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In the winter of 1980-81 it was found that the totality of solutions of the
Kadomtsev - Petviashvili equation as well as of its multi-component generalization
forms an infinite dimensional Grassmann manifold [1]. 1In this picture the time
evolution of a solution is interpreted as the dynamical motion of a point on this
manifold. A generic solution corresponds to a generic point whose orbit (in the
infinitely many time variables) is dense in the manifold, whereas degenerate solu-
tions corresponding to points bound on those closed submanifolds which are stable
under the time evolution describe the solutions to various specialized equations
such as KdV, Boussinesq, nonlinear Schrodinger, sine-Gordon, etc.

We foresee that a similar structural theory should hold also for multi-

dimensional 'integrable' systems.

§1. The universal Grassmann manifold
For a vector space V=V(N) (say, over ) of dimension N (=m+n) the
Grassmann manifold GM(m,V) (=GM(m,n)) is by definition the parameter space for

the totality of m-dimensional subspaces in V. We can write
GM(m,V) = {m-frames in V} / GL(m)

where an m-frame means an m-tuple of linearly independent vectors. GM(m,V) is a

homogeneous space of the general linear group GL(V).
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Further, itis viewed as an algebraic submanifold (of dimension mn) of the

(g)-l dimensional projective space | JOARTD) C(O)

=1 i =
E(m )) correspond to the exterior product E(O)A---Ag(m v eA“W
projective embedding). If g(‘)

by letting an m-frame (

9 v Wiy

(the cauonical

T C0i%0"*Eyoy, 10y Where eg,ccs ey
denote a basis of V, then E(O)A---Ag(m_l) = y E ey AT
OSfg<=e<q <N b m-1
with g 4 =te (e ) s . . These ¢ , 022.<N, (which are
Lo 'gm—l £3371,5=0, ¢ - ;m-1 QO."zm—l i
antisymmetric in suffixes) satisfy the Plicker's relations:
ks i
I ol E - =0
i=0 ko k2% 72 &gt

and vice versa; i.e. a point in the ambient (V) 1lies in the embedded GM(m,V)

if and only if its projective coordinates 52 oy . 0;1i<N, satisfy the
O -

Plicker's relations (i.e. are Plicker coordinates).

To each set of suffixes (g _,---,8 s
0 m-1

diagram Y consisting of rows of length

0520<"'<lm_1<N, we associate a Young

Qm_l—(m—l),'-',ﬁl—l,lo, respectively

(cf. H. Weyl, The Classical Groups, Princeton, 1939) and often identify them:

e.g. Plucker coordinates are also written QY’ the diagrams Y being those contain-

ed in the mxn rectangular diagram Amn'

After Weyl's celebrated work Young diagrams (of vertical size £ N) classify

irreducible tensor representations of GL(V). Denoting by R;. the contra-
gredient of the irreducible representation space labeled by the i x i rectanguy g,
diagram A.., our GM(m,V) 1is the projective algebraic manifold correSponding

ij i

to the graded algebra ® R .. (Here multiplication is unambiguously defineq
3 mj

=0 .

se . . containes R . . exactly once.) We can also write:
because le Q ij co i, L4

GM(m,V) = (GM(m,V) - {0}) / GL(1),

where GM(m,V)

: . . m
{(g,) £y satisfy the Plucker's relations}c Ay,
Y'yeap Y

Let m<m and n<n'. Then: (i) if

y satisfies =
(EY)YCA L atisfies the Plicker'g
m'n
relations, so does its restriction to Y's within Amn (whence GHM(m',n') .

GM(m,n)). On the other hand, (ii) (&:Y)YCA satisfies the Pliicker's relationsg
mn
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: ] , i : it P e _
if and only if ({’Y)YCAm.n. does, EY being defined by [’Y E’Y or 0
according as YCArnn or not (whence GM(m,n) <> GM(m',n'). (i) and (ii)

combined give the commutative diagram

M(m',n') ———> GM(m,n) (restriction)
id R id Tz
GM(m',n') «—=>2 GM(m,n) (embedding) .

Hence, defining the universal Grassmann manifold GM = (GM-{0}) / GL(1) and its

dense submanifold oMfi™ = (Cﬁfln - {0}) / 6L(1) by

& - anit oker"s, meliatd
M {(F’Y)Y:all Fp— | CY satisfy all the Pliicker's relations},

~fin P )
GM = {(gY)Y eGM | €Y = 0 for almost all Y}

respectively, we have

| &) € GM(m,n) for any m and n},

G = {(g,) des, 4
mn

Y'Y:all diagrams

~ fi .
G '™ = | ) GH(m,n), and
m,n

surjective

GM GM(m,n)
dense L id n
~fin

GM +———2  GM(m,n).

To each € €GM(m,n) (resp. €GM) uniquely corresponds a diagram YCAmn
(resp. an unrestricted Y) in such a way that, for the Pliicker coordinates of g,
gY # 0 while 5y, = 0 unless Y'DY; and, denoting by GMY(m,n) those points
to which the given Y corresponds, we have a cellular decomposition GM(m,n) =

u GMY(m,n), with GMY(m,n) N cmn—]Yl |Y]| = size of Y = g +:+-44 ~1m(m-1)
T i 0 m=1 2
mn

(resp. oM = | JeM)).
Y

Consider the infinite dimensional vector space V (resp. V) consisting of
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elements § = (E\))v 4o With £ €T, £ =0 for v«0 (resp. for v 0).
€ 2V

(Setting e = (§ " B . g e (resp. £ =
g u ( “\))v&lev one also writes & -wz\)(w vov

) £,e,)-) Further, by introducing the dual (or contragredient) basis
=Ko

* . _ _ xex|F*x ¢L} (res RV
(eU)U cz to (eU)U ez Aand the dual space V¥ = {g* —oo<2\)<00 E’\)L\) ‘ C\) H
i~ ] 5393153 €C}) to V (resp. to V) so that their pairing is given

—c0dl\) <o
by the effectively finite sum: <£%,£> = Eg\f;g\), our vector space naturally acquires

the weak topology (or rather, S. Lefschetz's linear topology, in which our space
is locally linearly compact). (Any locally convex topology on a vector space
induces via its dual a linear topology there, and its subsapce is closed by the

latter if and only if it is so by the former.)

Define subspaces V(m) of V (resp. subspaces ‘-,(m) of V), meZ, by V(m)
(resp. w(m)) = {(C\))velev (resp. V) | gv = 0 for v<m}. Then we have
i1 o 2 L :
GM(resp. GM ™) = {closed subspaces V of V (resp. V) | The dimensions of
0
Ker and Coker of the natural map V - V/V( ) (resp. -
‘.//\./(0)) are both finite and coincide.}

. ; v
{closed subspaces V of V (resp. V) | dim Vf]V( )

(\))) = l

(resp. dim VOV v| for v« 0},

where the closedness of V 1is a consequence of the other conditions and the
qualifier is dispensable for VCV, while it is not for VCWV. Also we have, for

any diagram Y parametrized by (Y,O, LR !Q‘m_l)’

(v)

(;MY = {VCV| dim VNV <k 1if and only if v > —m'HLm_l_k (vez, keN) } s

understanding that ¢ =v for v< 0.
v
L fin s 3 . =
Between these extremes, GM and GM , come various intermediates. For

example we define, for r=1,2,---,

. Y|
GMdnd(r) = {(gY)YéGMll v EY /([Y[/r)! are bounded as |Y| + o }

and for 0¢<ac< o,
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i -
M = {(EY)YeGM | Tim ik al,
¥
S0 that we have
oM :)GMnna(l):)GMana(Z) =5 S GMeXp(a) 5 emeXP(0) o GMfln.
Then
ana(r) exp(a) ; el ana(r) :
GM (resp. GM ) = {closed subspaces V of V (resp. of
VEXp(a)) | The dimensions of Ker and Coker of the natural map V >
Vana(r)/(vana(r))(o) (resp. - vexp(a)/(vexp(a))(O)) are both finite and
coincide. }
where
ana(r) exp(a), _ V/]—-W—. and
Y (resp. Vv ) = {(Cv)\)ell E\) v/r)! are bounded an
i =V e =1
\)m tend to 0 as v > o (resp. Tim”/ E\) <a, lim v é—\)—lFa ' h
Vv Vo V0
ana (r)* ) exp(a)*, _ ana(r) . exp(a)
v (resp. v Yo U on | K6 oidyen®¥ (resp. V )}
and
¢ exp(a)
(Vana(r))(m) Ctwap (Vexp(a))(m)) = {{E ) 5 wana(r) (resp. voXP(a)y |

V'velz

F’\) =0 for v<m}.

§2. Time evolution on GM

Denoting by A the shift operator:

Ae\) = fy-p2 Aigvev K nge\)—l‘

we define for € eGM its evolution in time variables t = (tl,tz,-'-) by £(t)

t]/\+c2/\2+.. A
= e é.

o fi 3 gl fi ut
In the case of CEGMfm, €(t) 1is again in GM I for any tve 0 o=l s2 e,
For general & e GM, however, &£(t) should be understood as a generalized element

whose components are formal power series in (tl,tz,---) rather than complex

~ ~ana(r) . a1
numbers. (In the case of £GGMana(r)’ one has &(t)€ GM if lt\)l is
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sufficiently small for v =r and are 0 for v>r. For &£ eéﬁexP(a)

, one has
=y . ;o ) =1
g(t)EEGMexP(a) for tve C subject to the condition 11mv/ tv L@ )

In any case we have, for the Plicker coordinates & Y(t) of ECED),
Ey(t) = XY(at)g¢<t) and g¢(c) = gE,Y-xY(t),
where ¢ denotes the empty Young diagram, XY(C) denotes the character polynomial

for the general linear group, and xy(at) denotes the differential operator

obtained from XY(C) by replacing t, by : -

55?; (After H. Weyl, XY(t)

admits various expressions, one of which is

el y B
XY(t) - HY(I 12 2"')3—%C~%TTT*— "
v F20, %0 e =Y | 1°72
VvV, VvV

1.2 . 7 y
where WY(l 2 “+++) is the irreducible character of the symmetric permutation

group of |Y| letters, labeled by the Young diagram Y and evaluated at the

conjugacy class consisting of 2 cycles of size 1, vy cycles of size 2, etc.)

We call g¢(t) the 1 function of ¢

above formulae show that 1(t)

(Notation: t(t; £) or <1(t)). The

plays the role of generating function for Plicker

coordinates:

EY(E) = XY(Bt)T(t; £)s £y XY(Bt)T(t; €) | £
chel*+e) ) = nle's €(c)) = EEY(t)XY(t'),
¥

and that the Plicker's relations for (5Y(t))Y assume the form of quadratic dif-

ferential equations, or, what amounts to the same, the form of 'bilinear' equa-
tions of R. Hirota.

Summing up, we have

Theorem 1. Although any f(t)e Clltystys---]] admits the formal expansion of the

form: f(t) = ECYXY(t), where the coefficients are uniquely given by Cy
Y

XY(ac)f(t)l 0’ it represents the 71 function of some & €GM if and only if itg

coefficients ¢y satisfy the Plicker's relations.
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Theorem 2,
——=: An f(t)e E[[tl,tz,"-]] is the T function of some &€ GM if and

only if ¢ s 5
Satisfies the Hirota bilinear equations of the form

m
i D
z (‘)lx t £
i= koo Gy .9 ... (55911 = 0.
i=0 Rl V2 O RERL7REEE S

Moreover thes . 3 P
hese exhaust all the Hirota equations to be satisfied by T.

The . g . . ; .
S€ quadratic differential equations are also equivalent to the quadratic

difference €quations

Namely,
o 12 1.3
IEESESE_E- (Addition formulae) For any aeC we set [a] = (a,ia 3% S %)
so that ti[u] = (t,+a, t2+%a2,---). Let a.eC for i =0,---,N-1 and define
i
L (t) = dias ), 05 8.< N
Qo seeg Ao o0y dr(e+fa, ]+ +[a 17, 0=
2 Teey gm0t 0 %o %o -1 '
with A(q ES R Y (a.-0t.). Then ¢ (t) satisfy the Plicker's
m 0 A i Loveel
m>i>jz0 0 m-1

relations for GM(m,V(N)). This property again characterizes the function T.
E.g. we have
(al-uo)(u3—a2)T(t+[a0]+[a1])T(t+[dzl+[a3])

(OLZ-OLO) (oc3—ot1)T(t+[oto]+[0c2] Jt(t+[a,]+[a,])

# (otz-ao)(az—al)T(t+[a0]+[a3])T(t+[a1]*[012]) = 0.

Denote by EV the linear operator on V sending e to e, and all the

H H v

. - 5 ield
other e K $Uu, to 0 (i.e. EvulEKeK = guev), and by Luv the vector fiel

- 2
GM ind i = E d € for an
on induced by EVU (i e (1+ELUV)F(€ ) F((1+e vu)£ ) mo y

function F on GM). Since any F(E) 1is a function of the Pllicker coordinates

E,'s of &, L is also characterized by: L & = 3 x

Y > v y Hv QO...Qm_l agles V+m’£i
510...u+m.,_£m_1 assuming Vv+m and u+m 2 0. (This poses no restriction on the
diagram Y labelled by (Rgs"s% 1) since (0,1,--+,k=1,80%k, - +,8  +k)

also labels the same Y for any keIN.)

2 n .
For the shift operator A we have: A = 2 Ev il neZ. Further, define
vez ?
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n
the operator K s.t. AK-KA = 1 by Kigvev = Evgv_lev to have f(KAN)A =

k
. ; F k+n
) f(v)EV en for any polynomial £(v) of v, and in particular, T A s
v 2 :
v
E (k)Ev,v+n'

Bl g ; 25
For n#0, the infinitesimal operator 1+ef(KA)An, mod £, induces the well-

defined infinitesimal transformation on GM, and one can write

k
rer®)r(E) = F(reky ")) mog €2
with U(k) = E(v)L » while for n=0 we introduce another vector field M
n 5 k™7 v+n,v
, - s e, v v v
defined by Mg, = £y and set: U 5 vzo(k)(va—M) +Vzo(k)LVV to have an well
defined vector field on GM. (Indeed, U(E)QY = fk(Y)CY where fk(Y) =
%.-m ;

Y lk ) (lkm)). In particular U(g) =0.) M commutes T, and U(k),
O-i<m kY v
and U(t)'s satisfy the commutation relation

U i

G (B)es . Sty (k+2-3, kv, k+4-j (k+2-3) .
[u,,u ) = ]”0(( i ) ( g ; il 5 Wkl

(Y22
=T Haiy

Theorem 4. 1(t;4 ), as the function of t and E cGM, satisfies, and is charac-
terized up to an arbitrary constant factor by, the following holonomic system of
linear differential equations:

-6 + A L R U SU Vv E 7,
((Lu'v' UU'V')LUV (LUV' 6uv') u'v)r oF ¢ ‘Wsn™, viv
(0) 3 (0) I ]
(U no 51—)7 = 0, (U_n - ntn)[ =0 for n=1,2,---.
n
Indeed, the first equations (which are of the

second order) restrict the

solution to a linear form %CY(t)CY of the Plicker coordinates CY while the
remaining (first order) equations fix the coefficients cY(t) to c.XY(t)_
Here we see that the holonomic system of these linear equations on {t} x GM
produces no linear equation but the system of non-linear (quadratic or Hirota)

equations of Theorem 2, upon elimination of the variables EeCM (i.e. upon taking
the direct image by the projection {t}x M » {t}), in a sharp contrast to the

finite dimensional case [2]
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Also remarkable is the close resemblance between this holonomic system and
the system characterizing theta functions [3]. (Theorem 3 also suggests analogy

between T and 6.)

The holonomic system generated by these equations in Theorem 4 contains

also the equations of the form: (U(E)—T(t))l' = 0, k€N, ve Z, where T(l\()) is a

differential operator in t of the form: 'l‘(l\()) = kl_' )

Voo eV € EaVpte Y = v

. ) ; o LBt _
s, S, s, + terms of lower degree, with s = -=— , 0, or |VItIV] according
0 1 k-1 v
as v>0, =0, or <0. (T(O) =0, T(O) = 8§ .)
0 Y v

§3. Soliton equations and their solutions

Consider the totality 50{ of the microdifferential operators in the formal
category P = z av(x)(;—x)v, where the coefficients a\)(x) are taken from

—00<\) Koo
a given differential ring (R (i.e. an associative algebra endowed with the

derivation c;i_x tR>R). If av(x) =0 for v >m we write PG(So(lm). Together
with P its adjoint P* = }:(“ad; )\)a\)(X) is again in éoz , and for P,Q € 602_
their product PQ € 602 is well-defined by employing the Leibniz rule (dd_x)\)a(x)

= 2 (E)a(k) (x) (dd—x)\}_k for veZ. Setting a, (x) = Res P dx, we have Res Pdx

= l:;{(e)s P*dx. Thus 6R constitutes a (non-commutative) ring including I\(}a =

{differential oprators} as a subring. We have: P =P + P_ with P _=

+
d v dwl (=)
z a\)(X) (a) GLQR y P_ = vzoav(x)(a) 68

, yielding the decomposition
[ORSVECH R

Cr =g o 6;{1)-

In the following we choose (R = C[[x]], the ring of formal power series in x,
and simply write é:l:[[x]] =£ ; similarly with é\(m) and LQ . Then V of §l
is canonically isomorphic to the quotient module of 8 by its maximal left ideal
<€x as left 6 modules, by letting § = z gve\)EV correspond to the residue
—0g\ <00

class of ):E;v(-a%)—v_l mod 8x .and the action of P(x,ix) £& on £ be defined
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by & P(K,A)E. Hereafter we identify them: V = & /Ex. Further we write V =

V* by identifying zgveve V with E(—)VE ek ¢ Yk,

so that we have: <g &>
—-N=]"Y

= - <E,E'>, <E',PE> = <P*g',E>,

We also set

oand o {Eav(x)cgz)v|3d 70 s.t. a (x) are holomorphic in [x| <
v

v/TE;(x) /T >0 and YW'Ta

_V_l(x) are bounded as Vv > o

both uniformly in |x| < &},

E=U 1 a0E)Y| Tkew s.c. a ()

are polynomials of x of
—00& \) <o

degree < k},

ana(l) a

and get: V = 8na /aanax’ v =é:/éx.

d . -v (0) ; : ; ; .
Consider the operator W =Vzowv'(a;) e(fdl which is monic (i.e. wo=1)

" N . =
is again an operator of the same kind which we shall write

W =
@ =)
LS N sk i * = 1. Let
) (dx) wk with Wi 1 et W

602 with R = C((x))

so that w'l

denote the totality of such monic operatorsg

(= the field of formal Laurent series in X, which

is the field of quotients of C[[x]]), satisfying the additional condition that

: : I . =1 n (0) . m n

there exists m,nelN s.t. x"W and W "x both € C?El[xll (i.e. x Wi and x ws

€ellx]] for v=1,2,..0. set v* - o e cv; v
v<0

is also characterized by
the property that its Pliicker coordinates

gY =1 or 0 according as Y=¢ or

not. For WeY we set y(W) =

(0) e ;o
- This definition of vy (W)
Cl[x]]

1 > =
(W xn)V¢, where n is so chosen that W 1xn €

does not depend on the choice of such n.

(This is because xv¢ = V¢.)

Theorem 5. For Wel/, y(W) € GM and this map is bijective, namely

Yy : 4 X GM.

? : ‘ £4:
In this correspondence, the inverse images of GM " and GMana(l)
fin

W and 7anna(1), respectively, where 1V°ana(1) =N Eﬁna(l)

are given by

and

i v d d =
W g = W] Imonen, s.c. WGE" ana Ny 0.
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tlA+t2A2+--- -1
Theorem 6. Let &(t) = e &€ as in 82, and let W = W(t) =Y (& (t))

€ %’ be the corresponding microdifferential operator. Then the evolution of

W(t) in t 1is given by

W ogedyn s = wdyny,l
W] N =B W - NG, with B W™, .

(Bn is a differential operator of the n-th order.)

Theorem 5 tells that conversely any solution of [W] is given in the above form

in a unique way. More explicitly we have

e P, (=3,)T(t;8) - P,(3)T(e;E)
= — 5 = g s
v t(t;€) e o xee v T(t; &) By JrHE

where pv represents the character polynomial x v for Y = AI v
s

I e | . lL_I-V 3 _ =
Put L = WE;W . Then L = vzouv(dx) with uo—l, uy 0, and u, are

differential polynomials of w and the above system of evolution equa-

1,...,w\h1,

tions for W immediately implies that for L as follows:
] 22 =BL-18 ith B = (L")
[ n n v n +

which is also equivalent to the following system:

38m aBn
(B] Btn - Btm 4 BmBn - Ban "

which constitutes the integrability condition for

w2 -y

ot n
n
; il : i i T (EEE)
(Incidentally, the explicit solution for Y is given by V¥ = T AT s
’

tl*’ £ *x
where &' 1is any element of GM containing /M (as subspaces in V).)
(L] (or [B]) gives infinite number of non-linear equations for wu,, us,---,

known as the equations of Kadomtsev - Petviashvili hierarchy (e.g. 3u2 cug”
e

(=4u

2,¢ +12u,u ) =0).

+u
g Bgky bk 22,8, "¢

Explicit forms of the equations are easier to obtain for vz,v3,--- than for
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) d -1 -2
wiels ' are a i — = + Liiy o hgres
uz,uB, where vns are defined as coefficients of Tx L + sz vy

(vn is a differential polynomial of Uy, ttoyu and conversely uy is that of

e _ = = o =z - ;. 1
Vo Vose.g. v, Uy, Vg uy, etc. and u, Vys Uy Vs etc.) Namely
we have

' - = .
W' p( 3 v, for n =z 2,

and its integrability condition

[v] pn(—?)t)vm+1 + (Jn,mlv])x =0, for m,n2 L,
with
J [v] = v % o Vg ;oM
bo oW e o
n,m m+n 2 1,475 3131 s 1 0 SR
i+i'=m,j+j"'=n
2 % % Z \Y

s oWVan o aaV og PETE IR
Lydfygt, 5, g SRy SRR
i+ti'+i'"=m,j+j"'+j"=n

as the equivalents of [y] and [L], respectively.

1 : s g : 9
Again, v, 1is explicitly given by Vi = 5¥—(pn_1( 3t)1ogT )
1 tlﬂ‘ t1+x

so far, accounts are given for the l-component case. To generalize it tqo

the r-component case we shall modify the notations as follows. For Vv € Z and

the 3
0%i<r * basis element e vsi €V is rewritten as e(t) and operators A" ang
hrv+i,rV+i as N and Eii’ respectively, so that we now have
ver
(i) (1) €1 (i)
=e .e -’ =6, .e
fe v Cu+1? Ei1L v 1JL Vo,
For &e M we define its evo{¥sion &n the new set of time variables t =
(i) Lty B
(e ) by £(t) =e €.

v 0si<r,y=1,2,.

Let the Young diagram Y be labelled by (20,---,er_1), and for each i=0,...,
r-1, suppose that there are m,  of Qv's L Rv = 1 (mod r), whom we rewrite

() N .
as (lv r+1)v=0,-‘-,m.-1' Set mi = m,-m tc have Zmi = 0, and call Yi the

) ; 1
Young diagram labelled by (2(5),---,1 lzl). Then we see that the single diagram

1
Y and the composite object ((Yo,mé),'-',(Yr_l,m;_l)) correspond to each other



Infinite Dimensional Grassmann Manifold 271

in 1 to 1 manner. Accordingly, we rewrite § ., as +§ ; i 5
v (gomp)seees (U yomey)

with the possible change of sign caused by rearrangement of the suffixes Rv 5

If m! =0 for i=0,-..,r-1, it is simply written as *EY

' 0 e

All the results for the l-component case are, mutatis mutandis, generalized

to the r-component case. For example,

(0) (r-1)

T(t3€) = & )y =} B ooy Mg KENDwany (& )

L y b AL M £ Tee1
Oy vy r=1
with t(i) = (t(i), t(iz--), and, as for W = Y—{i(t),
W (i) dn . () _ oy 4yl
EZTTY =B - W-W Eii(a;) with B i (W Eii(dx)nw )+.
n
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