Tarea 8 - la última

Ejercicio 30

Sea \mathfrak{g} un álgebra de Lie sobre un campo k, y $U(\mathfrak{g})$ su envolvente universal. Denotamos con $\mu: U(\mathfrak{g}) \otimes U(\mathfrak{g}) \to U(\mathfrak{g})$ el mapeo lineal definido por la multiplicación en $U(\mathfrak{g})$, y por $\iota: k \to U(\mathfrak{g}), t \mapsto t \cdot 1_U$ el morfismo que define la estructura de k-álgebra sobre $U(\mathfrak{g})$. Claramente $\epsilon \circ \iota = \mathrm{Id}_k$, si $\epsilon: U(\mathfrak{g}) \to k$ denota el homomorfismo de álgebras definido por $\mathfrak{g} \to 0$. Demuestra:

- (a) El mapeo lineal $\mathfrak{g} \to U(\mathfrak{g}) \otimes U(\mathfrak{g}), x \mapsto x \otimes 1 + 1 \otimes x$ se puede extender de una única forma a un homomorfismo de álgebras asociativas $\delta: U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g})$.
- (b) δ es coasociativo en el sentido que $(\delta \otimes \operatorname{Id}_U) \circ \delta = (\operatorname{Id}_U \otimes \delta) \circ \delta$ como homomorfismo de álgebras $U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g}) \otimes U(\mathfrak{g})$, y ϵ es la counidad para δ en el sentido que $(\operatorname{Id}_U \otimes \epsilon) \circ \delta = \operatorname{Id}_U = (\epsilon \otimes \operatorname{Id}_U) \circ \delta$.
- (c) Tenemos un isomorfismo de álgebras de Lie $\mathfrak{g} \to \mathfrak{g}^{op}, x \mapsto -x$. Este mapeo se extiende a un isomorfismo de álgebras asociativas $S: U(\mathfrak{g}) \to U(\mathfrak{g})^{op} = U(\mathfrak{g}^{op})$.
- (d) $\mu \circ (S \otimes \operatorname{Id}_U) \circ \delta = \iota \circ \epsilon = \mu \circ (\operatorname{Id}_U \otimes S) \circ \delta$ como endomorfismos de $U(\mathfrak{g})$

Esto muestra que $U(\mathfrak{g})$ tiene una estructura de álgebra de Hopf.

Ejercicio 31

Sea k un campo. Demuestra:

- (a) Cada homomorfismo entre dos álgebras de Lie se puede extender de una única forma a un homomorfismo (de álgebras asociativas) entre sus envolventes universales respectivas.
- (b) Sea \mathfrak{g} un álgebra de Lie con dos subálgebras \mathfrak{a} y \mathfrak{b} tal que $\mathfrak{g} = \mathfrak{a} + \mathfrak{b}$ como espacio vectorial. La multiplicación induce un mapeo (k-lineal) $U(\mathfrak{a}) \otimes U(\mathfrak{b}) \to U(\mathfrak{g})$ que es suprayectivo. Si además $\mathfrak{a} \cap \mathfrak{b} = 0$, este mapeo es un isomorfismo de espacios vectoriales.
- (c) Sea \mathfrak{g} un álgebra de Lie de dimensión finita y $b : \mathfrak{g} \times \mathfrak{g} \to k$ una forma bilineal, no degenerada e invariante. Escogemos una base x_1, \ldots, x_d de \mathfrak{g} y denotamos con x^1, \ldots, x^d la base dual de \mathfrak{g} con respecto a b, es decir $b(x_i, x^j) = \delta_{i,j}$. Entonces $C_b := \sum_{i=1}^d x_i x^i \in U(\mathfrak{g})$ no depende de la selección de la base y pertenece al centro de $U(\mathfrak{g})$.

Ejercicio 32

Denotamos para V un k-espacio vectorial con T(V) el álgebra tensorial sobre V, y recordamos que T(V) es naturalmente graduado. Consideramos en T(V) el ideal bilateral B que es generado por los elementos $v \otimes v$ con $v \in V$ y consideramos el cociente $\Lambda(V) := T(V)/B$ con la graduación inducida. Por convención, la componente homogénea de grado i de $\Lambda(V)$ se denota con $\Lambda^i(V)$, y la clase de un tensor $v_1 \otimes v_2 \otimes \cdots \otimes v_l$ en $\Lambda^l(V)$ se denota con $v_1 \wedge v_2 \wedge \cdots \wedge v_l$. De esta forma $(\Lambda(V), \wedge)$ es un álgebra asociativo graduado. Demuestra:

- (a) En $\Lambda(V)$ vale $v \wedge w = (-1)^{i \cdot j} w \wedge v$ para todo $v \in \Lambda^i(V)$ y $w \in \Lambda^j(V)$.
- (b) Si $(v_1, \ldots v_d)$ es una base ordenada de V, entonces los $v_{i_1} \wedge v_{i_2} \wedge \cdots \wedge v_{i_l}$ con $1 \leq i_1 < i_2 < \cdots < i_l \leq d$ forman una base de $\Lambda^l(V)$.
- (c) Si \mathfrak{g} es un álgebra de Lie y $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V)$ una representación de \mathfrak{g} , entonces T(V) también es una representación de \mathfrak{g} si definimos

$$x \cdot (w_1 \otimes w_2 \otimes \cdots \otimes w_l) := x \cdot w_1 \otimes w_2 \otimes \cdots \otimes w_l + w_1 \otimes x \cdot w_2 \otimes \cdots \otimes w_l + \cdots + w_1 \otimes w_2 \otimes \cdots \otimes x \cdot w_l.$$

Esta definición induce también una estructura de representación de \mathfrak{g} sobre cada $\Lambda^l(V)$

Ejercicio 33

Consideramos $\mathfrak{g} := \mathfrak{sl}(n+1,\mathbb{C})$ con el subálgebra de Cartan

$$\mathfrak{h} := \{ \operatorname{diag}(h_1, \dots h_{n+1}) \mid h_1 + \dots + h_{n+1} = 0 \}.$$

Definimos $\epsilon_i \in \mathfrak{h}^*$ por $\epsilon_i(\operatorname{diag}(h_1, \dots h_{n+1})) = h_i$. Recordamos que entonces $\alpha_i := \epsilon_i - \epsilon_{i+1}$ para $i = 1, \dots, n$ es una base Δ del sistema de raíces $R = R(\mathfrak{g}, \mathfrak{h})$. Finalmente consideramos a $V := \mathbb{C}^{n+1}$ como la representación natural de \mathfrak{g} y (e_1, \dots, e_{n+1}) denota la base estándar de V.

- (a) Demuestra que los $\varpi_i := \epsilon_1 + \epsilon_2 + \cdots + \epsilon_i$ para $i = 1, \ldots, n$ son los pesos fundamentales con respecto a Δ .
- (b) Determina la descomposición de V en espacios de peso y demuestra que V es irreducible de peso más alto ϖ_1 .

- (c) Demuestra que $\Lambda^l(V)$ es la representación irreducible de peso más alto ϖ_l para $l=1,2,\ldots,n$. Pista: Los elementos de la base estándar $e_{i_1} \wedge \cdots \wedge v_{i_l}$ son vectores de peso $\epsilon_{i_1} + \cdots + \epsilon_{i_l}$. Concluya que ϖ_l es el único peso dominante de $\Lambda^l(V)$.
- (d) Demuestra que la representación $\Lambda^l(V)$ es isomorfa al dual de $\Lambda^{n+1-l}(V)$. Pista: Demuestra que el "peso más bajo" de $\Lambda^l(V)$ es $-\varpi_{n+1-l}$
- (e) Sean $p_1, \ldots, p_n \in \mathbb{N}_0$ y escribimos $L(\varpi_l) := \Lambda^l(V)$. Demuestra que $L(\varpi_1)^{\otimes p_1} \otimes L(\varpi_2)^{\otimes p_2} \otimes \cdots \otimes L(\varpi_n)^{\otimes p_n}$

tiene una sumando directo simple con peso más alto $\sum_{i=1}^{n} p_i \varpi_i$.

Fecha de entrega: 21 de noviembre de 2025.