Tarea 5

Ejercicio 18 (sistema de raices de tipo C_n)

Recordemos que el álgebra de Lie $\mathfrak{sp}(2n,\mathbb{C}) \subset \mathfrak{gl}(2n,\mathbb{C})$ consiste de todas las matrices que tienen una forma de bloques (de tamaño $n \times n$)

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 con $A^t = -D, B^t = B \text{ y } C^t = C.$

Verifica las siguientes afirmaciones: En este conjunto, las matrices diagonales

$$\mathfrak{h} := \{ \operatorname{diag}(h_1, \dots, h_n, -h_1, \dots, -h_n) \mid (h_1, \dots, h_n) \in \mathbb{C}^n \}$$

forman un subálgebra de Cartan. Denotamos con ϵ_i : $\mathfrak{h} \to \mathbb{C}$ la forma lineal que asigna a una matriz su n-ésima entrada diagonal, entonces los ϵ_i con $1 \le i \le n$ son una base de \mathfrak{h}^* , y obtenemos el sistema de raíces

$$R := \{ \pm \epsilon_i \pm \epsilon_j \mid 1 \le i, j \le n \} \setminus \{0\}$$

con $2n^2$ elementos. Generadores de los espacios de raíces son las matrices (en la arriba mencionada forma de bloques) de los siguientes tipos

•
$$A = -D^t = E_{i,j} \text{ y } B = C = 0 \text{ para } i, j \in \{1, 2, \dots, n\} \text{ y } i \neq j,$$

•
$$B = E_{i,j} + E_{j,i}$$
 y $A = D = C = 0$, para $1 \le i \le j \le n$,

•
$$C = E_{i,j} + E_{j,i}$$
 y $A = D = B = 0$, para $1 \le i \le j \le n$.

Encuentra para cada raíz $\alpha \in R$ la coraíz correspondiente $\alpha^{\vee} \in \mathfrak{h}$.

Ejercicio 19 (sistema de raíces de tipo D_n)

Recordemos que el álgebra de Lie $\mathfrak{so}(2n,\mathbb{C})$ consiste de matrices con una estructura de bloques como en el ejercicio anterior, pero los bloques tienen que cumplir las condiciones $A^t = -D, B^t = -B$ y $C^t = -C$. Repita el "programa" del ejercicio anterior. Pista: hay nuevamente un subálgebra de Cartan de dimensión n que consiste de matrices diagonales. Las raíces tienen una forma similar, pero en este caso hay 2n(n-1) de ellas.

Ejercicio 20 (racionalidad y poitividad de la forma de Killing)

(a) Sea $\mathfrak g$ un álgebra de Lie semisimple sobre los complejos y $\mathfrak h \subset \mathfrak g$ un subálgebra de Cartan. Sea $\mathfrak h_{\mathbb Q}$ la envolvente $\mathbb Q$ -lineal de todas las coraíces, en formulas $\mathfrak h_{\mathbb Q} := \operatorname{span}_{\mathbb Q}\{\alpha^\vee \mid \alpha \in R(\mathfrak g,\mathfrak h)\}$. Demuestra que para $h,h' \in \mathfrak h_{\mathbb Q}$ se tiene $\kappa(h,h') \in \mathbb Q$ y que $\kappa(h,h) \leq 0$ implica h=0.

(b) Sea $k \subset K$ una extensión de campos, y V un K-espacio vectorial con una sistema finito de (K-) generadores R. Además sea L un sistema finito de (K-) generadores del espacio dual V^* tal que $\langle \lambda, r \rangle \in k$ para todo $\lambda \in L$ y $r \in R$. Demuestra que entonces

$$\dim_k \operatorname{span}_k(R) = \dim_K V = \dim_k \operatorname{span}_k(L),$$

y que la restricción identifica a $\operatorname{span}_k(L)$ con el dual de $\operatorname{span}_k(R)$. Concluya que en (a) tenemos $\dim_{\mathbb{Q}} \mathfrak{h}_{\mathbb{Q}} = \dim_{\mathbb{C}} \mathfrak{h}$.

Ejercicio 21 (elementos regulares y semisimples)

Este ejercicio requiere algo de geometría algebraica elemental. Sea k un campo algebraicamente cerrado y $\mathfrak g$ un álgebra de Lie de dimensión finita sobre k. Un elemento $x \in \mathfrak g$ se llama regular si su centralizador en $\mathfrak g$ tiene la mínima dimensión posible, en formulas

$$\dim_k \mathfrak{z}_{\mathfrak{g}}(x) = \min \{ \dim_k \mathfrak{z}_{\mathfrak{g}}(y) \mid y \in \mathfrak{g} \} =: \operatorname{rank} \mathfrak{g}.$$

Escribimos \mathfrak{g}_{reg} para el conjunto de los elementos regulares de \mathfrak{g} .

- (a) Demuestra que el conjunto d $\mathfrak{g}_{\rm reg}$ es abierto y denso de $\mathfrak{g}.$
- (b) Sea a partir de ahora además $\operatorname{char}(k) = 0$ y \mathfrak{g} semisimple. Deriva de nuestra demostración sobre la conjugación de subálgebras de Cartan que \mathfrak{g} contiene un subconjunto constructible y denso de elementos semisimples (que son regulares).
- (c) Sea $\mathfrak{h} \subset \mathfrak{g}$ un subálgebra de Cartan. Los elementos de \mathfrak{h} que son regulares en el sentido de (a) son precisamente los elementos de \mathfrak{h} que que no son anulados por ninguna raíz de $R(\mathfrak{g},\mathfrak{h})$. En formulas $\mathfrak{h} \cap \mathfrak{g}_{reg} = \mathfrak{h}_{reg}$.
- (d) Demuestra que en el espacio proyectivo $\mathbb{P}(\mathfrak{g})$ los rayos de los elementos nilpotentes forman un subconjunto propio y cerrado \mathcal{N} . Pista: Argumenta primero con el polinomio característico de $\mathrm{ad}_{\mathfrak{g}}(x)$ para ver que los elementos nilpotentes forman un conjunto cerrado en \mathfrak{g} .
- (e) Demuestra que los elementos semisimples y regulares forman un subconjunto abierto y denso en \mathfrak{g} . Pista: Demuestra que el conjunto $\mathcal{Z} :=$ $\{(x,[n]) \in \mathfrak{g}_{reg} \times \mathcal{N} \mid [x,n]=0\}$ es un subconjunto cerrado de $\mathfrak{g}_{reg} \times \mathcal{N}$ y concluya que la proyección $\pi_1(\mathcal{Z})$ es un subconjunto cerrado de \mathfrak{g}_{reg} . Observa además, que $x \in \mathfrak{g}_{reg}$ es semisimple si y solamente si no conmuta con ningún elemento nilpotente excepto el 0.

Fecha de entrega: 3 de Abril de 2024.