Tarea 6

Ejercicio 22

Sea $\Phi \subset E$ un sistema de raíces. Recuerda que para $\beta \in E \setminus \{0,\}$ definimos $\beta^{\vee} := 2\beta/(\beta,\beta)$ y $\langle \alpha,\beta \rangle := (\alpha,\beta^{\vee})$ si además $\alpha \in E$. Decimos, que un sistema de raíces Φ es *irreducible*, si **no** existe una partición $\Phi = \Phi_1 \coprod \Phi_2$ con $\Phi_1 \perp \Phi_2$. Demuestra:

- (a) $\langle \alpha^{\vee}, \beta^{\vee} \rangle = \langle \beta, \alpha \rangle$ para $\alpha, \beta \in \Phi$.
- (b) Φ^{\vee} es un sistema de raíces cuyo grupo de Weyl es naturalmente isomorfo al grupo de Weyl de Φ .
- (c) Si Δ es una base de Φ , entonces Δ^{\vee} es una base del sistema dual Φ^{\vee} .
- (d) Si Φ es irreducible, también Φ^{\vee} lo es. Si en este caso Φ tiene raíces de dos longitudes differents, lo mísmo sucede para Φ^{\vee} , pero si α es largo, α^{\vee} es corto.

Dibuja los sistemas de raíces de tipo B_2 y G_2 respectivamente, junto con el sistema dual correspondiente. Para esto se supone que la raíz corta es de longitud 1.

Ejercicio 23

Sea $\Phi \subset E$ un sistema de raices *irreducible* con una base $\Delta = (\alpha_1, \alpha_2, \dots, \alpha_l)$. Demuestra que existe una única raíz máxima $\beta \in \Phi^+$. Además, si escribimos $\beta = \sum_{i=1}^l k_i \alpha_i$ tenemos $k_i > 0$ para todo $i = 1, 2, \dots, l$.

Ejercicio 24

Clasifica los sistemas de raíces de rango 2 salvo isomorfismo. Identifica en cada caso el grupo de Weyl correspondiente. Utiliza para esto solo el material cubierto en las secciones 3.1.-3.3.

Ejercicio 25

(a) Demuestra que para cualquier \mathbb{R} -base $(\gamma_1, \gamma_2, \dots, \gamma_r)$ de un espacio euclidiano E, la intersección de los semi-espacios positivos $\bigcap_{i=1}^r \{ \gamma \in E \mid (\gamma, \gamma_i) > 0 \}$ no es vacía. Pista: Encuentra γ'_i tal que $(\gamma_i, \gamma'_j) = \delta_{ij}$.

(b) Sea Δ una base del sistema de raíces Φ con grupo de Weyl \mathcal{W} . Demuestra que para cada $\mu \in E$ existe $w \in \mathcal{W}$ con $w(\mu) \in \mathfrak{C}(\Delta)$, la cerradura de la cámara de Weyl fundamental con respecto a Δ . Pista: Definimos un orden parcial \leq sobre E con $\gamma \leq \delta$ si $\delta - \gamma \in \sum_{\alpha \in \Delta} \mathbb{R}_{\geq 0} \alpha$. Escoja $w \in \mathcal{W}$ que maximice $w(\mu)$ con respecto a este orden parcial.

Ejercicio 26

Sea Φ un sistema de raíces con grupo de Weyl $\mathcal W$ y Δ una base de Φ . Demuestra:

- (a) Existe un único elemento $w_0 \in \mathcal{W}$ con $w_0(\Phi^+) = \Phi^-$. Este elemento es el (único) elemento de longitud máxima de \mathcal{W} .
- (b) Consideramos $\lambda \in \sum_{\alpha \in \Delta} \mathbb{N}_0 \alpha$. Si λ no es un múltiplo de una raíz, entonces existe $w \in \mathcal{W}$ tal que en la expansión $w(\lambda) = \sum_{\alpha \in \Delta} k_\alpha \alpha$ aparecen simultanemanete coeficientes positivos y negativos. *Pista:* En esta situación encuentra $\mu \in E$ con $0 = (\mu, \lambda) \neq (\mu, \beta)$ para todo $\beta \in \Phi$. Luego encuentra $w \in \mathcal{W}$ con $(w(\mu), \alpha) > 0$ para todo $\alpha \in \Delta$.

Fecha de entrega: 7 de noviembre de 2025.