Geometric methods in representation theory of finite
dimensional algebras

Christof Geif

1. Introduction

It is natural to study some problems in representation theory from a geometric
point of view. Indeed, for a given finite dimensional k-algebra A and z € IN, the
possible A-module structures on k* may be viewed as solutions of certain algebraic
equations determined by the structure constants of A. In fact this idea is almost
as old as “modern” representation theory, see [Ar], [Vo]. Further investigations in
this direction include [Ga], [Ma], [P1]-[P4], [Scl], [MeS], as well as some work
focussed on the representation theory of quivers like [Kc1]-[Kce3], [Sc2], [CB3].
Representation theory also motivated the analysis more geometric questions, for
example [Bo3]-[Bo6], see these works also for further references. The “roots”
of the the present paper are [Gal], [Dr| and [P1]-[P4]. We want to give here
an overview of some newer results in this direction. For some of these results
it is convenient to look at the corresponding schemes rather than to the more
popular varieties. Thus the object of our interest will be the schemes alg, of d-
dimensional associative algebra structures and mod} of z-dimensional A-module
structures, both over some algebraically closed field k. Indeed, since these schemes
are defined more naturally than the varieties, we have a closer relation between
their local structure and homological data, the price is, that we have to deal with
non-reduced structures which we still can not interpret satisfactory.

Since on the schemes alg,; and mod} operate some general linear groups by
transport of structure, the functorial point of view for schemes as it was introduced
in [DeGa] is the adequate one. For the convenience of the reader we try to give
a minimal introduction to this language in section 2, which is based on [Ja]. We
recommend this last book also as reference for more precise information.

In section 3 we study the relation between the homological invariants
Ext) (M, M) and the local structure of modj at the corresponding point. These
results are based on elementary semicontinuity considerations and deformation the-
ory. Also we present similar results for the relation between Hochschild cohomology
groups and alg,, see [GeP]. It seems, that these results are at least partially well-
known folklore, but we know no adequate reference.
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In section 4 our starting point is the classical result of Gabriel [Ga] that finite
representation type is open; this implies that deformations (see 3.5.3) of represen-
tation finite algebras are also of finite representation type. We will see, that in
this last statement “finite representation type” may be replaced by “tame”. Let us
point out already here, that our result is based heavily on the tame-wild theorem
of Drozd in a similar way as the result of Gabriel is based on Brauer-Thrall II.

This paper is based on the talk with the same title, given at the Workshop
“Representation theory of algebras and related topics” held at UNAM, Mexico-
City, August, 16 to 20, 1994.

2. Schemes and algebraic groups

Let k be an algebraically closed field; we should point out however, that for
most of the theory presented here, k could be also a commutative ring.

2.1. k-functors. A k-functor is a functor from the category k-alg of com-
mutative k-algebras to the category of sets. Let us admit, that this definition is
somehow sloppy since we want to consider also the category with these functors as
objects, and therefore the morphisms between them must be sets, thus we should
replace k-alg by something smaller, see [DeGa, Conventions Générales]. A sub-
functor of a k-functor X is a k-functor Y with Y (A4) C X(A4) and Y(p) = X(¢)|v(a)
for all k-algebras A, A" and all ¢ € k-alg(A, A’). The morphisms Mor(X,Y) be-
tween two k-functors are the corresponding natural transformations. For a dia-

gram X; ELR S il Xs of k-functors we define the fibred product X; xgXs by
(X1 xsX2)(A4) = {(z1,22) € X1(A) x X2(A4) | fi(A)(21) = f2(A)(x2)}. Special
cases include the direct product and fibres of morphisms.

2.2. Affine schemes. The representable functors Sp, R := k-alg(R,—) are
called affine schemes; if R is a finitely generated k-algebra we call Sp, R an affine
algebraic scheme, if R contains no nilpotent elements, Spy R is called reduced. We
write A" := Sp,k[T1,...,T,] and observe A"(R) = R" for all R € k-alg. For
any k-functor X we have the Yoneda-isomorphism Mor(Sp, R, X) — X(R). We set
k[X] := Mor(X,A!) and observe that k[Sp,R] — R. For an affine scheme X the
closed (resp. open) subfunctors of X are by definition of the form V' (I) (resp. D(I))
for some ideal T of k[X], where

V(I)(A) :={z e X(A) | f(A)(x) =0Vfel},
D(I)(4) := {z € X(4) | Y Af(A)(x) = A}.

fel

REMARK . (1) V(I) = Sp.k[X]/I, while D(I) = D(\/I). If A is a field, we
have D(I)(A) = X(A) \ V(I)(A), otherwise this equation may be false.

(2) Since k is algebraically closed, we have for the affine scheme X by the
Hilbert Nullstellensatz: X(k) = {I C k[X] | I is a maximal ideal}, furthermore an
open subfunctor Y of X is uniquely determined by Y (k).

2.3. Schemes. Let X be a k-functor. A subfunctor Y of X is called open
(resp. closed), if for any affine scheme X’ over k and any morphism f: X' — X
the subfunctor f~1(Y) C X’ is open (resp. closed). This is compatible with the
corresponding definition for affine schemes. A family (Y;);es of open subfunctors
of X is an open covering if X(A) = U,csY;(A) for any A € k-alg which is a field.
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REMARK . If Y, Y’ are open subfunctors of X then we have Y = Y' iff Y(A) =
Y'(A) for any A € k-alg which is a field.

By definition a k-functor X is local if for every k-functor Y and for every open
covering (Y;)jes of Y the following sequence of sets is exact:

N g
() Mor(Y,X) = [[Mor(Y;, X)= [ Mor(Y;NYj,X),  where
jer T et

a(f) = (f lv;)jes
B((fi)jes) = (fi lviny, )jgres
Y((f)jes) = (fyr |ijYj/ )igred
Note that this means essentially that the functor Mor(?, X) is a sheave in some
sense. One can prove that X is already a local functor if (%) is exact for all affine

schemes Y = Spy R and all special open coverings of Sp, R of the form (D((f;)))
thus affine schemes are local functors.

jeJ’

DEFINITION . A k-functor is called a scheme (over k) if it is local and if it
admits an open covering by affine schemes; a scheme is called algebraic if it admits
an open covering by affine algebraic schemes.

REMARK . Affine schemes are schemes, as well as open and closed subfunctors
and fibred products of schemes.

2.4. Tangent spaces. Let X be a scheme over k, and « € X(k). By definition
the tangent space of X at x is given by

Txo = {t € X(k[e]) | X(p)(t) = «}

where k[e] is the algebra of dual numbers and p: k[e] — k the canonical projection.
Thus, if X is algebraic, Tx , will be a finitely generated k-module. A morphism
f: X =Y of schemes induces for each z € X(k) a linear map

dfm: TX@ — TY7f(w)
the differential of f at x.

REMARK . If an algebraic scheme X is not reduced, dimy Tx . will be generically
bigger than the dimension of X.

2.5. Group schemes and operations. A k-group functor is a functor from
k-alg to the category of groups; thus if we compose such a functor with the forgetful
functor we obtain a k-functor. A k-group scheme is a k-group functor, that gives a
scheme if we compose it with the forgetful functor. In the following we will consider
only affine k-group schemes without stating this always.

EXAMPLE . The k-group functor G, defined by G,(A) = (4, +) is the additive
group over k. The general linear group of rank n over k is the k-group scheme
defined by

Gl,,(A) = {group of invertible n x n matrices over A}

A special case is G, := Gly, the multiplicative group over k.
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Let G be a k-group functor. A right operation of G on a k-functor X is a
morphism a: X x G — X, such that for each A € k-alg the map a(A): X(A4) x
G(A) — X(A) is a right operation of G(A) on X(A).

If Y is a subfunctor of X, then the stabilizer of Y in G is the subgroup functor
defined by

Stabg (Y)(4) := {g € G(A) | a(A")(Y(A), G(pa)(g)) C Y (A)
for all A-algebra structures A 22 A’}

When no confusion arises, we will write 29 = a(A")(X(p)(z),9) if x € X(4),
g € G(A") and A & A’ defines a A-algebra structure. For z € X(k), we write
Stabg(x) := Stabg(Y,), where Y, is the smallest subfunctor of X containing x.

If Y is a closed subfunctor of the k-scheme X, then Stabg(Y) is a closed sub-
functor of G. This is not trivial and uses the hypothesis that k is a field.

For z € X(k) we define the orbit map m,: G — X by

Tz (A): G(A) — X(4), g — a(4)(X(pa)(x), 9) = 27

for all k-algebras k 24 A. Unfortunately, although G and X are schemes, the image
functor O’y of m; (i.e. O’4(A) := m3(G(A)) ) will in general not be a scheme, but
only a faisceau, see [Ja, I, 5.2]. The orbit O, of x is by definition F O’,, where F)
is the left adjoint of the inclusion functor from the category of k-faisceaux into the
category of k-functors. It turns out, that in our situation O, is a subscheme of X,
containing O’,. Furthermore O, is reduced if G and Stabg(z) are reduced. One
can show (see [DeGa, I11,§1,1.15]), that if k is algebraically closed, O, (k) = O’; (k).
We must refer to [Ja, I,5] for a more explicit treatment of this matter.

REMARK . Look with the above notation at the differential of the orbit map

incl.
(d7mp)ia: Taia = To, e — Tx»

It is not hard to see, that ker(d 7 )ia = Tstabg (x),ia- Thus, if Stabg(x) is reduced
at id, the restriction (d 7y )ia: Tqia — To,,» s surjective.

3. The scheme of module structures

3.1. Cohomology of modules. For later reference we write down some stan-
dard calculations related with the bar-resolution. Let A be a (finite dimensional)
associative k-algebra and M a finite dimensional A-module; for M we have then
the bar-resolution

Ot A oM
- — A AR M — A, M — M — 0
with
k
(o @ @up1 @m) = (—1)'vg @+ D V011 @+ DV @M
i=0
+ (—1)k+1v0 R QU Q V1M

Now, suppose that A is given by A : V. ® V. — V where V is the underlying
vectorspace of A, similarly let M be given by p: V@ W — W and a further module
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N by v: V®X — X, then we obtain from the above resolution the following
complex K*:

dl d}
0 — Homy (W, X) =% Homy (V @ W, X) =% Homy (V@ V @ W, X) —
with
(d\ o) (V1@ ®@vp @w) =v(v1 @ @i(v2 @+ @ V41 @ w))

1
+Z Yipr(v1 @ - @MV @ig1) ® - @ w)
i=1

+(=D Mo @ o ® plo ©w))
and H'(K*) 2 Ext’ (M, N).

3.2. Definition. Let W = k*. In the affine space Homy(V @ W, W) we may
look at the (Zariski-) closed subset of A-module structures on W. Similarly the
scheme mod3j is defined by

modj (R) := {R ® A-module structures on R ® W}

for every R € k-alg; this is an affine scheme, indeed mod} = Sp, M, where

M. = k[X (h)|h1 ]/I

4,j=1,.
with I := Z,\ X(J) _ZXm XD X0 g gor 9h=Lend
f (9,6) 7" (hyi)? “(1,0) ] 1,j=1,...,2
t=
(choose a base 1p = v1,...,vg of A s.t. vpv; =3, /\%’ivj; in fact, by [Bo4] we may

use any presentation of A in order to determine modj.) Observe, that modj (k) is
just the set of A-module structures on W mentioned above.

The general linear group Gl, operates on mod} by transport of structure, i.e.
(v @ w) = g(u(v ® g~ *w)). Thus the orbits of Gl, (k) on modj (k) represent the
isoclasses of z-dimensional A-modules.

As a general convention we will use small greek letters (u, v, . . .) for the elements
of modj (R) and the corresponding roman capitals (M, N,...) for the respective
R ® A-modules.

3.3. The tangent space. By definition, the tangent space Tinodz,u of mody
at some k-rational point p is given by the k[e] ® A-module structures i on k[e] ®
W, that reduce to g modulo (g), thus we may identify canonically Tioas . =
ker(d%\ " u)

Now, consider the orbit map 7, : G, — modj corresponding to . We calculate
with the above identification: (dm,) = d} , ,. Since the stabilizer of a module
structure, being an open subscheme of an affine space, is always reduced, we also
may identify Imd} , , = To, - In other words, we have proved, ([Gal):

Tmodz u/To, % Ext} (M, M)

REMARK . In general modj is not reduced, look for example at the 0-
dimensional scheme modll([w] J(z2)- Thus, if we consider the variety mod 3™

obtain only an inclusion instead of the above isomorphism. We would like to have

, we
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a characterization of the selfextensions of M which correspond to tangent vectors of
modf\’red at pu. Related with this is the question: When is mod} already reduced?
3.4. Upper semicontinuity. The following lemma is an easy exercise, us-

ing 3.1, see [Scl]; compare also [GeP] for the corresponding statements about
Hochschild cohomology of algebras.

LEMMA . For a given finite dimensional k-algebra A and z € IN we have:
a) The function
§%: modj (k) — INo, p +— dimy, Ext’y (M, M)
is upper semicontinuous (with respect to Zariski-topology) for all i € WNy.
b) IfExti (M, M) = 0 for some z-dimensional A-module M, there is an open
neighborhood U of pv in mod} (k) and there exist integers c,,d,, such that

we have for all v E U:
(i) dimy kerdy

n—1
(i) > (—1)" dimy Exty (N,N) = d,,
i=0
(iii) Exti(N,N)=0
3.5. Deformations. We need some elementary deformation theory of mod-
ules in the language of schemes, compare [GhS2, 9].
3.5.1. A formal deformation of p € modj (k) is an element i € mod3 (k[[T]])

s.t. mod} (7)(i1) = p, where 7 is the canonical projection from k[[T']], the algebra
of formal power series to k, i.e. we have a commutative diagram

Spkk Spkk

el |-

Spik{[T]] ——— modj
i

)\l/u_cN

Two formal deformations fi1, fiz of u are equivalent if there exists g € Gl (k[[T]) s.t.
Gl.(7)(g) = id, and iz = if; a formal deformation of y is trivial, if it is equivalent
to w itself.

REMARK . Sometimes the formal deformations are also called one-parameter

deformations, we want to explain this. First, if We have a formal deformation [ of

w, we can factorize i as Sp k[[T]] —— Sout, Ska 2, modj where R is the image of

the induced map fi* : k[mod3] — k[[T]]. Thus R is a finitely generated k-algebra,
an integral domain and, as we will see, at most of (Krull) dimension 1. For this
end it is sufficient to study the local ring R := RRmTk[[T]] which by construction is

dominated by k[[T]]. Take 0 # = € rad R and consider the morphism of k-algebras
01 R/zR — K[[T])/«k|[T]]

induced by the inclusion, which is still injective (we exclude the trivial case R=k).

Now, k[[T]/«k[[T]] = k[T]/(T™), thus also R/zR is a finite-dimensional k-algebra

and consequently by Krull’s principal ideal theorem R has dimension 1.

On the other hand, if we have an (irreducible) curve C' C mod} passing through
1, this gives rise to a formal deformation of u, in fact we get

k[modi] 2% k[C] < k(] L k[T,
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where k[C] is the normalization of k[C] and f is induced by the I-adic completation

of k[C] at some maximal ideal I lying over the ideal of .

3.5.2.  Similarly, the infinitesimal deformations of p may be identified with
Timods ,u», compare 3.3, while the trivial infinitesimal deformations can be identified
with Tm df o tHUS Ext} (M, M) classifies the infinitesimal deformations of .

3.5.3. Let fi be a formal deformation of p, then y is called a jump deformation,
if there exists 1 € modj (k) and g € Gl (k((T')) ) with 2 = . In this case we say
by abuse of language that p; is a (jump) deformation of p.

REMARK . p1 is a (jump) deformation of p iff p lies in the Zariski closure of
the orbit u?uk) C modj (k), compare [Bo3, Introduction]. We leave the proof to

the reader; hint: [Kr2, I11.2.3.1].

3.6. Rigidity. Related with the different notions of deformations there are
also several concepts of rigidity. Let u € modj (k), then pu is called

a) absolutely rigid if Ext} (M, M) = 0 or equivalently if all infinitesimal de-
formations are trivial,

) analytically rigid if all formal deformations are trivial,

) geometrically rigid if the orbit uS'= (k) is open in modj (k),

d) semi-rigid if all jump deformations are isomorphic to p itself.

b

In our situation we have the following implications:
a) = b)<=c) = d)

The implication a) = b) is essentially the same as the well-known case of algebras,
see [Gh1].

b) = ¢) is based on the observation, that if x4 is not geometrically rigid, then
there exists a curve C' C mod} whith 1= N C(k) = p; with the construction of
the remark in 3.5.1 we obtain a non-trivial deformation.

¢) = b) is based on the fact, that the stabilizer groups of module structures
are always smooth, see 3.3, compare also [GeP].

¢) = d) is trivial.

EXAMPLE . (1) The module of the example in remark 3.3 is geometrically rigid
but not absolutely rigid.

(2) A simple regular module over a tame hereditary algebra are semi-rigid but
not geometrically rigid (if it lies in a homogenous tube).

3.7. Proposition. IfExt?\(M, M) =0, then u is a smooth point of the scheme
modj .
This is an easy consequence of 3.4 and the fact, that Exti (M, M) = 0 implies, that

every infinitesimal deformation can be lifted to a formal deformation (and thus
Tinodi.p = Tpypqzmea ), compare [GeP].

COROLLARY . a) IfExt} (M, M) = 0 the local dimension of the k-scheme mod}
at p is 2% — dimy Endp (M) 4 dimy Ext) (M, M).

b) If Exti(M, M) = 0 and Endy (M) = k there is an open neighborhood U
of 1 in mod3 (k) such, that all the orbits passing through U have codimension
dimy, Exth (M, M).
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3.8. Algebras. There are parallel results for algebras. The scheme alg, is
defined as follows: If V = k%, then

alg,;(R) = {associative unitary R-algebra structures on R ® V'}

It is well known, though less obvious, that alg, is also an affine scheme. We have the
operation of Glg on alg, by transport of structure, and the orbits of the k-rational
points correspond to the isoclasses of d-dimensional associative k-algebras. If we
calculate the Hochschild cohomology groups as in [H] we find:

- Tag,x = ker di canonically,
- the differential of the orbit map 7y : Glg — alg; of A may be identified
with d} and Tsgab, (1)1 — ker dj.

Thus we find by similar considerations as in 3.3 a canonical isomorphism
Tag,x/Toyx = HQ(A) if Stabgy, (A) is reduced; this is always true if chark = 0,
while for positive characteristic there are counterexamples, see [GhS1].

The different notions of deformations, resp. rigidity carry over almost literally
from our considerations of modules, but here geometrical rigidity implies formal
rigidity only if the stabilizer is smooth.

Finally, the low Hochschild cohomology groups give us some local information
about alg,:

PROPOSITION . Let A be a d-dimensional k-algebra and A the corresponding
point of alg,
a) If H'(A) = 0 then Stabgi, (\) is smooth and X is semirigid.
b) IfH3(A) =0, then X is a smooth point of alg,.
¢) If HY(A) = 0 = H3(A), there exists an open neighborhood U of X in
alg,(k), such that the codimension of all Gly(k) orbits passing through U
is dimy H2(A).

For the proofs, which are based on the methods presented here, we refer
to [GeP]. There we study also an important example: If A is strongly simply
connected and tame of polynomial growth we have H'(A) = 0 = H*(A), in this
situation we construct even explicitly a dimy H? (A)-parametric family of algebras,
containing A.

4. Representation type

4.1. Definition. Let A be a finite dimensional k-algebra. Then A is of

- finite representation type iff the number isoclasses of indecomposable mod-
ules is finite,

- tame if for every z € INy the indecomposable modules of dimension z may
be parametrized by a finite number of rational curves,

- wild if the representation theory of A is as complicated as the representa-
tion theory of k(z,y), the (non commutative) free associative algebra in
two variables.

We refer to [CB1] for more precise definitions of tame and wild. Recall, that by
Brauer-Thrall II, if A is of infinite representation type there are in some dimension
infinitely many isoclasses of indecomposable modules. Indeed, the proofs of this
result (see [Ba], [Bol],[Bo2], [Fi]) provide much more information. Similarly,
the theorem of Drozd (see [Dr]|, [CB1] and [GNRSYV]) asserts, that if A is not
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tame, then it is already wild. Both theorems are deep and the proofs are quite
complicated.

4.2. Representation type and dimension. We define the following closed
subfunctor of modj:

mody*(R) := {u € modj (R) | rankp Endgea (M) > t}
for all k-algebras R.

PROPOSITION . Let A be a finite dimensional k-algebra.
a) A is representation finite <= dim modf\’t <2Z2—tforallzeN,1<t<
2
z2.
b) A is tame < dimmodf\’t <Z24z—tforalzeN,1<t<22

The proofs “=" are in both cases direct consequences of the definition of the
respective representation type, while the other directions require Brauer-Thrall 1T
and Drozd’s theorem respectively.

4.3. Upper semicontinuity. Look at the scheme algmod? which is defined
by

algmodi(R) := {(\,p) | X is an R-algebra structure on R ® k<,
wis a R ® A-module structure on R ® k*}

for all k-algebras R. We have the canonical projection 7 : algmod; — alg,; with
fibre 771(\) = modj for A € alg,(k); moreover we have the obvious operation of
Gl, on algmod]. The following result [Ga, 3.2] is important for us:

LEMMA . The morphism w(k): algmodj(k) — alg,(k) sends closed and Gl, (k)
muariant sets to closed sets.

The proof uses certain Grassmanians naturally related with mod3, for a proof
avoiding the scheme-theoretic language see [LRS]. A direct consequence is:

PROPOSITION . The function 65" : algy(k) — No, A+ dimmod}® is upper
semicontinuous.

4.4. Theorem. ([Ge2]) Deformations of tame (resp. representation finite)
algebras are tame (resp. representation finite).

This is an direct consequence of the propositions 4.2 and 4.3.

EXAMPLE . Look at the algebras A; := k(a,b)/(a® — bab,a®, b?) (observe:
(ab)? = 0 = (ba)? in A1) and Ay := k(a, b)/(a?,b?, (ab)?, (ba)?), then A; is a (jump)
deformation of Ag, furthermore Ag is special biserial and thus well-known to be
tame, so we may conclude by our theorem that A; is tame. In fact, in [CB2]
by other methods there is given a complete description of the indecomposable
modules of A;, and it is quite interesting to compare the modules of a given
dimension over A; and Ag. Similarly, Ay deforms into the quaternion algebra,
A} :=Xk(a,b)/{a? — bab,b*> — aba, (ab)?, (ba)?) which gives a tameness proof for this
algebra — but in this case there is no description of the indecomposable modules
available.

Let us mention also, that the above theorem was an important step towards
the classification of the tame distributive algebras, see [Ge3|, [DxGe].
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REMARK . (1) Recently Crawley-Boevey proved a similar result for families of
algebras defined by quivers and relations whose dimension is not necesarily fixed.

(2) We can prove also this type of result for an other class of problems: De-
formations of tame bimodule problems are tame, but we do not want to enter here
into the technical details.

(3 ) It is still an open question if tame is an open property.
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