Tarea 7

Ejercicio 27

Sea $\Phi \subset E$ un sistema de raíces con base Δ . Denotamos con $\mathcal W$ su grupo de Weyl. Demuestra:

(a) Las únicas reflexiones en W son las reflexiones de la forma s_{γ} con $\gamma \in \Phi$.

(b) Si
$$\alpha, \beta \in \Delta$$
 definimos
$$m(\alpha, \beta) := \begin{cases} 1 & \text{si } \langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = 4, \\ 6 & \text{si } \langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = 3, \\ 4 & \text{si } \langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = 2, \\ 3 & \text{si } \langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = 1, \\ 2 & \text{si } \langle \alpha, \beta \rangle \langle \beta, \alpha \rangle = 0, \end{cases}$$

entonces la "rotación" $s_{\alpha}s_{\beta}$ tiene orden $m(\alpha, \beta)$. (Se puede demostrar que \mathcal{W} , como grupo abstracto, es definido por las relaciones $(s_{\alpha}s_{\beta})^{m(\alpha,\beta)} = 1$ para $\alpha, \beta \in \Delta$.)

- (c) \mathcal{W} es isomorfo al producto directo de los grupos de Weyl de las componentes irreducibles de Φ .
- (d) El grupo de Weyl de un sistema de raíces de tipo A_n es isomorfo al grupo simétrico \mathfrak{S}_{n+1} .

Ejercicio 28

Sea Γ un diagrama de Dynkin (conexo) con l vértices y $C\in\mathbb{Z}^{l\times l}$ la matriz de Cartan correspondiente.

- (a) Demuestra que todos los menores principales de C son positivos. Pista: Verifica primero lo siguientes valores para $det(C): A_l: l+1, B_l: 2, C_l: 2, D_l: 4, E_6: 3, E_7: 2, E_8: 1, F_4: 1, G_2: 1.$
- (b) Verifica que C es simetrizable, i.e. existe una matriz $D = \text{diag}(d_1, \ldots, d_l)$ con los $d_i \in \mathbb{N}_+$ tal que $C \cdot D$ es simétrica. Obviamente podemos suponer $\text{mcd}(d_1, \ldots, d_l) = 1$. Concluya con (a) que $C \cdot D$ es positivamente definida.
- (c) Decimos que un diagrama de Dynkin es simplemente amarrado si su matriz de Cartan es simétrica. En este caso consideramos $E := \mathbb{R}^l$ con la base estándar $\alpha_1, \ldots, \alpha_l$ y definimos un forma bilineal vía $(\alpha_i, \alpha_j) =$

 $\frac{1}{2}C_{i,j}$, convertiendo así a E en un espacio euclidiano. Consideramos la retícula $Q:=\sum_{i=1}^{l}\mathbb{Z}\alpha_{i}\subset E$. Demuestra que

$$\Phi := \{ \beta \in Q \mid (\beta, \beta) = 1 \}$$

es un sistema de raíces con base $\{\alpha_1, \ldots, \alpha_l\}$ de tipo Γ . *Pista:* Considera \mathcal{W}' , el grupo generado por las reflexiones σ_{α_i} y Φ' , la unión de las \mathcal{W}' orbitas de los α_i . Demuestra primero que Φ' es un sistema de raíces con base $\alpha_1, \ldots, \alpha_l$.

Ejercicio 29

Sea $\Phi \subset E$ un sistema de raíces con $\Delta = \{\alpha_1, \ldots, \alpha_l\}$ una base, Φ^+ las raíces positivas y $\varpi_1, \ldots, \varpi_l \in E$ los pesos fundamentales correspondientes, i.e. $(\varpi_i, \alpha_j^{\vee}) = \langle \varpi_i, \alpha_j \rangle = \delta_{i,j}$ para todo $i, j = 1, 2, \ldots, l$. Recuerda que definimos $\rho := \frac{1}{2} \sum_{\beta \in \Phi^+} \beta$. Demuestra:

- (a) $\alpha_i = \sum_{j=1}^l \langle \alpha_i, \alpha_j \rangle \varpi_j$ para $i = 1, 2, \dots, l$.
- (b) $\rho = \sum_{i=1}^{l} \varpi_i$, en particular, ρ es un peso integral estrictamente dominante, i.e. $\langle \rho, \alpha_i \rangle > 0$ para todo $i = 1, 2, \dots, l$.
- (c) Sea $\mu \in \Lambda^+ := \{\lambda \in E \mid \langle \lambda, \alpha_i \rangle \in \mathbb{Z}_{\geq 0} \ \forall i = 1, 2, \dots, l \}$, es decir μ es un peso integral dominante. Si $w \in \mathcal{W}$, es decir w es un elemento del grupo de Weyl de Φ , entonces $w(\lambda) \leq \lambda$, i.e. $\lambda w(\lambda) \in \sum_{i=1}^{l} \mathbb{Z}_{\geq 0} \alpha_i$.
- (c) En la situación de (c) tenemos $(w(\lambda) + \rho, w(\lambda) + \rho) \le (\lambda + \rho, \lambda + \rho)$ con igualdad sólo si $w(\lambda) = \lambda$.

Fecha de entrega: 13 de noviembre de 2025.