los grupos abelianos \mathbb{Q} y $S(p)<\mathbb{Q}/\mathbb{Z}$ son divisibles. <u>Pista</u>: Nota que por ejemplo $1/2+\mathbb{Z}=6\cdot(1/4+\mathbb{Z})\in S(2)$.
- (d) Ningún grupo cíclico es divisible.

Ejercicio 16

Sea $\mathcal{D}_n = \langle \rho, \sigma \rangle$ como en Ejercicio 10. Demuestra:

- (a) Cada subgrupo de $\langle \rho \rangle$ es normal en \mathcal{D}_n .
- (b) $\langle \rho^2 \rangle$ es el subgrupo de conmutadores de \mathcal{D}_n .

(c) Si $p \in \mathbb{N}_{\geq 3}$ es un primo y $n = p^k m$ con $k, m \in \mathbb{N}$ y $p \nmid m$, entonces $\langle \rho^m \rangle$ es el único p-grupo de Sylow en \mathcal{D}_n .

Ejercicio 17

Sea G un grupo finito y H < G un subgrupo. Demuestra:

- (a) $N := \bigcap_{g \in G} gHg^{-1}$ es un subgrupo normal de G que esta contenido en H. <u>Pista</u>: Considera la acción de G sobre las clases laterales izquierdas G/H por traslación izquierda, y el homomorfismo de grupos $G \to \mathfrak{S}(G/H)$ correspondiente.
- (b) Para N como en (a) se tiene: $M \triangleleft G$ y $M \leq H$ implica $M \subset N$.
- (c) Sea p el divisor primo más pequeño de |G|. Si [G:H] = p entonces H es normal en G. Pista: Demuestra que [H:N] es un divisor de (p-1)! para N como en (a).
- (d) Para cada primo p, la intersección de todos las p-grupos de Sylow en G es normal en G. Cada p-subgrupo normal de G esta contenido en esta intersección.

Ejercicio 18

- (a) Sean $p \neq q$ dos números primos. Demuestra que cada grupo G de orden p^2q tiene un grupo de Sylow que es normal en G.
- (b) Cada grupo de orden 200 tiene un subgrupo normal abeliano que no es trivial.

Ejercicio 19

Demuestra:

- (a) Si un grupo G de orden 12 tiene un subgrupo de orden 6, entonces G tiene precisamente un subgrupo de orden 3.
- (b) Sea G un grupo y N < G con [G:N] = 2. Si H < G y $H \not\subset N$, entonces H tiene un subgrupo de índice 2.
- (c) Cada grupo de orden 12 que no contiene un subgrupo de orden 6 es isomorfo a \mathfrak{A}_4 . <u>Pista</u>: La acción de G por conjugación sobre el conjunto de 3-grupos de Sylow induce una inclusión de G en \mathfrak{S}_4 .

(d) $\operatorname{Aut}(\mathfrak{A}_4)$ es isomorfo a \mathfrak{S}_4 . <u>Pista</u>: La acción de \mathfrak{S}_4 sobre \mathfrak{A}_4 por conjugación induce una inyección de \mathfrak{S}_4 en $\operatorname{Aut}(\mathfrak{A}_4)$. Acota $|\operatorname{Aut}(\mathfrak{A}_4)|$ al contar los elementos de cada orden posible en \mathfrak{A}_4 .

Ejercicio 20

- (a) Determina la estructura y el número de los 2-grupos de Sylow en \mathfrak{S}_5 . ¿Cuántos 5-subgrupos de Sylow tiene \mathfrak{S}_5 ?
- (b) Demuestra que todos los subgrupos de orden 10 en de \mathfrak{S}_5 estan contenidos en \mathfrak{A}_5 .
- (c) Demuestra que \mathfrak{S}_5 no tiene subgrupos de orden 15.
- (d) Demuestra que \mathfrak{S}_5 no tiene subgrupos de orden 30. <u>Pista</u>: Usando (c) demuestra que tal subgrupo H seria generado por un 3-ciclo y un 5-ciclo. Entonces H sería un subgrupo de $\mathfrak{A}_5 = \mathfrak{A}_5'$.
- (e) Demuestra: El único subgrupo de \mathfrak{S}_5 de orden 60 es \mathfrak{A}_5 .

Ejercicios 16, 18 y 19 para entregar, Ejercios 14, 15, 17 y 20 a discutir en la Ayudantía del 17 de Septiembre.