Tarea 1

Ejercicio 1

Sea k un campo.

(a) Sea $\mathfrak g$ un k-álgebra de Lie. Para $x \in \mathfrak g$ consideramos el endomorfismo k-lineal $\mathrm{ad}(x)$ de $\mathfrak g$ que esta definido por $\mathrm{ad}(x)\colon \mathfrak g \to \mathfrak g, y \mapsto [x,y]$. Demuestra que el mapeo

ad:
$$\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}), x \mapsto \mathrm{ad}(x),$$

es un homomorfismo de álgebras de Lie.

(b) Sea $A = (A, \cdot)$ un k-espacio vectorial junto con un mapeo k-bilineal $A \times A \to A, (a, b) \mapsto a \cdot b$. Entonces una derivaci'on de A es un mapeo k-lineal $\delta \colon A \to A$ tal que $\delta(a \cdot b) = \delta(a) \cdot b + a \cdot \delta(b)$ para todo $a, b \in A$. Demuestra: $Der_k(A) := \{\delta \in \mathfrak{gl}(A) \mid \delta \text{ es derivaci\'on de } A\}$ es un subálgebra de Lie de $\mathfrak{gl}(A)$.

Ejercicio 2

Demuestra:

- (a) Salvo isomorfía solo hay dos álgebras de Lie complejas de dimensión 2.
- (b) Si $\tilde{e}, \tilde{f}, \tilde{h}$ es una base de $\mathfrak{sl}_2(\mathbb{C})$ con $[\tilde{h}, \tilde{e}] = 2\tilde{e}$ y $[\tilde{h}, \tilde{f}] = -2\tilde{f}$, entonces $[\tilde{e}, \tilde{f}] = \mu \tilde{h}$ para algún $\mu \in \mathbb{C} \setminus \{0\}$.
- (c) El álgebra de Lie $\mathfrak{sl}_2(\mathbb{C})$ es simple.

Ejercicio 3

Sea k un campo. Consideramos el mapeo k-lineal:

$$\rho \colon \mathfrak{gl}_n(k) \to \mathfrak{gl}(k[X_1, X_2, \dots, X_n]), E_{ij} \mapsto X_i \partial_j \text{ para todos } i, j = 1, 2, \dots, n.$$

Aquí, los E_{ij} forman la bases estándar de $\mathfrak{gl}_n(k)$. Demuestra:

- (a) ρ define una representación de $\mathfrak{gl}_n(k)$, y para cada $d \in \mathbb{N}_0$ los polinomios homogéneos de grado d forman un sumando directo $k[X_1, \ldots, X_n]_d$ de esta representación.
- (b) En caso $\operatorname{char}(k) = 0$ ó $\operatorname{char}(k) > d$, la representación $k[X_1, \dots, X_n]_d$ de $\mathfrak{gl}_n(k)$ es simple.

Ejercicio 4

Sea \mathbb{K} un campo con char $(\mathbb{K}) \neq 2$. Demuestra:

- (a) $\dim_{\mathbb{K}} \mathfrak{sp}_{2n}(\mathbb{K}) = 2n^2 + n$,
- (b) $\mathfrak{sl}_4(\mathbb{K})\cong\mathfrak{so}_6(\mathbb{K})$) como álgebras de Lie. Pista: Soergel: Halbeinfache Liealgebren 1.1.18

Fecha de entrega: 22 de agosto de 2025.