The Exotic World of Milnor’s Spheres

Julio Sampietro* and Carlos Segovia†

March 1, 2022

I found I could actually prove that it was homeomorphic to the standard 7–sphere, which made the situation seem even worse!

John Milnor

*jsampietro14@ciencias.unam.mx
\†csegovia@matem.unam.mx
\1Image by Peder Norrby ‘ALGOMYSTIC’, ‘Hopf Fibrations’
Introduction

Spheres and their topological invariants

Among the most classic objects in mathematics we have the spheres. As far back as Ancient Greece, it was known that the unit circle could be described, although perhaps not with this language, as the set of pairs of real numbers \((x, y)\) that satisfy the equation
\[
x^2 + y^2 = 1.
\]

Increasing the dimension, the sphere of dimension two consists of triples \((x, y, z)\) \(\in \mathbb{R}^3\) satisfying \(x^2 + y^2 + z^2 = 1\). Continuing with this process, we define the \(n\)-sphere as the set of coordinates \((x_1, \ldots, x_{n+1})\) \(\in \mathbb{R}^{n+1}\) that satisfy
\[
\sum_{i=1}^{n+1} x_i^2 = 1.
\]

As the concepts of topology and differential topology were established, it became clear that spheres had the structure of a topological and even more of a smooth manifold. In a certain way, this structure is inherited from the ambient space.

At the turn of the nineteenth century Henri Poincaré appears as one of the protagonists, or more precisely, as the founder of algebraic topology.

He constructs two different invariants associated to manifolds. The first is known as the fundamental group which later is generalized to the so-called homotopy groups. They are based on the idea of measuring holes through the obstruction of contracting spheres to a point. The second is the homology groups, which were first defined as formal sums of submanifolds up to bounding a higher-dimensional manifold, these are currently known as the bordism groups. Nevertheless, an adequate description for the homology groups was found in terms of triangulations of manifolds. These groups measure the obstruction of a triangle to be the boundary of a higher-dimensional triangle.

Although at first glance both invariants look similar, they are quite different in terms of complexity of calculation among other properties. Poincaré formulated his first conjecture: if a closed, connected manifold has the same homology groups as the sphere, then it is in fact a topological sphere. He gave a counterexample for this conjecture, which nowadays is known as the “Poincaré’s sphere”. Then he formulated a second version of this conjecture, which states that if a closed connected manifold has the same homotopy groups as the sphere, it must be a topological sphere. This was known as the Poincaré’s conjecture until Perelmán came with the proof.

\begin{figure}[ht]
\centering
\includegraphics[width=0.25\textwidth]{Poincare.png}
\caption{Henri Poincaré.}
\end{figure}
This question motivated an important part of the development of mathematics during the twentieth century. At least three Fields medals were awarded for progress in the Poincaré conjecture (Smale, Freedman and Perelman). Within the most indirect consequences of this fructiferous program is the heart of the present article, the exotic spheres.

The state of topology during the 1950’s

As we mentioned, when point-set theory and differential topology were developed, it became apparent that spheres with their standard structure were not only manifolds, but also inherited a smooth structure from the ambient space.

The 1950’s were quickly marked by the influence of René Thom. His famous isomorphism theorem allowed the coherent formulation and the proof of various important results, as well as the construction of various new objects. Foremost among them are the topological construction of Chern classes and a description of the bordism ring. This provided mathematicians with powerful tools which sometimes turned out to be the missing piece in their projects.

Figure 2: René Thom.

This was the case of the German mathematician Friedrich Hirzebruch. It tells the story that when the new note of Thom came to the library of the institute where was working Hirzebruch, it took him a few seconds to complete the proof of the signature theorem. This theorem roughly relates two invariants that seemed quite different. On one hand the signature of a manifold, a topological index linked to the cohomology of the underlying space, and on the other hand the Pontryagin classes which capture the differentiable structure of the space. The equation that would pass to the history because of its relevance in the Milnor’s work, takes the form

$$\sigma(M) = \frac{1}{45} (7p_2(M) - p_1^2(M)).$$

The road of John Milnor

During the year 1956, at early age, John Milnor worked in the task of studying the topological invariants of some well known manifolds. In his own words: “The generalized Poincaré problem of understanding such manifolds seemed too difficult: I had no idea how to get started”. In fact, he restrict to simpler manifolds given by closed $2n$-dimensional manifolds which were $(n-1)$-connected and thanks to a paper of Smale and Wall, there was a relative simple description for $n > 2$.
Indeed, since these spaces have a simple cohomological structure, Milnor further reduced their description to some particular spaces constructed as sphere bundles over the fourth dimensional sphere. Thanks to the Steenrod’s work, it is possible to classify all such bundles and in some cases, their total space is homeomorphic to the 7-sphere. On the other hand, assuming they were diffeomorphic to the sphere, Milnor reached a contradiction with the Hirzebruch’s formula: he found rational values for an integer value! In conclusion: these spaces were topologically spheres, but their smooth structure did not match the standard one. This was unexpected since it was thought that spheres had a single smooth structure, but this was not the case.

Acknowledgements

The authors would like to thank Peder Norrby, for allowing us to use his art to bring our work to life.
Contents

1 Preliminaries 6
 1.1 The signature of a manifold 6
 1.2 Basic properties of the signature 6
 1.3 Characteristic classes 10
 1.3.1 The Thom isomorphism and the Euler class 13
 1.3.2 Stiefel-Whitney classes 13
 1.3.3 Chern and Pontryagin classes 15

2 The Hirzebruch signature theorem 17
 2.1 Multiplicative sequences 17
 2.2 Digression: symmetric polynomials and the Hirzebruch’s lemma 19
 2.3 K-genus and the Hirzebruch theorem 22

3 Milnor’s explicit construction 24
 3.1 Construction in terms of the canonical fibration 24
 3.1.1 Calculating \(\pi_3(\text{SO}(4)) \) 26
 3.2 They are homeomorphic to the sphere \(S^7 \) 28
 3.3 They are non-diffeomorphic to the sphere \(S^7 \) 31
 3.3.1 The characteristic classes of \(\xi_{h,l} \) 32
 3.3.2 Determining the coefficients 33
 3.3.3 Calculating \(p_1(K_{h,l}) \) 36

4 A comparison with Milnor’s original work 37

5 Closing remarks 40
 5.1 In summary 40
 5.2 A glimpse ahead 41
1 Preliminaries

Let us set the convention that all manifolds are smooth, meaning that the transition maps are \(C^\infty \).

1.1 The signature of a manifold

In this section only cohomology is understood with rational coefficients. Let \(M \) be a connected, oriented, closed \(2n \)-dimensional manifold. Choose the generator of \(H^{2n}(M; \mathbb{Q}) \) given by the fundamental class of \(M \), denoted by \([M]\). The cup product in cohomology induces a bilinear map

\[
\omega : H^n(M; \mathbb{Q}) \otimes H^n(M; \mathbb{Q}) \to \mathbb{Q}
\]

defined by

\[
\omega : (\alpha, \beta) \mapsto \langle \alpha \smile \beta, [M] \rangle
\]

where \(\langle \cdot, \cdot \rangle \) denotes the pairing between homology and cohomology.

Remark 1. Recall the cup product is graded-commutative, that is

\[
\alpha \smile \beta = (-1)^{pq} \beta \smile \alpha
\]

where \(\alpha \in H^p(M; \mathbb{Q}) \) and \(\beta \in H^q(M; \mathbb{Q}) \). In particular, for \(n \) even \(\omega \) is symmetric, and for \(n \) odd \(\omega \) is anti-symmetric.

Since \(H^n(M; \mathbb{Q}) \) is finitely generated, we can represent \(\omega \) by a square matrix which will be symmetric or anti-symmetric depending on the parity of \(n \).

If \(n \) is even, that is if \(M \) is \(4k \)-dimensional, then the spectral theorem guarantees the existence of real eigenvalues. We define the signature of \(\omega \) as

\[
\text{sign}(\omega) = \# \text{positive eigenvalues} - \# \text{negative eigenvalues}
\]

Then we define the signature of a manifold \(M \), denoted \(\sigma(M) \), as the signature of associated \(\omega \).

Note that the signature is always, by definition, an integer.

1.2 Basic properties of the signature

Let us study the behavior of the signature under different operations on manifolds.

First, if we change the orientation of \(M \) by \([-M] = -[M]\), then the signature of \(-M\) is given by the bilinear form

\[
\tilde{\omega}(\alpha, \beta) = \langle \alpha \smile \beta, [-M] \rangle = -\langle \alpha \smile \beta, [M] \rangle = -\omega(\alpha, \beta).
\]

Thus the eigenvalues of \(\tilde{\omega} \) are those of \(\omega \) with opposite signs and it follows that \(\sigma(-M) = -\sigma(M) \).

Now if we consider the disjoint union of two manifolds \(M \sqcup N \), the fundamental class corresponds to the sum of the fundamental classes \([M \sqcup N] = [M] + [N]\). Then the bilinear form associated to the disjoint union is the direct sum of the bilinear forms and \(\sigma(M \sqcup N) = \sigma(M) + \sigma(N) \).

Furthermore, we have the following result.
Proposition 2. The signature is a bordism invariant.

To prove this statement we will need the next lemma.

Lemma 3. If $\omega : V \times V \to \mathbb{Q}$ is a non-degenerate symmetric bilinear form and there exists a subspace W of dimension $\frac{\dim V}{2}$ such that the restriction of ω to W is identically zero, then the signature of ω is zero. Such a subspace is called isotropic or lagrangian.

Proof. We find a basis of V in order to ’cancel’ the eigenvalues.

Let $e_1 \in W$ be a non-zero element. Since ω is non-degenerate, there exists $f_1 \in V$ such that $\omega(e_1, f_1) = 1$. If $\omega(f_1, f_1) \neq 0$ we may replace f_1 by $\tilde{f}_1 := f_1 - \frac{\omega(f_1, f_1)}{2} e_1$. Note that $\omega(\tilde{f}_1, e_1) = 1$ and

$$\omega(\tilde{f}_1, \tilde{f}_1) = \omega(f_1, f_1) - \omega(f_1, f_1)\omega(e_1, f_1)$$

$$= \omega(f_1, f_1) - \omega(f_1, f_1)$$

$$= 0.$$

Thus we assume without loss of generality that $\omega(f_1, f_1) = 0$. Set $S = \text{Span}(e_1, f_1)$. Restricted to S, ω is represented by the matrix

$$
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
$$

which has zero signature. Consider the subspace $V_1 = S^{\perp}$. Since ω is non-degenerate we have that $V = S \oplus V_1$. Defining $W_1 = W \cap V_1$ we have that V_1 has dimension $\dim V_1$ and the restriction of ω to W_1 is identically zero. By induction, we apply the hypothesis to W_1 which has dimension $\dim(V) - 2$ and hence the signature of ω is zero. \qed

Now we show the bordism invariance of the signature.

Proof of proposition 2. Assume that the $4k$-dimensional manifold M is the boundary of a $(4k + 1)$-dimensional manifold W. We denote by $\iota : M \hookrightarrow W$ the inclusion. Using the long exact sequence of the pair and the Poincaré duality, we have the following commutative diagram

$$
\begin{array}{c}
H^{2k}(W; \mathbb{Q}) \xrightarrow{\iota^*} H^{2k}(M; \mathbb{Q}) \xrightarrow{\partial} H^{2k+1}(W, M; \mathbb{Q}) \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \partial \\
H_{2k+1}(W, M; \mathbb{Q}) \xrightarrow{\iota_*} H_{2k}(M; \mathbb{Q}) \xrightarrow{\partial} H_{2k}(W; \mathbb{Q})
\end{array}
$$

(1)

where D is the Poincaré isomorphism. The image of ι^* in $H^{2k}(M; \mathbb{Q})$, is a subspace and we claim it is isotropic.

First, the restriction of ω to this subspace is zero,

$$\omega(\iota^*(\alpha), \iota^*(\beta)) = \langle \iota^*(\alpha) \smile \iota^*(\beta), [M] \rangle$$

$$= \langle \iota^*(\alpha \smile \beta), \partial[W] \rangle$$

$$= \langle \alpha \smile \beta, \iota_* \partial[W] \rangle$$

$$= 0.$$
Where we used that the composition $\iota^* \partial$ is zero in the long exact sequence of a pair. This subspace has the half dimension of $H^{2k}(M; \mathbb{Q})$ since

$$x \in (\text{Im } \iota^*)^\perp \iff \langle x \sim \iota^*(y), [M] \rangle = 0 \ \forall y \in H^{2k}(W; \mathbb{Q})$$

$$\iff \langle \iota^*(y), [M] \sim x \rangle = \langle \iota^*(y), D(x) \rangle = 0 \ \forall y \in H^{2k}(W; \mathbb{Q})$$

$$\iff \langle y, \iota_*(D(x)) \rangle = 0 \ \forall y \in H^{2k}(W; \mathbb{Q})$$

$$\iff \iota_* D(x) = 0$$

On the other hand, we know that

$$\dim \text{Im } \iota^* + \dim (\text{Im } \iota^*)^\perp = \dim H^{2k}(M; \mathbb{Q})$$

and because D maps $(\text{Im } \iota^*)^\perp$ isomorphically onto $\ker \iota_*$ we can replace the previous equation by

$$\dim \text{Im } \iota^* + \dim \ker \iota_* = \dim H^{2k}(M; \mathbb{Q})$$

But the commutativity of the diagram (1) together with the exactness of the rows imply that D maps $\text{Im } \iota^*$ isomorphically onto $\ker \iota_*$. We conclude that

$$\dim \text{Im } \iota^* + \dim \ker \iota_* = \dim H^{2k}(M; \mathbb{Q}).$$

Thus $\text{Im } \iota^*$ is an isotropic subspace of $H^{2k}(M; \mathbb{Q})$ of the half dimension and by Lemma 3, we obtain that $\sigma(M) = 0$. \hfill \square

Remark 4. As a consequence, in the case two manifolds M and N are equivalent in oriented bordism, they have the same signature. More precisely, denote by W the oriented bordism with $\partial W = M \sqcup -N$, hence we obtain

$$\sigma(\partial W) = \sigma(M \sqcup -N) = \sigma(M) - \sigma(N) = 0.$$

For the product of two manifolds $M \times N$, the signature $\sigma(M \times N)$ uses Künneth’s formula

$$H^*(M \times N; \mathbb{Q}) \cong H^*(M; \mathbb{Q}) \otimes H^*(N; \mathbb{Q}).$$

If M is $4k$-dimensional and N is $4l$-dimensional, then ω is a bilinear form on the space

$$\bigoplus_{i+j=2(k+l)} H^i(M; \mathbb{Q}) \otimes H^j(N; \mathbb{Q}),$$

which can be decomposed as the direct sum

$$\left(H^{2k}(M; \mathbb{Q}) \otimes H^{2l}(N; \mathbb{Q}) \right) \oplus \bigoplus_{i+j=2(k+l)} H^i(M; \mathbb{Q}) \otimes H^j(N; \mathbb{Q}).$$

Notice the cup product of an element in the first summand with an element in the second summand is trivial. Thus the bilinear form ω is the direct sum of its restriction to each summand. Furthermore, the second summand has an isotropic subspace and hence the only contribution to the

2This follows from a dimension argument where the product exceeds the dimension of the manifold.
signature is given by the restriction of ω to $H^{2k}(M; \mathbb{Q}) \otimes H^{2l}(N; \mathbb{Q})$. But the bilinear form restricted to this subspace is the tensor product of the bilinear forms of the factors. Thus the eigenvalues of the original bilinear form correspond to the product of the eigenvalues of the bilinear forms on each of the factors. Therefore, the signature is multiplicative in the sense that $\sigma(M \times N) = \sigma(M)\sigma(N)$.

We illustrate this fact with an example. For the sake of simplicity, in our notation we will omit the coefficients \mathbb{Q} (only for this example).

Example 5. For $M = N = \mathbb{CP}^4$, we apply the Künneth formula and we get

$$H^*(\mathbb{CP}^4 \times \mathbb{CP}^4) = H^*(\mathbb{CP}^4) \otimes H^*(\mathbb{CP}^4).$$

Since we know $H^*(\mathbb{CP}^4) = \mathbb{Q}[x]/(x^5)$, hence

$$H^*(\mathbb{CP}^4) \otimes H^*(\mathbb{CP}^4) \cong \mathbb{Q}[x, y]/(x^5, y^5).$$

In particular, $H^8(\mathbb{CP}^4 \times \mathbb{CP}^4)$ is generated by $x^2y^2, x^3y, y^3x, x^4, y^4$. Moreover, the subspace generated by x^2y^2 corresponds to $H^4(\mathbb{CP}^4) \otimes H^4(\mathbb{CP}^4)$. In other words, we have a decomposition

$$H^8(\mathbb{CP}^4 \times \mathbb{CP}^4) = (H^4(\mathbb{CP}^4) \otimes H^4(\mathbb{CP}^4)) \oplus \left(\bigoplus_{i+j=8 \atop i,j \neq 4} H^i(\mathbb{CP}^4) \otimes H^j(\mathbb{CP}^4) \right).$$

The second summand, say V, is equal to the subspace generated by x^3y, y^3x, x^4, y^4. and consider $W = \text{Span}(y^3x, y^4)$ inside this subspace. We observe that $\dim W = \frac{\dim V}{2}$ and that the restriction of ω to this subset is zero. Indeed, the product of any two generators in W has a power of y exceeding 5, thus trivial. Since W is an isotropic subspace of V of the half dimension, the signature of ω restricted to V is zero. Hence the signature depends only on the factor W.

$$\omega' : (H^4(\mathbb{CP}^4) \otimes H^4(\mathbb{CP}^4)) \otimes (H^4(\mathbb{CP}^4) \otimes H^4(\mathbb{CP}^4)) \to \mathbb{Q}.$$

But the properties of the cup product imply that ω' is simply given by

$$\omega'(\alpha \otimes \beta, \alpha' \otimes \beta') = (\alpha \dashv \alpha' \otimes \beta \dashv \beta', [M] \otimes [N])$$

$$= (-1)^{4kl}(\alpha \dashv \alpha', [M])\langle \beta \dashv \beta', [N] \rangle$$

$$= \omega_1(\alpha, \alpha')\omega_2(\beta, \beta')$$

where ω_i is the bilinear form on M and N respectively. Therefore, ω' is the tensor product or Kronecker product of the bilinear forms. In fact, the eigenvalues correspond to the product of the eigenvalues of each factor and the signature is given by the product of the signatures.

We summarize our discussion so far in the following theorem.

Theorem 6. The signature σ satisfies the following properties:

1. $\sigma(-M) = -\sigma(M)$,

2. $\sigma(M \sqcup N) = \sigma(M) + \sigma(N)$,
3. If M and N are the same in bordism, then $\sigma(M) = \sigma(N)$,

4. $\sigma(M \times N) = \sigma(M)\sigma(N)$.

We remind the reader that the signature is defined only for $4k$-dimensional manifolds.

We conclude this section with a couple of examples, where the first is of great importance in this work.

Example 7. The signature of $\mathbb{C}P^{2l}$: in algebraic terms, we remember the cohomology of $\mathbb{C}P^{2l}$, $H^{*}(\mathbb{C}P^{2l}; \mathbb{Q}) = \mathbb{Q}[x]/(x^{2l+1})$, where we have the bilinear form ω is given in terms of the generators by $\omega(x^{l}, x^{l}) = \langle x^{2l}, [\mathbb{C}P^{2l}] \rangle = 1$. In geometric terms, we recall the cell structure of the complex projective space, where the generator of $H^{l}(\mathbb{C}P^{2l}; \mathbb{Q})$ is dual to the cell $\mathbb{C}P^{l} \subset \mathbb{C}P^{2l}$. Even more, because of the duality of the cup product and the cap product, the calculation of the signature is provided by the self-intersection number of this cell (for more information on intersection theory we refer the reader to [Fom16]). Consider the usual embedding of $\mathbb{C}P^{l}$ in $\mathbb{C}P^{2l}$, given by $$E = \begin{bmatrix} z_1 & : & \cdots & : & z_{l+1} & : & 0 & : & \cdots & : & 0 \end{bmatrix}.$$ We can deform this subspace into the following one, where we are going to calculate the intersection, $$L = \{ [z_1 : \cdots : z_{2l+1}] | z_{2l+1} = z_1 + \cdots + z_l - z_{l+1}, z_{2l} = z_1 + \cdots + z_{l-1} - z_l \cdots, z_{l+2} = z_1 - z_2 \}.$$ Notice that L is the zero-set of a set of homogeneous polynomials, so L is well-defined. Even more, L is the intersection of codimension-increasing planes, and therefore, L is the set of lines through the $(l + 1)$-space, i.e. $L \cong \mathbb{C}P^{l}$. The intersection $E \cap L$ is described by elements of the form $[z_1 : \cdots : z_{l+1} : 0 : \cdots : 0]$ subject to the conditions

$$\begin{align*}
z_1 &= z_2 \\
z_1 + z_2 &= z_3 \\
\vdots \\
z_1 + \cdots + z_l &= z_{l+1}
\end{align*}$$

hence $z_1 = z_2, z_3 = 2z_1, z_4 = 6z_1$ and so on. This set consists of a single line, in other words $E \cap L$ consists of a single element. Moreover, L is homotopic to E by multiplication each defining polynomial of L by a parameter t. As a consequence, we conclude that the self-intersection number of E is precisely 1, and it follows that $\sigma(\mathbb{C}P^{2l}) = 1$.

Example 8. The signature of S^4: the class $H^2(S^4; \mathbb{Q})$ is zero, hence the bilinear form ω is null and $\sigma(S^4) = 0$.

1.3 Characteristic classes

In this section we review some basic properties of characteristic classes, for a deep and complete exposition the reader can consult the book of Milnor [Mil74].

We start with a motivation: a vector bundle over a space X is a continuous projection $\pi : E \to X$ such that each fiber $\pi^{-1}(x)$, for each $x \in X$, has the structure of a vector space. Moreover, they...
are locally trivial in the sense that for each \(x \in X \), we can find an open neighborhood where the restriction is a trivial bundle and the change of coordinates are linear isomorphisms. A vector bundle can be understood as a continuous way of attaching to each point \(x \) an \(n \)-dimensional vector space. We are interested in a way to classify all vector bundles, but to achieve this we need to introduce an important space which we specify in the following paragraph.

The space of \(n \)-dimensional planes in \(\mathbb{R}^{n+k} \), denoted by \(G_n(\mathbb{R}^{n+k}) \), is known as the Grassmannian. This space has a topological structure induced by the Gaussian elimination on \(n \times (n+k) \) matrices with rank \(n \). Thus the dimension of the Grassmannian \(G_n(\mathbb{R}^{n+k}) \) is \(kn \). Moreover, there is an \(n \)-dimensional vector bundle \(\gamma_k^n \) over \(G_n(\mathbb{R}^{n+k}) \), with total space

\[
E(\gamma_k^n) := \{(v, P) \mid P \in G_n(\mathbb{R}^{n+k}) \text{ and } v \in P\}.
\]

This vector bundle is known as the canonical bundle. The Grassmannian is of great importance since every smooth manifold \(X \) with an embedding into \(\mathbb{R}^{n+k} \) admits a Gauss map \(f : X \to G_n(\mathbb{R}^{n+k}) \) which maps each point to its tangent space. This is illustrated as follows:

Figure 4: The map \(f \) associates to each point its corresponding tangent space. In this picture \(X \) is a surface in \(\mathbb{R}^3 \) and the tangent bundle is of dimension 2.

Notice that the map \(f \) is smooth. However, the definition of the Gauss map for an arbitrary vector bundle needs further work using the local trivializations, such a construction is explained in full detail in [Mil74]. Now, we can increase \(k \) in \(G_n(\mathbb{R}^{n+k}) \) and take the limit to infinity and we obtain the infinite Grassmannian

\[
G_n := \lim_{k \to \infty} G_n(\mathbb{R}^{n+k}),
\]

where \(G_n \) has the topology induced by the direct limit of the finite-dimensional Grassmannians. The infinite Grassmannian also inherits a canonical bundle built in a similar way as in the finite-dimensional case.

A remarkable result states that for any \(n \)-dimensional vector bundle \(\pi : E \to X \), any two maps of bundles with domain \(E \) and codomain the total space of the canonical bundle are always homotopic.
through maps of bundles, see [Mil74]. As a consequence, their projections onto the base space are homotopic. More precisely, this is the following theorem.

Theorem 9. Every real vector bundle of dimension n over X determines a smooth classifying map $f : X \rightarrow G_n$. Even more, the vector bundle is uniquely determined, up to isomorphism, by the homotopy type of f.

In other words, there is a bijection

$$\{ \text{Isomorphism classes of } n\text{-dimensional vector bundles over } X \} \leftrightarrow \{ \text{Homotopy classes } f : X \rightarrow G_n \}.$$

Therefore, the problem of understanding vector bundles over X can be interpreted with the study of homotopy invariants between X and G_n. For instance, this is the case of the cohomology of the Grassmannian G_n which will defines invariants in the cohomology of the base space X.

Cohomology is contravariant in the sense that the induced map of a continuous map goes in the opposite direction. For this reason, cohomology classes in the Grassmannian produce invariants on the cohomology of the base space. More precisely, given a vector bundle $\pi : E \rightarrow X$ with classifying map $f : X \rightarrow G_n$ we have an induced map in cohomology $f^* : H^\ast(G_n) \rightarrow H^\ast(X)$. For c is an element of $H^\ast(G_n)$, we get the invariant $f^*(c) \in H^\ast(X)$ which we called characteristic class. The first step is to take \mathbb{Z}_2 coefficients and we obtain the **Stiefel-Whitney classes**.

If instead of working with real vector bundles we consider complex vector bundles, then we get the **complex Grassmanian**. The associated characteristic classes are known as the **Chern classes**. If we consider real vector bundles but those that are oriented and we get the **oriented Grassmannian** and the characteristic classes are known as the **Pontryagin classes**.

These three types of characteristic classes are related via the following constructions: start with an n-dimensional vector bundle ξ and then we get a complex vector bundle via the complexification $\xi \otimes \mathbb{C}$. Then we forget the complex structure and we get a real $2n$-dimensional vector bundle with a canonical orientation. Finally, we forget the orientation and we obtain a $2n$-dimensional real vector bundle isomorphic to $\xi \oplus \xi$.

This situation is schematically represented by the following diagram:
1.3.1 The Thom isomorphism and the Euler class

A fundamental construction in algebraic topology is the Pontryagin-Thom construction. This associates to an n-dimensional bundle the space in which we collapse the complement of the disc bundle to a single point. Despite the simple definition, the implications are remarkable. In a certain sense, this construction has the behavior of an n-suspension of the base space. More precisely, this is the famous theorem due to Thom:

Theorem 10 (Thom isomorphism theorem). There exists a unique cohomology class $u \in H^n(E, E_0; \mathbb{Z})$ whose restriction to (F, F_0) coincides with $u|_F$ for any fiber F and F_0 its nonzero elements. Furthermore, the map

$$\sim u : H^i(E; \mathbb{Z}) \to H^{i+n}(E, E_0; \mathbb{Z})$$

is an isomorphism.

A complete proof of this theorem can be found in [Mil74]. For $p : E \to B$ the projection of an n-dimensional vector bundle, we have an isomorphism defined by the composition:

$$\phi : H^k(B; \mathbb{Z}) \xrightarrow{p^*} H^k(E; \mathbb{Z}) \xrightarrow{\sim u} H^{k+n}(E, E_0; \mathbb{Z}).$$

Definition 11 (Euler class). For ξ an oriented n-dimensional real vector bundle and $j : (E, \emptyset) \hookrightarrow (E, E_0)$ the inclusion, we define the Euler class of ξ, denoted by $e(\xi) \in H^n(B; \mathbb{Z})$, as the only cohomology class that satisfies the following equation

$$p^*(e(\xi)) = j^*(u).$$

Proposition 12. In the case we reverse the orientation of the bundle ξ, we obtain that the Euler class changes of sign.

For \mathbb{Z}_2-coefficients, the Euler class coincides with the top Stiefel-Whitney class $\omega_n(\xi)$.

1.3.2 Stiefel Whitney classes

The Stiefel Whitney classes are completely determined by the following properties:

Theorem 13 (Stiefel Whitney classes). There exists only a sequence of characteristic classes $\omega_0, \omega_1, \ldots$ which assigns to each real n-dimensional vector bundle ξ of the form $E \to B$, the class $w_i(\xi) \in H^i(B; \mathbb{Z}_2)$, such that:

1. $\omega_0(\xi) = 1$ and $w_i(\xi) = 0$ for $i > n$,
2. $\omega_i(\xi) = f^*(\omega_i(\eta))$, for all bundle map $f : \xi \to \eta$,
3. $\omega_k(\xi \oplus \eta) = \sum_{i=0}^k \omega_i(\xi) \sim \omega_{k-i}(\eta)$,
4. for the canonical bundle γ_1^1 over S^1, we have $\omega_1(\gamma_1^1) \neq 0$.

A smart way to show the existence and uniqueness of the Stiefel Whitney classes, as well as gain an understanding, is by means of the Steenrod squares and the Thom’s isomorphism. In what follows we present a rough idea of these themes.
Category theory arises with the goal to create a common language for the known mathematics. The reader can consult the Founder’s book [Mac71] for an historical and mathematical overview. For a modern approach, we refer the reader to [Rie14].

Algebraic topology works with invariants which are functors from the category of topological spaces to some algebraic category: for example the category of groups for the homotopy groups and the category of rings for cohomology. We wonder which are the natural transformations in cohomology. These are given by linear maps \(\varphi : H^n(B; \mathbb{Z}) \rightarrow H^n(B; \mathbb{Z}) \) which satisfies certain commutative diagrams. Such maps are known as cohomological operations. In the case we are working with CW-complexes, the functor of cohomology is a representable functor in the sense that it is equivalent to have the homotopy classes of maps from the space in question to what is called the Eilenberg-MacLane spaces, i.e., \(H^n(X; H) \cong [X, K(H, n)] \).

For representable functors, there is an important result given by the Yoneda lemma, which says that the natural transformations from the representable functor to any other functor (forgetting the structure) are in correspondence with the image of the second functor to the element which represents the first functor.

Therefore, in our case, we conclude the following bijection:

\[
\text{Nat}([- , K(H, n)], [- , K(G, m)]) \cong H^m(K(H, n); G).
\]

As a consequence, in order to understand the cohomological operations it is enough to understand the cohomology of \(K(G, m) \).

A basis for the cohomological operations are the Steenrod squares \(Sq^i : H^i(B; \mathbb{Z}_2) \rightarrow H^{i+j}(B; \mathbb{Z}_2) \).

For a real \(n \)-dimensional vector bundle \(\xi \), of the form \(p : E \rightarrow B \), we have the Thom isomorphism \(\phi : H^k(B) \rightarrow H^{k+n}(E, E_0) \). The Stiefel-Whitney class are defined as \(\omega_i(\xi) = \phi^{-1}(1 + \xi \cdot \cdot \cdot \cdot \cdot \cdot \cdot 1)^i \). In other words,

\[
\begin{array}{ccc}
H^n(E, E_0) & \xrightarrow{Sq^i} & H^{n+i}(E, E_0) \\
\phi \downarrow & & \downarrow \phi^{-1} \\
H^0(B; \mathbb{Z}_2) & \xrightarrow{\phi} & H^i(B; \mathbb{Z}_2)
\end{array}
\]

As a consequence, we have shown the existence the existence of the Stiefel-Whitney classes. It is not so difficult to show the uniqueness of the Stiefel-Whitney classes [Mil74].

We finish the section with some bordism invariant known as the Stiefel-Whitney numbers. Take an \(n \)-dimensional closed smooth manifold (possible disconnected). Using \(\mathbb{Z}_2 \)-coefficients there is only one fundamental class in homology \([B] \in H_n(B; \mathbb{Z}_2) \). Consider non-negative integers \(r_1, \ldots, r_n \) such that \(r_1 + 2r_2 + \cdots + nr_n = n \). For \(\xi \) a real vector bundle over \(B \), we can associate the monomial \(\omega_1(\xi)^{r_1} \cdots \omega_n(\xi)^{r_n} \) in \(H^n(B; \mathbb{Z}_2) \). The Stiefel-Whitney number is defined as the evaluation of this monomial in the fundamental class, i.e.,

\[
\omega_1(\xi)^{r_1} \cdots \omega_n(\xi)^{r_n}[B] := \langle \omega_1(\xi)^{r_1} \cdots \omega_n(\xi)^{r_n}, [B] \rangle,
\]

which is an element in \(\mathbb{Z}_2 \). Now, we use the formula \(\omega(\mathbb{RP}^n) = (1+a)^{n+1} \) with \(a \) the generator of the cohomology of \(\mathbb{RP}^n \), hence we have for \(n \) even that \(\omega_n(\mathbb{RP}^n) = (n+1)a^n \) and \(\omega_1(\mathbb{RP}^n) = (n+1)a \).
both different form zero. As a consequence, the Stiefel-Whitney numbers $\omega_n[\mathbb{R}P^n]$ and $\omega^n[\mathbb{R}P^n]$ are different from zero. In the case $n = 2^k$, these are the only non-trivial Stiefel-Whitney since $\omega(\mathbb{R}P^n) = 1 + a + a^n$. For n odd, is is not so difficult to show that all the Stiefel-Whitney numbers are zero. In bordism theory (non-necessarily oriented) we have that a manifold M of dimension n is the boundary of a manifold of dimension $n + 1$, if and only if, all the Stiefel-Whitney theory are zero. The necessity of this fact is straightforward, where we use the duality between the connections maps of the long exact sequence (cohomology/homology) of the pair given by the bordism and M, see Milnor [Mil74]. However, the sufficiency uses the Pontryagin-Thom construction. Let ξ be an n-dimensional vector bundle, the Thom space is defined as the quotient of the total space by the vectors with norm bigger or equal to 1. In the case we have the canonical bundle γ, see Milnor [Mil74]. However, the sufficiency uses the Pontryagin-Thom construction. Let ξ be an n-dimensional vector bundle, the Thom space is defined as the quotient of the total space by the vectors with norm bigger or equal to 1. In the case we have the canonical bundle γ, this space is denotes by $MO(k)$ and an outstanding result of Thom [Th54] says that the bordism group Ω_n has an isomorphism with the homotopy group

$$\Omega_n \cong \pi_{n+k}(MO(k)),$$

for $k > n + 1$. This isomorphism is determined by the Whitney embedding theorem, which embeds any manifold M inside a \mathbb{R}^{n+k} for $k > n + 1$. Therefore, the normal bundle of such embedding induces a Thom space with a map to $MO(k)$, using the one point compactification of \mathbb{R}^{n+k} we obtain a map from the sphere S^{n+k} to $MO(k)$. In the case M represents a non-trivial element in Ω_n, we have that the associated map $S^{n+k} \to MO(k)$ is not trivial in the homotopy group. Because $H^{n+k}(MO(k); \mathbb{Z}_2)$ is generated by some polynomial, which sent in $H^{n+k}(S^{n+k}; \mathbb{Z}_2) = \mathbb{Z}_2$ at least a non-trivial Stiefel-Whitney number.

1.3.3 Chern and Pontryagin classes

Chern classes are characteristic classes associated to complex vector bundles, which are completely determined by the following properties:

Theorem 14 (Chern classes). There exists only a sequence of characteristic classes c_1, c_2, \ldots which assigns to each complex n-dimensional vector bundle ξ of the form $E \to B$, the class $c_i(E) \in H^{2i}(B; \mathbb{Z})$, such that:

1. $c_0(\xi) = 1$ and $c_i(\xi) = 0$ for $i > n$,
2. $c_i(\xi) = f^*(c_i(\eta))$, for all bundle maps $f : \xi \to \eta$,
3. $c_k(\xi \oplus \eta) = \sum_{i=0}^{k} c_i(\xi) \smile c_{k-i}(\eta)$,
4. for the canonical bundle γ_1 over S^2, we have $c_1(\gamma_1^n)$ which is the generator of $H^2(\mathbb{C}P^1, \mathbb{Z})$.

In this case, the existence of the characteristic classes can be explained in a simple way: assume a complex n-dimensional vector bundle ξ of the form $E \to B$ (with a Hermitian metric) and we form the bundle ξ_0 over E_0 with fiber over each point, the orthogonal complement of the vector induced by the point inside the fiber in ξ. As a consequence, ξ_0 is an $(n - 1)$-dimensional complex vector bundle. Thus we use the Gysin sequence with integer coefficients, for $i < 2n - 1$,

$$\cdots \to H^{i-2n}(B) \xrightarrow{\cup c_k} H^i(B) \xrightarrow{\pi_0^*} H^i(E_0) \xrightarrow{H^i} H^{i-2n+1}(B) \to \cdots$$
hence we have the isomorphism \(\pi_0^*: H^i(B) \to H^i(E_0) \). Take \(c_n(\xi) \) as the Euler class of the induced 2n-dimensional real vector bundle \(e(\xi_R) \). Thus we define for \(i < n \), the Chern class as

\[
c_i(\xi) = \pi_0^{i-1} c_i(\xi_0)
\]

These classes satisfies the axioms of Theorem 14.

An important property of the Chern class is the behavior under the conjugation \(x+iy \mapsto x-iy \) of a complex vector bundle \(\xi \), where we have the following identity

\[
c_k(\xi) = (-1)^k c_k(\overline{\xi}),
\]

hence the total class of the conjugated bundle \(\overline{\xi} \) is given as

\[
c(\overline{\xi}) = 1 - c_1(\xi) + c_2(\xi) - + \cdots \pm c_n(\xi).
\]

The Pontryagin classes are defined using the Chern classes for an \(n \)-dimensional real vector bundle. More precisely, we consider the complexification \(\xi \otimes \mathbb{C} \) given by the tensor product over the reals of each fiber with the complex numbers. The bundle \(\xi \otimes \mathbb{C} \) has as induced real vector bundle the Whitney sum \(\xi \oplus \xi \) with complex structure given by \(J(x,y) = (-y,x) \).

Now, we consider the conjugate \(\overline{\xi} \otimes \mathbb{C} \) which has an isomorphism with the complexification \(\xi \otimes \mathbb{C} \), hence the odd Chern class \(c_1(\xi \otimes \mathbb{C}), c_3(\xi \otimes \mathbb{C}), \cdots \) are zero. We define the \(i \)-th Pontryagin class for an \(n \)-dimensional real vector bundle as

\[
p_i(\xi) = (-1)^i c_{2i}(\xi \otimes \mathbb{C}),
\]

which is an element in \(H^{4i}(B; \mathbb{Z}) \).

There are similar properties as the Stiefel-Whitney and Chern classes. We have \(p_0(\xi) = 1 \) and \(p_i(\xi) = 0 \) for \(i > n/2 \). For a trivial bundle \(e^k \), we obtain \(p(\xi \oplus e^k) = p(\xi) \). In this case, the total class is defined as

\[
p(\xi) = 1 + p_1(\xi) + \cdots + p_{[n/2]}(\xi),
\]

where \([n/2] \) denotes the smallest integer that is not smaller than \(n/2 \). In this case, we have the Whitney sum satisfies the formula

\[
p(\xi \oplus \eta) = p(\xi)p(\eta) \mod 2.
\]

We end with two properties which determine the Pontryagin classes:

i) For \(\xi \) an \(n \)-dimensional complex vector bundle, we have the underlying \(2n \)-dimensional real vector bundle satisfies the following identity

\[
1 - p_1 + p_2 - + \cdots \pm p_n = (1 - c_1 + c_2 - + \cdots \pm c_n)(1 + c_1 + c_2 + + \cdots + c_n)
\]

where \(c_i = c_i(\xi) \) and \(p_k = p_k(\xi_R) \). As a consequence, the class \(p_k(\xi_R) \) is equal to

\[
c_k(\xi)^2 - 2c_{k-1}(\xi)c_{k+1}(\xi) + \cdots \pm 2c_1(\xi)c_{2k-1}(\xi) \mp c_{2k}(\xi).
\]

ii) For \(\xi \) a \(2n \)-dimensional oriented real vector bundle, we have the Pontryagin class \(p_n(\xi) \) is equal to the square of the Euler class \(e(\xi) \).
Finally, we see the Pontryagin numbers associated to a smooth, compact, oriented manifold of dimension $4n$ which we denoted by M. With this purpose, recall that a partition of a positive integer n, is an ordered collection of positive numbers $I = \{i_1, \ldots, i_r\}$ with sum equal to n (where notice that in this collection some numbers can be repeated). For a partition I of n, the I-th Pontryagin number is defined as the evaluation of the polynomial $p_{i_1}(\tau_M) \cdots p_{i_r}(\tau_M)$ in the fundamental class, i.e.,

$$p_{i_1} \cdots p_{i_r}[M] = \langle p_{i_1}(\tau_M) \cdots p_{i_r}(\tau_M), [M] \rangle,$$

where τ_M represents the tangent bundle and $[M] \in H_{4n}(M; \mathbb{Z})$ is the fundamental class. For the complex projective spaces $\mathbb{C}P^{2n}$ such numbers have the value

$$p_{i_1} \cdots p_{i_r}[\mathbb{C}P^{2n}] = \binom{2n + 1}{i_1} \cdots \binom{2n + 1}{i_r}.$$

Similarly as for the Stiefel-Whitney numbers, in the case an oriented smooth manifold of dimension n is the boundary of an oriented smooth manifold of dimension $n + 1$, then all the Pontryagin numbers are zero. The converse is satisfied when we tensor with the rational numbers.

2 The Hirzebruch signature theorem

A central element in the proof of the exotic spheres, is the famous Hirzebruch signature theorem. This theorem determines the signature of a manifold in terms of a polynomial in the Pontryagin classes with rational coefficients. In this section we give the proof of this theorem but before we introduce some algebraic background.

2.1 Multiplicative sequences

We start with a commutative graded algebra over a commutative and unitary ring Λ:

$$A = \bigoplus_{i=0}^{\infty} A^i.$$

By $A^\mathbb{N}$ we understand the ring of formal series $a_0 + a_1 + a_2 + \ldots$ with $a_i \in A^i$. Of particular interest is the subset $(A^\mathbb{N})^\times$ consisting of formal series of the form $1 + a_1 + a_2 + \ldots$.

Remark 15. It is a classical exercise to show that $(A^\mathbb{N})^\times$ is a group. Set $a = 1 + a_1 + a_2 + \ldots$. In order to construct the inverse we proceed inductively: consider $b = 1 + b_1 + b_2 + \cdots$ such that $ab = 1$ and expand the product

$$ab = (1 + a_1 + a_2 + a_3 + \ldots)(1 + b_1 + b_2 + b_3 + \ldots)$$

$$= 1 + (a_1 + b_1) + (a_2 + a_1b_1 + b_2) + (b_3 + b_2a_1 + a_2b_1 + a_3) + \ldots$$

$$= 1 + 0 + 0 + \ldots.$$

Therefore, we define $b_1 = -a_1$ for the first coefficient. Then we have $a_2 + a_1b_1 + b_2 = 0$ and hence $b_2 = -a_2 - a_1b_1 = -a_2 + a_1^2$, and so on.

We now consider a sequence of polynomials $K_1(x_1), K_2(x_1, x_2), \ldots$ subject to the following two properties:
• the polynomial K_i has degree i;
• the polynomial K_i is homogeneous where x_j has weight j.

For example, these properties follow for the following sequence of polynomials:

\[
\begin{align*}
K_1(x_1) &= x_1 \\
K_2(x_1, x_2) &= x_1^2 + x_2 \\
K_3(x_1, x_2, x_3) &= x_1^3 + x_1 x_2 + x_3 \\
&\vdots
\end{align*}
\]

For an element $a = 1 + a_1 + a_2 + \cdots \in (A^\Pi)^\times$, we can evaluate the sequence of polynomials in a as follows

\[
K(a) := 1 + K_1(a_1) + K_2(a_1, a_2) + K_3(a_1, a_2, a_3) + \ldots
\]

A sequence of polynomials K_i subject to the two aforementioned properties, is called multiplicative if for any $a, b \in (A^\Pi)^\times$ we have the equation

\[
K(ab) = K(a)K(b).
\]

We give below some examples.

Example 16.

1. Take $\lambda \in \Lambda$ and define

\[
K_i(x_1, \ldots, x_i) = \lambda^i x_i.
\]

For $a, b \in (A^\Pi)^\times$, we compute

\[
K(ab) = K(1 + (a_1 + b_1) + (a_2 + a_1 b_1 + b_2) + \ldots)
= 1 + \lambda(a_1 + b_1) + \lambda^2(a_2 + a_1 b_1 + b_2) + \ldots
\]

and

\[
K(a)K(b) = (1 + \lambda a_1 + \lambda^2 a_2 + \ldots)(1 + \lambda b_1 + \lambda^2 b_2 + \ldots)
= 1 + (\lambda a_1 + \lambda b_1) + (\lambda^2 a_2 + \lambda^2 a_1 b_1 + \lambda^2 b_2) + \ldots
= 1 + \lambda(a_1 + b_1) + \lambda^2(a_2 + a_1 b_1 + b_2) + \ldots
= K(ab).
\]

This shows that the sequence is multiplicative.

2. Define $K_i(x_1, \ldots, x_i)$ to be the i-th coefficient of $(1 + x_1 + x_2 + \ldots)^{-1}$. It is easy to see that this sequence is homogeneous of degree i, and moreover, this sequence is multiplicative because by definition $K(a) = a^{-1}$. Therefore,

\[
K(ab) = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = K(a)K(b).
\]

Now, we see that the multiplicative sequences are closely related to power series. Given a multiplicative sequence $\{K_n\}_{n \in \mathbb{N}}$, we can associate a power series by setting

\[
f(t) = K(1 + t) = 1 + K_1(t) + K_2(t, 0) + K_3(t, 0, 0) + \ldots.
\]

The important point here is the reverse process, that is, given a power series f we can associate a multiplicative sequence such that $f(t) = K(1 + t)$. This is the purpose of the next section.
2.2 Digression: symmetric polynomials and the Hirzebruch’s lemma

Among all polynomials, some are really special for being invariant under the action of the symmetric group, i.e., under permutations of their variables.

Example 17.

- The polynomial \(p(x, y, z) = x + y + z \) is invariant under the action of the symmetric group. Indeed, any permutation for instance \(\tau: x \rightarrow y \rightarrow z \) implies
 \[
p(\tau(x), \tau(y), \tau(z)) = p(y, z, x) = y + z + x = p(x, y, z).
 \]
- The polynomial \(q(x, y) = x^2 + xy + y^2 \) is also invariant.

Such polynomials are called symmetric polynomials.

Lemma 18. Consider the polynomials \(\sigma_1, \ldots, \sigma_n \) where \(\sigma_i \) is the component of degree \(i \) of the product \((1 + t_1) \cdot (1 + t_2) \cdot \cdots \cdot (1 + t_n) \). Then each \(\sigma_i \) is a symmetric polynomial in \(n \) variables.

Proof. This follows from the equation
\[
1 + \sigma_1 + \sigma_2 + \cdots + \sigma_n = \prod_{i=1}^{n}(1 + t_i)
\]
where the right hand side is invariant under permutations and therefore, so the \(i \)-th degree component is also invariant.

The polynomials \(\sigma_i \) in the previous lemma, are called elementary symmetric polynomials.

Example 19. In two variables there are two elementary symmetric polynomials. Indeed,
\[
(1 + x)(1 + y) = 1 + (x + y) + xy.
\]

Therefore, \(\sigma_1(x, y) = x + y \) and \(\sigma_2(x, y) = xy \).

In three variables there are three elementary symmetric polynomials. Namely, the components of the product
\[
(1 + x)(1 + y)(1 + z) = 1 + (x + y + z) + (xy + yz + xz) + (xyz).
\]

Elementary symmetric polynomials are fundamental in mathematics due to the following theorem, we refer the reader to [Mac] for a proof.

Theorem 20 (Fundamental theorem of elementary symmetric polynomials). Elementary symmetric polynomials form a basis for the set of symmetric polynomials, in the sense that each symmetric polynomial of degree \(n \) can be uniquely written as a polynomial in the variables \(\sigma_1, \ldots, \sigma_n \).

For example, the symmetric polynomial
\[
q(x, y) = x^2 + xy + y^2
\]
can be written as
\[
q(x, y) = (x + y)^2 - xy = \sigma_1^2 - \sigma_2.
\]
Remark 21. Any monomial can be converted in a symmetric polynomial by summing in all equivalent monomials. For example, the monomial \(m(x, y, z) = x^2yz \) is not symmetric, however, the previous sum is
\[
x^2yz + y^2xz + z^2xy.
\]
It is easy to see that this polynomial is in fact symmetric. In general, we will denote the polynomial obtained by this process by \(\Sigma m \) called the “symmetrization” of \(m \). With this notation, the elementary symmetric polynomials in \(n \) variables are elegantly given by
\[
\sigma_i = \Sigma t_1 \cdots t_i.
\]

We return again to power series,
\[
f(t) = 1 + \lambda_1 t + \lambda_2 t^2 + \ldots
\]
and consider the partition \(I = \{i_1, \ldots, i_r \} \) of \(n \) (that is, they are all positive integers with \(i_1 + \cdots + i_r = n \)). We define \(\lambda_I \) as the product \(\lambda_{i_1} \cdots \lambda_{i_r} \), and \(s_I \) as the unique polynomial such that
\[
s_I(\sigma_1, \ldots, \sigma_n) = \Sigma t_{i_1}^{i_1} \cdots t_{i_r}^{i_r}.
\]
The existence of \(s_I \) is a direct consequence of the fundamental theorem of elementary symmetric polynomials. Thus we define
\[
K_n(x_1, \ldots, x_n) := \sum_{I \text{ partition of } n} \lambda_I s_I(x_1, \ldots, x_n).
\]

Example 22. Suppose we have a power series
\[
f(t) = 1 + \frac{t}{3} - \frac{t^2}{45} + \ldots
\]
and then we calculate the first two terms of the aforementioned sequence. For the first term, there is only one partition of the number 1, namely the number 1, which we call \(I \) (this may seem unnecessary but it is meant to show the general procedure). To calculate \(s_I \) we observe that \(\Sigma t^1 = t \), in particular \(s_I(\sigma_1) = \sigma_1 \) and since \(\lambda_I \) is just the first coefficient \(\lambda_1 \), so
\[
K_1(x) = \frac{1}{3} x.
\]
For the second term, we have two partitions of the number 2, given by \(1 + 1 \) and \(2 + 0 \), which are denoted respectively by \(J \) and \(H \). Finding \(s_J \) amounts to finding a polynomial such that \(s_J(\sigma_1, \sigma_2) = \Sigma t_1^{i_1} t_2^{i_2} = t_1 t_2 \), i.e., \(s_J(\sigma_1, \sigma_2) = \sigma_2 \) (recall that \(\sigma_1 = x+y \) and \(\sigma_2 = xy \)). The coefficient of \(\lambda_J \) is given by \(\lambda_1 \cdot \lambda_1 \), so the first summand is
\[
\lambda_J s_J(x, y) = \frac{1}{3} y.
\]
For the partition \(H \), we see the polynomial \(s_H \) satisfies \(s_H(\sigma_1, \sigma_2) = \Sigma t_1^2 + t_2^2 = \sigma_1^2 + \sigma_2^2 \) and hence \(s_H(\sigma_1, \sigma_2) = \sigma_1^2 - 2\sigma_2 \) and we conclude
\[
s_H(x, y) = (x + y)^2 - 2xy = x^2 + y^2.
\]

\(^3\)Two monomials are equivalent if there is a permutation which relates them.
The coefficient is just $\lambda_H = \lambda_2$, hence the second summand is

$$\lambda_H s_H(x, y) = -\frac{1}{45}(x^2 - 2y).$$

Combining our computations yields

$$K_2(x, y) = \frac{1}{9}y - \frac{1}{45}(x^2 - 2y) = \frac{1}{45}(7y - x^2). \quad (3)$$

Now let us return to the multiplicative property of the sequence $K_n(x_1, \ldots, x_n)$ associated to the power series. Denote by σ_i the i-th elementary symmetric polynomial in the variables x_1, \ldots, x_n and by σ_j' the j-th elementary symmetric polynomial in the variables y_1, \ldots, y_n. Therefore,

$$\sigma_k'' = \sum_{i=0}^{k} \sigma_i \sigma_{k-i}$$

is the k-th elementary symmetric polynomial in the variables $x_1, \ldots, x_n, y_1, \ldots, y_n$. This is because we can compare the product $\prod_{i=1}^{n}(1 + x_i) \prod_{j=1}^{n}(1 + y_j)$ with the definition of the k-th elementary symmetric polynomial.

Given two disjoint partitions, say J and K, their juxtaposition is also a partition. More precisely, if $J = \{j_1, \ldots, j_r\}$ is a partition of l and $K = \{k_1, \ldots, k_p\}$ is a partition of m, then

$$JK = \{j_1, \ldots, j_r, k_1, \ldots, k_p\}$$

is a partition of $l + m$.

Going back to our polynomial sequence, we claim that

$$s_I(\sigma_1'', \ldots, \sigma_k'') = \sum_{JK=I} s_J(\sigma_1, \sigma_2, \ldots) \cdot s_K(\sigma_1', \sigma_2', \ldots),$$

where the sum is taken over all partitions J, K such that their juxtaposition is I. For this purpose, we use that

$$s_I(\sigma_1'', \ldots, \sigma_k'') = \Sigma_{i_1}^{i_1} \cdots t_{r}^{i_r},$$

where in the right hand side appear all possible monomials $t_{\alpha_1}^{i_1} \cdots t_{\alpha_r}^{i_r}$ with $0 \leq \alpha_i \leq 2n$. Thus for each monomial, let J be the partition formed by all exponents i_q such that $1 \leq \alpha_q \leq n$ and let K be the partition formed by all exponents i_q such that $n + 1 \leq \alpha_q \leq 2n$. By construction, the product $s_J(\sigma_1, \sigma_2, \ldots) s_K(\sigma_1', \sigma_2', \ldots)$ has all the possible combinations of this distribution of exponents in both variables. The sum of all such decompositions implies the claim.

From the previous discussion we can conclude the multiplicativity of the sequence
Indeed, for $a, b \in (A^H)^x$, we obtain

$$K(ab) = \sum_I \lambda_I s_I(ab)$$

$$= \sum_I \lambda_I \sum_{HJ = I} s_H(a)s_J(b)$$

$$= \sum_{HJ = I} \lambda_H s_H(a)\lambda_J s_J(b)$$

$$= K(a)K(b).$$

Furthermore, $K_n(t, 0, \ldots, 0) = \lambda_nt^n$ since the only partition involving this term is the trivial one (see example 22). Consequently, $K(1 + t) = f(t)$ which is the half of the following lemma:

Lemma 23 (Hirzebruch). Let

$$f(t) = 1 + \lambda_1t + \lambda_2t^2 + \cdots \in \Lambda[[t]]$$

be a formal power series. Then there exists a unique multiplicative sequence \(\{K_n\}_{n \in \mathbb{N}} \) satisfying $K(1 + t) = f(t)$.

For the uniqueness, if

$$\sigma = (1 + t_1) \cdots (1 + t_n) \in (A^H)^x,$$

then

$$K(\sigma) = K((1 + t_1) \cdots (1 + t_n)) = K(1 + t_1) \cdots K(1 + t_n) = f(t_1) \cdots f(t_n).$$

Comparing the homogeneous component of each side we conclude that $K_n(\sigma_1, \ldots, \sigma_n)$ is determined only by the values of f. We use the fundamental theorem of elementary symmetric polynomials to conclude that the variables $\sigma_1, \ldots, \sigma_n$ completely determine the polynomial, hence the K_n must be unique.

2.3 K-genus and the Hirzebruch theorem

For a multiplicative sequence K_n, we define the K-genus of a smooth, closed, oriented manifold M, denoted by $K[M] \in \mathbb{Q}$, as follows

$$K_n[M] = \begin{cases} 0 & \text{dim } M \leq 4n \\ \{K_n(p_1, \ldots, p_n), [M]\} & \text{dim } M = 4n, \end{cases}$$

where p_i denotes the i-th Pontryagin class of M. Notice that the K-genus is a *rational combination* of the Pontryagin numbers of M. In particular, if M is the boundary of a compact, oriented manifold, then the Pontryagin numbers are zero and $K[M] = 0$.

The K-genus satisfies the following important properties: for M, N two manifolds, we have $K[M \sqcup N] = K[M] + K[N]$ which combined with the the previous observation imply that the K-genus is a *bordism invariant*. Furthermore, we have the multiplicative property $K[M \times N] = K[M]K[N]$. This property is deduced as follows: since for p, p' the total Pontryagin classes of M and N respectively, the total class of $M \times N$ is congruent to $p \times p'$ modulo torsion and in addition, the codomain of the K-genus is the field of rational numbers and hence the torsion elements automatically vanish. More precisely, we have shown the following lemma.
Lemma 24. The K-genus gives rise to a ring homomorphism

$$K : \Omega^*_{SO} \otimes \mathbb{Q} \to \mathbb{Q}.$$

Now we are ready to state the main theorem of this section.

Theorem 25 (Hirzebruch signature theorem). Let L_n be the multiplicative sequence associated to the power series

$$\frac{\sqrt{t}}{\tanh \sqrt{t}} = 1 + x + \frac{x^2}{3} + \ldots + \frac{(-1)^{k-1}2^{2k}B_k x^k}{(2k)!} + \ldots,$$

where B_k is the k-th Bernoulli number. Then for any compact, oriented smooth manifold M,

$$\sigma(M) = L[M].$$

The proof of this theorem depends on the following fact. Since both L and σ define ring homomorphisms $\Omega^*_{SO} \otimes \mathbb{Q} \to \mathbb{Q}$ (where here implicitly we extend the signature by 0 on dimensions not divisible by 4), hence it is enough to verify that they agree on the generators by the following result of Thom [Th54]:

Theorem 26 (Thom). The oriented cobordism ring Ω^*_{SO} is finitely generated in dimensions divisible by 4 and finite otherwise. In particular

$$\Omega^*_{SO} \otimes \mathbb{Q} = \bigoplus_{k=1}^{\infty} \Omega^4_k \otimes \mathbb{Q}.$$

Furthermore, the generators are given by combinations of the form

$$\mathbb{CP}^{2i_1} \times \mathbb{CP}^{2i_2} \times \ldots \times \mathbb{CP}^{2i_r}.$$

We have already found the signature of these complex planes which was precisely 1, see Example 7. Therefore, we have to show that $L(\mathbb{CP}^{2l}) = 1$, which we do as follows.

First, recall that the total Pontryagin class of \mathbb{CP}^{2l} is given by $p(\mathbb{CP}^{2l}) = (1 + a^2)^{2l+1}$. Since $L(1 + t) = \frac{\sqrt{t}}{\tanh \sqrt{t}}$, it follows that

$$L(1 + a^2 + 0 + 0 + \ldots) = \frac{\sqrt{a^2}}{\tanh \sqrt{a}} = \frac{a}{\tanh a}.$$

Now, we use the multiplicative property of L and we see that

$$L((1 + a^2)^{2l+1}) = \left(\frac{a}{\tanh a}\right)^{2l+1}.$$

Thus the L-genus will be determined by the coefficient of a^{2l} in the power series of $(a/\tanh a)^{2l+1}$. For this we recall that in complex analysis, we can recover the coefficient of a power series

$$f(z) = c_0 + c_1 z + c_2 z^2 + \ldots + c_m z^m + \ldots,$$

for example the coefficient c_m, by first dividing by z^{m+1}

$$\frac{f(z)}{z^{m+1}} = c_0 z^{m+1} + \ldots + c_m z + c_{m+1} + \ldots$$

23
and then integrating around the origin
\[\oint f(z) \frac{dz}{z^{m+1}} = \oint \frac{c_m}{z} dz = 2\pi i c_m. \]

As a consequence, replacing \(a \) by \(z \) in the power series of \((a/\tanh a)^{2l+1} \), we obtain
\[L[\mathbb{C}P^{2l}] = \frac{1}{2\pi i} \oint \frac{dz}{z^{2l+1}} \left(\frac{z}{\tanh z} \right)^{2l+1} = \frac{1}{2\pi i} \oint \frac{dz}{\tanh z^{2l+1}}. \]

The change of coordinates \(u = \tanh z \) implies that \(dz = \frac{du}{1-u^2} = (1 + u^2 + u^4 + \ldots)du \) and we get the result
\[L[\mathbb{C}P^{2l}] = \frac{1}{2\pi i} \oint \frac{1 + u^2 + u^4 + \ldots}{u^{2l+1}} du = \frac{1}{2\pi i} \oint \frac{u^{2k}}{u^{2k+1}} du = 1. \]

This proves the Hirzebruch signature theorem.

We use formula (3) in Example 22 and we deduce the following.

Corollary 27. If \(M \) is an 8-dimensional compact oriented manifold then
\[\sigma(M) = \frac{1}{45} (7p_2(M) - p_1^2(M)) . \]

3 Milnor’s explicit construction

3.1 Construction in terms of the canonical fibration

The purpose of this section is to construct a family of manifolds, which some of them are exotic spheres. They are the total space of fiber bundles over \(S^4 \) with fiber \(S^3 \) and structural group \(SO(4) \) (the transition maps are given by matrices in the group \(SO(4) \)). In order to identify which of them are exotic spheres we have to classify all such fiber bundles. This section follows some parts of [McE16], [Giu09].

These fiber bundles have fibers identified with the ring of quaternions. We recall the quaternions \(\mathbb{H} \) consist of the set of numbers of the form \(a + bi + cj + dk \) where \(a, b, c \) and \(d \) are real numbers and the symbols \(i, j, k \) are subject to the following rules:
\[i^2 = j^2 = k^2 = -1, \]
\[ij = -ji = k, \]
\[jk = -kj = i, \]
\[ki = -ik = j. \]

Observe that quaternion multiplication is not commutative. In fact, the quaternions \(\mathbb{H} \) is 4-dimensional real vector space with the component-wise sum and scalar real multiplication. Similarly, there is a conjugate operator, as in complex numbers, also a norm and the inverse for a quaternion \(h = a + bi + cj + dk \):
\[\overline{h} = a - bi - cj - dk, \quad \|h\| = \sqrt{\overline{h}h} = \sqrt{a^2 + b^2 + c^2 + d^2} \text{ and } h^{-1} = \frac{\overline{h}}{\|h\|^2}. \]
We can define the quaternionic projective line \(\mathbb{HP}^1 \), which consists of all quaternionic lines in \(\mathbb{H}^2 \). The elements are denoted by classes \([h_1 : h_2] \in \mathbb{HP}^1\), where \([h_1 : h_2] = [\lambda h_1 : \lambda h_2]\) for each \(\lambda \in \mathbb{H} \) non-zero. The canonical bundle over \(\mathbb{HP}^1 \), denoted by \(\gamma^1 \), has total space

\[
E(\gamma^1) = \{(x, y, [z : w]) \in \mathbb{H}^2 \times \mathbb{HP}^1 \mid (x, y) \in [z : w]\}.
\]

The projection map \(\pi : E(\gamma^1) \to \mathbb{HP}^1 \) is given by the projection onto the second coordinate. Notice the canonical bundle is a 4-dimensional real vector bundle. In order to construct the exotic spheres, we first consider a family of fiber bundles constructed from the canonical bundle. These bundles in fact, only depend on the usual construction of \(\mathbb{HP}^1 \) by two charts and we calculate the local trivializations. We consider the open sets \(U_1 = \{[z : w] \in \mathbb{HP}^1 \mid w \neq 0\} \) and \(U_2 = \{[z : w] \in \mathbb{HP}^1 \mid z \neq 0\} \) where the first chart is

\[
\phi_1 : U_1 \to \mathbb{H} \cong \mathbb{R}^4
\]

\[
[z : w] \mapsto w^{-1}z
\]

and the second chart is given by

\[
\phi_2 : U_2 \to \mathbb{H} \cong \mathbb{R}^4
\]

\[
[z : w] \mapsto z^{-1}w.
\]

Thus for the projection map \(\pi : E(\gamma^1) \to \mathbb{HP}^1 \), we obtain

\[
\pi^{-1}(U_1) = \{(x, y, [z : 1]) \mid yz = x\}
\]

and

\[
\pi^{-1}(U_2) = \{(x, y, [1 : w]) \mid xw = y\}.
\]

Therefore, the local trivializations are

\[
\rho_1 : \pi^{-1}(U_1) \to \phi_1(U_1) \times \mathbb{H}
\]

\[
((x, y), [z : 1]) \mapsto (z, y)
\]

and

\[
\rho_2 : \pi^{-1}(U_2) \to \phi_2(U_2) \times \mathbb{H}
\]

\[
((x, y), [1 : w]) \mapsto (w, x).
\]

Finally, the transition map \(\rho_2 \circ \rho_1^{-1} : \phi_1(U_1 \cap U_2) \times \mathbb{H} \to \phi_1(U_1 \cap U_2) \times \mathbb{H} \) is given by

\[
\rho_2 \circ \rho_1^{-1}((z, y)) = \rho_2 \left((yz, y, \left[\frac{1}{z} : 1 \right] \right)
\]

\[
= \left(\frac{1}{z}, yz \right).
\]

Consequently, excluding the poles, we are gluing at the point \(y \in \pi^{-1}([z : 1]) \) with the point \(yz \in \pi^{-1}([1/z : 1]) \) two fibers which can be identified with \(\mathbb{H} \). Notice that since multiplication in \(\mathbb{H} \) is not commutative, we can have a different bundle in the case we glued \(y \) with \(zy \). These provide a family of gluing maps \(f_{h, t} : \phi_1(U_1 \cap U_2) \times \mathbb{H} \to \phi_1(U_1 \cap U_2) \times \mathbb{H} \) defined as follows:

\[
f_{h, t}((z, y)) = \left(\frac{1}{z}, z^h y z^t \right).
\]
Thus each of this gluing map has associated a vector bundle which we denote by \(\xi_{h,l} \). For example, the bundle \(\xi_{0,1} \) is precisely the canonical bundle \(\gamma^1 \).

However, our initial purpose was to build bundles over \(S^4 \) with fiber \(S^3 \). Thus in the previous vector bundles, we identify \(\mathbb{HP}^1 \) with \(S^4 \) by means of the diffeomorphism \(\mathbb{HP}^1 \to S^4 \subset \mathbb{R}^5 \), which is given by

\[
[z : w] \mapsto \left(\frac{2mw}{\|z\|^2 + \|w\|^2}, \frac{\|z\|^2 - \|w\|^2}{\|z\|^2 + \|w\|^2} \right),
\]

and we restrict the fibers to \(S^3 \) since \(S^3 = \{ h \in \mathbb{H} \mid \|h\| = 1 \} \). Therefore, the gluing maps are now of the form \(f_{h,l} : \phi_1(U_1 \cap U_2) \times S^3 \to \phi_1(U_1 \cap U_2) \times S^3 \). These maps have to be normalized in the second coordinate in order to be coherent with the restriction, so we set

\[
f_{h,l}((z,y)) = \left(\frac{1}{z}, \frac{z^hy^lz^t}{\|z\|^{h+l}} \right).
\]

Thus we have constructed for each vector bundle \(\xi_{h,l} \), via the restriction, an induced sphere bundle. We denote these sphere bundles by \(\sigma_{h,l} \) and their total space by \(M_{h,l} \). These spaces are manifolds of dimension seven which are candidates to be exotic spheres. In what follows we show that for some particular \(h \) and \(l \), the space \(M_{h,l} \) is homeomorphic to the sphere \(S^7 \) (see section 3.2) but not diffeomorphic to the sphere \(S^7 \) (see section 3.3). For this purpose, we show that these sphere bundles \(\sigma_{h,l} \) are in essence all possible bundles with the property that the transition map is orientation-preserving. This is stated in the following theorem:

Theorem 28. There is a bijection between the isomorphism classes of fiber bundles over \(S^4 \) with fiber \(S^3 \) and structural group \(SO(4) \) and the homotopy classes of maps from \(S^3 \) to \(SO(4) \).

As a consequence, each sphere bundle \(\sigma_{h,l} \) is classified up to isomorphism by an element in \(\pi_3(SO(4)) \). This group is relatively easy to understand since \(\pi_3(SO(4)) \cong \mathbb{Z} \oplus \mathbb{Z} \) (see section 3.1.1) and thus the sphere bundles \(\sigma_{h,l} \), and hence the manifolds \(M_{h,l} \), are completely determined by a pair of integers which are precisely \((h,l) \).

3.1.1 Calculating \(\pi_3(SO(4)) \)

The orthogonal group \(O(n) \) consists of all matrices \(n \times n \) which represents all the distance-preserving transformations of the euclidean space \(\mathbb{R}^n \). They are given by orthogonal matrices \(A \in \text{Gl}(n, \mathbb{R}) \) such that \(A^tA = AA^t = I \). In the case we consider orientation-preserving transformations, we obtain matrices in \(O(n) \) which are also of determinant equal to 1. This subgroup is denoted by \(SO(n) \) which is called the special orthogonal group of dimension \(n \).

Consider \(S^3 \) as the unit quaternions. There is a well-defined homomorphism

\[
P : S^3 \times S^3 \longrightarrow SO(4),
\]

which for each pair \((u,v) \in S^3 \times S^3 \), assigns the linear transformation \(f_{(u,v)} : \mathbb{R}^4 \longrightarrow \mathbb{R}^4 \) defined for \(x \in \mathbb{R}^4 \), be the product \(uvxv^{-1} \). The homomorphism \(P \) is a continuous map with the following properties:

- The image of \(P \) is contained in \(SO(4) \) as a connected subset of \(O(4) \), since \(S^3 \times S^3 \) is connected.
 Moreover, the image of \(P \) is in the same connected component of the identity because \(P(1,1) = \text{Id} \).
• P is a group homomorphism (as claimed). Indeed we have the equality
\[P(uu', vv') = P(u, v) \circ P(u', v'), \]
since both sides are equal to the map $x \mapsto uu'xv'\bar{v}^{-1}v^{-1}$.

• We have the identity $P(u, v) = P(-u, -v)$.

• Assume $P(u, v) = \text{Id}$ and hence $P(u, v)(1) = 1$. Thus $u1v^{-1} = 1$ and therefore $uv^{-1} = 1$, which is equivalent to $u = v$. In addition, we have the equations
\[
P(u, u)(i) = uiu^{-1} = i, \quad P(u, u)(j) = uju^{-1} = j \quad \text{and} \quad P(u, u)(k) = kuk^{-1} = k.
\]
For the first equation, set $u = a + bi + cj + dk$ and we get
\[
uiu^{-1} = (a + bi + cj + dk)i(a - bi - cj - dk)
= (a + bi + cj + dk)(ai + b - ck + dj)
= a^2i + ab - ack + adj
- ab + b^2i + bcj + bdk
+ ack + bcj - c^2i - cd
- adj + bdk + cd - d^2i
= (a^2 + b^2 - c^2 - d^2)i + 2bcj + 2bdk = i,
\]
from which we deduce the equations $a^2 + b^2 - c^2 - d^2 = 1$ and $bc = bd = 0$. Recalling that $a^2 + b^2 + c^2 + d^2 = 1$ we get that $c = d = 0$. Proceeding similarly with the other equations we conclude that $b = c = d = 0$. Consequently, we obtain $u = \pm 1$ and the kernel of P is the group with only two elements $\mathbb{Z}_2 \cong \{(1, 1), (-1, -1)\}$.

• The kernel of P acts properly and discontinuously on $S^3 \times S^3$ from which it follows that the image of P is a 6-dimensional open submanifold of $SO(4)$ (since $\dim S^3 \times S^3 = 6$). Because P is continuous and $S^3 \times S^3$ is compact, we have that $P(S^3 \times S^3)$ is compact and since $SO(4)$ is Hausdorff the image of P is also closed. Thus since $SO(4)$ is connected we have that P is surjective.

As a conclusion, since the kernel of P is discrete and the homomorphism $P : S^3 \times S^3 \to SO(4)$ is a 2-fold covering, see [San07]. In other words, every point in $SO(4)$ has a neighborhood covered by two copies of itself, as shown in the picture.
A consequence of the homotopy lifting property for covering spaces, see [Fom16], implies the following theorem.

Theorem 29. If $P : Y \to X$ is a covering map between connected spaces, then P induces an isomorphism between the higher homotopy groups $P_n : \pi_n(Y) \to \pi_n(X)$ (i.e. with $n > 1$).

Finally, we obtain the following result.

Corollary 30.

$$\pi_3(SO(4)) \cong \pi_3(S^3 \times S^3) \cong \mathbb{Z} \oplus \mathbb{Z}.$$

3.2 They are homeomorphic to the sphere S^7

The purpose of this section is to show that if $h + l = \pm 1$, then $M_{h,l}$ is homeomorphic to the standard sphere. We need the concept of *Morse function* $f : M \to \mathbb{R}$ which all critical points are non-degenerate (the Hessian matrix is non-degenerate). An important result in Morse theory is the following, see [Mil60].

Theorem 31 (Reeb). If M is a compact manifold with a Morse function F such that F has exactly two critical points, then M is homeomorphic to the sphere in the corresponding dimension.

We apply this result to our manifolds $M_{h,l}$. As we have seen previously, $M_{h,l}$ has a cover by two charts, $\pi^{-1}(U_1)$ and $\pi^{-1}(U_2)$. We start with the first chart $\rho_1 : \pi^{-1}(U_1) \to \phi_1(U_1) \times S^3$ defined by $\rho_1([x, y], [z, 1]) = (z, y)$. Take the smooth function $F_1 : \pi^{-1}(U_1) \to \mathbb{R}$ by the composition

$$F_1 \circ \rho_1^{-1} : \phi_1(U_1) \times S^3 \to \mathbb{R}$$

which has the form

$$F_1 \circ \rho_1^{-1} : (z, v) \mapsto \frac{\text{Re}(v)}{\sqrt{1 + ||z||^2}}.$$
What are the critical points of $F_1 \circ \rho_1^{-1}$? Since the domain of $F_1 \circ \rho_1^{-1}$ is a product, the derivative must vanish in each component. So we ask ourselves: fixing z, what are the critical points of $F_1 \circ \rho_1^{-1}$?

Observe that restricted to the second component, the map is just given by $v \mapsto \Re(v)$ with a rescaling. But this map is just $a + ib + cj + dk \mapsto a$ (the projection onto the first coordinate). The critical points of this map in the sphere are just the poles ± 1. Thus we have established that $v = \pm 1$, we have to find the critical points for the restriction of $F_1 \circ \rho_1^{-1}$ to $\phi_1(U_1)$ which has the form

$$(z, \pm 1) \mapsto \pm 1 \sqrt{1 + \|z\|^2}.$$

Since $\phi_1(U_1)$ is isomorphic to \mathbb{R}^4, hence we have a problem in multivariable calculus:

$$\nabla F_1 \circ \rho_1^{-1}|_{z, \pm 1}(x_1, x_2, x_3, x_4) = \left(\frac{\partial F_1 \circ \rho_1^{-1}}{\partial x_1}, \frac{\partial F_1 \circ \rho_1^{-1}}{\partial x_2}, \frac{\partial F_1 \circ \rho_1^{-1}}{\partial x_3}, \frac{\partial F_1 \circ \rho_1^{-1}}{\partial x_4} \right)$$

$$= \pm 1 \sqrt{1 + \|z\|^2} \frac{1}{2} (x_1, x_2, x_3, x_4)$$

$$= \pm z \sqrt{1 + \|z\|^2} \frac{1}{2}.$$

This gradient is null only if $z = 0$. Therefore, we show that in $\pi^{-1}(U_1)$ there are only two critical points given by $(0, \pm 1)$.

Now, we consider the second chart $\rho_2 : \pi^{-1}(U_2) \to \phi_2(U_2) \times S^3$ defined by $\rho_2 : ((x, y), [1 : w]) = (w, x)$. Take the smooth function $F_2 : \pi^{-1}(U_2) \to \mathbb{R}$ by the composition

$$F_2 \circ \rho_2^{-1} : \phi_2(U_2) \times S^3 \to \mathbb{R}$$

which has the form

$$F_2 \circ \rho_2^{-1} : (w, u) \mapsto \frac{\Re(wu^{-1})}{\sqrt{1 + \|wu^{-1}\|^2}} = \frac{\Re(wu^{-1})}{\sqrt{1 + \|w\|^2}}.$$

Here we used the multiplicativity of the norm and the fact that $\|u\| = 1$, since $u \in S^3$.

Now, if $u^{-1} = a + ib + jc + kd$ and $w = x_1 + ix_2 + jx_3 + kx_4$, then we differentiate with respect to the first variable and we obtain

$$\nabla \Re(wu^{-1})|_{w} = \nabla (ax_1 - bx_2 - cx_3 - dx_4)|_{w=(x_1, x_2, x_3, x_4)}$$

$$= (a, -b, -c, -d)$$

$$= u.$$

Since the conjugate of u^{-1} is its inverse in the unit quaterions and we get

$$\nabla F_2 \circ \rho_2^{-1}|_{w} = \frac{\nabla \Re(wu^{-1})|_{w} \cdot \sqrt{1 + \|w\|^2} - \frac{1}{2\sqrt{1 + \|w\|^2}} 2w \Re(wu^{-1})}{(1 + \|w\|^2)^{\frac{3}{2}}}$$

$$= \frac{u(1 + \|w\|^2) - w \Re(wu^{-1})}{(1 + \|w\|^2)^{\frac{3}{2}}}.$$
Notice the numerator is never zero, if not we have \(u(1 + \|w\|^2) = w \text{Re}(wu^{-1}) \) and considering the norm on both sides we have the inequality
\[
1 + \|w\|^2 = \|w\| |\text{Re}(wu^{-1})| \leq \|w\| \|wu^{-1}\| = \|w\|^2,
\]
which is impossible. As a consequence, there are no critical points in the second chart.

It remains to show the compatibility on \(\pi^{-1}(U_1) \cap \pi^{-1}(U_2) \) whenever \(h + l = -1 \). It is enough to show the following commutative diagram

For this purpose, we express \(wu^{-1} \) in terms of \(z \) and \(v \). Recall that \(u^{-1} = \frac{u}{\|u\|^2} \) and we know \(u = \frac{z^h v z^l}{\|z\|^2} \). Thus we use the properties of the norm and conjugate in order to obtain the following
\[
u^{-1} = \frac{z^h v z^l}{\|z\|^2} \frac{1}{\|z\|^l} = \frac{z^l v z^h}{\|z\|^l},
\]
and we multiply by \(w = \frac{1}{z} \):
\[
wu^{-1} = \frac{z^l v z^h}{\|z\|^2} \frac{1}{\|z\|^l} = \frac{z^l v z^h}{\|z\|^l}.
\]
For the numerator, we recall that the real part of a quaternion is unchanged by conjugation with an element \(x \), i.e., \(\text{Re}(xyx^{-1}) = \text{Re}(y) \). For \(h + l = -1 \), we have \(h = -1 - l \) and \(h + l + 2 = 1 \). Consequently, we get
\[
\text{Re} \left(\frac{z^l v z^h}{\|z\|^l} \right) = \frac{\text{Re}(z^l v z^h)}{\|z\|} = \frac{\text{Re}(z^l v)}{\|z\|}.
\]

For the denominator, we first calculate \(\|wu^{-1}\|^2 \)
\[\|wu^{-1}\|^2 = \left\| \frac{z_i^j + \bar{z}_i^h}{\|z\|^h + l^2} \right\|^2 = \frac{|v|^2}{\|z\|^2} = \frac{1}{\|z\|^2}. \]

Hence, we substitute into the denominator:

\[\frac{\text{Re}(wu^{-1})}{\sqrt{1 + \|wu^{-1}\|^2}} = \frac{\text{Re}(v) \frac{1}{\|z\|}}{\sqrt{1 + \frac{1}{\|z\|^2}}} = \frac{\text{Re}(v)}{\sqrt{1 + \|z\|^2}}. \]

Therefore, we have constructed maps which agree on the overlap, and they are glued together in order to form a smooth map \(F \) defined on \(M_{h,l} \).

Lastly, we have shown that if \(h + l = -1 \), then \(M_{h,l} \) is homeomorphic to \(S^7 \) using the Reeb’s Theorem 31. We will in Section 3.3.2 that there exists an orientation-reversing isomorphism between \(\xi_{h,l} \) and \(\xi_{-l,-h} \). We conclude that if \(h + l = \pm 1 \), then \(M_{h,l} \) is homeomorphic to \(S^7 \).

3.3 They are non-diffeomorphic to the sphere \(S^7 \)

Let us stand back for a moment and consider the different spaces involved. From Section 3.1, we have a family of vector bundles \(\xi_{h,l} \), and take the associated fibration given by all vectors of norm less or equal to 1. Denote by \(N_{h,l} \) the total space of the fibration associated to \(\xi_{h,l} \). Moreover, the boundary of \(N_{h,l} \) consists of all vectors of norm equal to 1. Notice this space is precisely the manifold \(M_{h,l} \).

Now we show that \(M_{h,l} \) is not always diffeomorphic to \(S^7 \) by means of a contradiction. Assume that \(M_{h,l} \) is diffeomorphic to \(S^7 \), hence we attach smoothly using a collar an 8-disc along the boundary to get a closed manifold \(K_{h,l} \), as shown in the following picture:

![Diagram](Figure 6: The manifold \(K_{h,l} \) obtained by gluing an 8-disc along \(M_{h,l} \))
In Section 3.3.3 we find the first Pontryagin class of $K_{h,l}$ using the first Pontryagin class of the total space $\xi_{h,l}$.

3.3.1 The characteristic classes of $\xi_{h,l}$

We recall two theorems from [Ste51]:

Theorem 32. For any topological group, there exists a group isomorphism

$$\pi_n(BG) \cong \pi_{n-1}(G).$$

Theorem 33 (Steenrod). There exists a bijection between isomorphism classes of orientable n-dimensional vector bundles and homotopy classes of maps from the base space to $BSO(n)$.

Thus $\pi_4(BSO(4)) \cong \pi_3(SO(4))$ which is $\mathbb{Z} \oplus \mathbb{Z}$ by Section 3.1.1. By Steenrod’s Theorem 33, every 4-dimensional oriented vector bundle over S^4, is defined by a continuous map $f : S^4 \to BSO(4)$. Then f as an element of $\pi_4(BSO(4))$, coincides with an element in $\pi_3(SO(4))$. This is precisely the pair of integers (h, l) defining the vector bundle $\xi_{h,l}$.

In addition, there is a group homomorphism

$$\Psi : \pi_4(BSO(4)) \to H^4(S^4)$$

$$[f] \mapsto f^*(\alpha)$$

where $[f]$ denotes the homotopy class of f. We show that Ψ is a group homomorphism: recall the group structure of $\pi_4(BSO(4))$ where for two maps $f, g : S^4 \to BSO(4)$ we have a composition with the “pinching” map along the equator $\mu : S^4 \to S^4 \vee S^4$ as in the picture

Figure 7: The group structure in $\pi_4(BSO(4))$ is given by this composition.

Thus

$$f + g := (f \vee g) \circ \mu : S^4 \to S^4 \vee S^4 \to BSO(4).$$

Besides that we have two maps $c_i : S^4 \vee S^4 \to S^4$ where c_i collapses the i-th sphere, for $i = 1, 2$. Considering the cell structure of S^4 with 4-cells, one for each hemisphere, it is not hard to verify that

$$\mu^* : H^4(S^4 \vee S^4) \to H^4(S^4)$$
maps the sum of both 4-cells to a generator (the sum of both hemispheres). As a consequence, the composition

\[H^4(S^4) \times H^4(S^4) \to H^4(S^4 \vee S^4) \to H^4(S^4) \]

is given by

\[(\alpha, \beta) \mapsto c_1^*(\alpha) + c_2^*(\beta) \mapsto \alpha + \beta\]

where \(\eta : H^4(S^4) \times H^4(S^4) \to H^4(S^4 \vee S^4) \) is an isomorphism obtained by the Mayer-Vietoris sequence.

Therefore, for two maps \(f, g : S^4 \to BSO(4) \) we obtain

\[(f + g)^*(\alpha) = \mu^*(f \vee g)^*(\alpha)\]
\[= (\mu^* \circ \eta^*) \circ ((\eta^{-1})^* \circ (f \vee g)^*)(\alpha)\]
\[= (\mu^* \circ \eta^*)(f^*(\alpha), g^*(\alpha))\]
\[= f^*(\alpha) + g^*(\alpha),\]

which shows that \(\Psi \) is a group homomorphism.

Denote by \(\varphi \) the isomorphism between \(\pi_3(SO(4)) \) and \(\pi_4(BSO(4)) \). We have the following commutative triangle

\[
\pi_3(SO(4)) \cong \mathbb{Z} \oplus \mathbb{Z} \\
\downarrow \varphi \\
\pi_4(BSO(4)) \xrightarrow{\Psi} H^4(S^4) \cong \mathbb{Z}.
\]

Now we know \(\xi_{h,l} \) is represented by the element \((h, l) \in \mathbb{Z} \oplus \mathbb{Z} \cong \pi_3(SO(4)) \). In particular, if \(g = \varphi(h, l) \in \pi_4(BSO(4)) \) is represented by a classifying map with the same name \(g : S^4 \to BSO(4) \), then we use the naturality of the Pontryagin classes to deduce that

\[g^*(p_1) = p_1(\xi_{h,l}). \]

In other words, if we choose \(p_1 \in H^4(BSO(4)) \), the canonical Pontryagin class over \(BSO(4) \) as our cohomology class, it follows that

\[p_1(\xi_{h,l}) = \Psi(g) = \Psi(\varphi(h, l)). \]

Since \(\Psi \circ \varphi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \) is a group homomorphism, it follows that there exist integers \(m, k \) such that

\[\Psi \circ \varphi(h, l) = m \cdot h + k \cdot l. \]

In the next section we calculate the coefficients \(m \) and \(k \).

3.3.2 Determining the coefficients

Recall that if \(x = a + bi + cj + dk \) is a quaternion, then its conjugate is given by \(\overline{x} = a - bi - cj - dk \). Furthermore, the transformation

\[T : \mathbb{H} \to \mathbb{H} \\
x \mapsto \overline{x} \]
is \(\mathbb{R}\)-linear and reverses the orientation of \(\mathbb{H}\) since its determinant is \(-1\) (where we identify \(\mathbb{H}\) with \(\mathbb{R}^4\)). For a 4-dimensional oriented vector bundle with quaternion fiber, say \(\xi\), we can consider its conjugate \(\overline{\xi}\). This consists of taking the same underlying 4-dimensional real bundle but changing the multiplication structure to conjugate multiplication in \(\mathbb{H}\). In other words, the identity transformation (in a set-theoretic sense) between the total spaces

\[
id : E(\xi) \to E(\overline{\xi})
\]

is turned into a conjugate-linear transformation, in such way that \(\text{id}(\lambda v) = \overline{\lambda}v\).

Thus if a transition map is given by \(f : U_i \cap U_j \to SO(k)\), then our new transition map is subject to the condition

\[
f(x)(\overline{v}) = f(x)(v).
\]

As a consequence, by construction, there exists a bundle isomorphism between \(\xi\) and \(\overline{\xi}\) that reverses the orientation (conjugating each fiber).

Going back to our particular case, if we conjugate \(\xi_{h,l}\) where the transition map is given by \(f_{h,l}(u)(v) = u^hvu^l\), then the transition map of \(\overline{\xi}_{h,l}\) is given by

\[
\tilde{f}(u)(v) = \overline{f_{h,l}(u)(v)} = \overline{u^hvu^l} = \overline{vu}^{-l}u^{-h}.
\]

Here we used that \(u\) is an element of \(S^3\), and so its conjugate coincides with its inverse. From this it follows (switching \(\overline{v}\) by \(v\)) that the transition map is

\[
\tilde{f}(u)(v) = u^{-h}vu^{-l} = f_{-h,-l}(u)(v).
\]

This proves the following lemma:

Lemma 34. There exists an orientation-reversing isomorphism which is given by the conjugate transformation

\[
\xi_{h,l} \cong \overline{\xi}_{h,l} \cong \xi_{-l,-h}.
\]

For 4-dimensional bundles the top Pontryagin class (in this case \(p_1\)) is independent of the orientation. Thus the first class of \(\xi_{h,l}\) and of \(\xi_{-l,-h}\) coincide and we obtain

\[
m \cdot h + k \cdot l = m \cdot (-l) + k \cdot (-h).
\]

In particular, setting \((h, l) = (1, 0)\) we have that

\[
m = -k,
\]

and so

\[
p_1(\xi_{h,l}) = m(h - l).
\]

To determine the constant \(m\) it would suffice to evaluate in \((1, 0)\) or \((0, 1)\) and calculate the Pontryagin class of the resulting space. Luckily, \(\xi_{0,1}\) is the canonical bundle over \(\mathbb{H}P^1\) and the characteristic classes are already calculated. For this purpose, we need the following lemma.
Lemma 35. The cohomology ring of \mathbb{HP}^n is described as

$$H^*(\mathbb{HP}^n) \cong \mathbb{Z}[e]/(e^{n+1})$$

where e is the Euler class of the canonical bundle.

Proof. Since \mathbb{HP}^n has a cell structure which involves only 4-dimensional cells (the reader may compare this to the construction of \mathbb{CP}^n, which has only cells of even dimension) hence the only non-zero cohomology groups are those whose dimension is divisible by 4.

Let E be the total space of the canonical bundle γ^n. Denote by Σ the zero section and take $E \setminus \Sigma = \{(x,v) | v \in [x], v \neq 0\}$.

However, this space is homotopy equivalent (as a bundle) to a sphere bundle with total space S^{4n+3} via the maps $(x,v) \mapsto \frac{v}{\|v\}$ and $v \mapsto ([v],v)$.

Using the Gysin sequence:

$$\cdots \longrightarrow H^i(\mathbb{HP}^n) \xrightarrow{\sim e} H^{i+4}(\mathbb{HP}^n) \xrightarrow{\pi_0^*} H^{i+4}(S^{4n+3}) \longrightarrow H^{i+1}(\mathbb{HP}^n) \longrightarrow \cdots$$

since most $H^i(S^{4n+3})$ are zero, we have that multiplication by e gives an isomorphism that jumps 4 dimensions each time. Starting with $H^0(\mathbb{HP}) \cong \mathbb{Z}$ (since \mathbb{HP} is connected), it follows that $H^4(\mathbb{HP}^n) = e\mathbb{Z}$ and so on, while the other groups are zero. This proves the lemma. □

Observe that the cohomological description given above has an interesting consequence: the first Chern class of the canonical bundle is zero because $c_1(\gamma^n) \in H^2(\mathbb{HP}^n) = 0$. Also, the second Chern class agrees with the Euler class $c_2(\gamma^n) = e$. Thus

$$c(\gamma^n) = 1 + c_1(\gamma^n) + c_2(\gamma^n) = 1 + e.$$

On the other hand, by equation (2) we obtain

$$1 - p_1 + p_2 - \cdots = (1 - c_1 + c_2 - \cdots)(1 + c_1 + c_2 + \cdots)$$

and so

$$1 - p_1(\gamma^n) + p_2(\gamma^n) = (1 + c_2(\gamma^n))(1 + c_2(\gamma^n)) = (1 + e)^2.$$

We conclude

$$p(\gamma^n) = 1 - 2e + e^2.$$

Now we are ready to determine the coefficients of the first Pontryagin class. Recall

$$p_1(\xi_{h,l}) = m(h - l)\eta$$

where η is a generator in cohomology. But then

$$p_1(\xi_{0,1}) = m(0 - 1)\eta = -2e.$$

Thus, depending on our choice of generator, we have that $m = \pm 2$, and we have shown the following.

Proposition 36.

$$p_1(\xi_{h,l}) = \pm 2(h - l)\eta.$$
3.3.3 Calculating $p_1(K_{h,l})$

Now we use the characteristic classes of the bundles $\xi_{h,l}$ in order to calculate the characteristic classes of $K_{h,l}$ from Section 3.3.

A vector bundle $\pi : E \to M$ has associated the commutative diagram

\[
\begin{array}{ccc}
\pi^*TM & \longrightarrow & TM \\
\downarrow & & \downarrow \pi' \\
E & \underset{\pi}{\longrightarrow} & M
\end{array}
\]

where $\pi' : TM \to M$ is the standard projection for the tangent bundle. In particular, we have an exact sequence

\[0 \longrightarrow \pi^*E \longrightarrow TE \longrightarrow \pi^*TM \longrightarrow 0.
\]

In this sequence we write π^*E as the set of pairs which commute with both projections, that is

\[\pi^*E = \{(x, f) \in E \times E \mid \pi(x) = \pi(f)\}\]

and

\[\pi^*TM = \{(x, v) \in E \times TM \mid \pi(x) = \pi'(v)\}.
\]

The first map in the sequence can be defined by identifying $f \in E$ as an element of T_xE (since the fiber over x is just a copy of Euclidean space). The second map simply projects (tangentially) the second coordinate, $(x, v) \mapsto (x, \pi'(v))$. It is clear that the image of the first map is contained in the kernel of the second map. By dimension, this sequence is exact. Moreover, this sequence splits where we chose a Riemannian metric on E, i.e.,

\[TE \cong \pi^*E \oplus \pi^*TM.
\]

Now we restrict both tangent bundles and the projections to vectors of norm less or equal to 1. We obtain a similar splitting and for the space $N_{h,l}$ we get

\[TN_{h,l} \cong \pi^*\xi_{h,l} \oplus \pi^*TS^4.
\]

It is known that adding a trivial one-dimensional bundle to the tangent bundle of the sphere one gets a trivial bundle, i.e.,

\[TS^4 \oplus \varepsilon^1 \cong \varepsilon^5.
\]

As a consequence,

\[TN_{h,l} \oplus \varepsilon^1 \cong \pi^*\xi_{h,l} \oplus \pi^*TS^4 \oplus \varepsilon^1
\]

\[\cong \pi^*\xi_{h,l} \oplus \pi^* (TS^4 \oplus \varepsilon^1)
\]

\[\cong \pi^*\xi_{h,l} \oplus \varepsilon^5,
\]

hence

\[p_1(N_{h,l}) = p_1(\pi^*\xi_{h,l} \oplus \varepsilon^5)
\]

\[= p_1(\pi^*\xi_{h,l})
\]

\[= \pi^*p_1(\xi_{h,l}).
\]
Since \(\pi : N_{h,l} \to S^4 \) is a homotopy equivalence, hence the map \(\pi^* : H^4(S^4) \to H^4(N_{h,l}) \) is an isomorphism. Then

\[
\pi^*(p_1(\xi_{h,l})) = \pi^*(2(h - l) \eta) = 2(h - l) \pi^*(\eta)
\]

where \(\pi^*(\eta) \) is a generator.

Now the inclusion

\[
i : N_{h,l} \hookrightarrow K_{h,l}
\]

induces an isomorphism \(i^* \) in degree four cohomology because \(K_{h,l} \) differs from \(N_{h,l} \) by the addition of an 8-cell (this does not affect the lower-degree cohomology). Therefore, we have a natural identification

\[
p_1(K_{h,l}) = 2(h - l) \beta
\]

where \(\beta \) is a generator in degree four cohomology.

Finally, by Hirzebruch’s signature theorem and corollary 27, we have the equation

\[
\sigma(K_{h,l}) = \frac{1}{45} \left(7p_2(K_{h,l}) - (\pm 2(h - l))^2 \right).
\]

On the left hand side, since \(H^4(K_{h,l}) \) is of dimension one we have that \(\sigma(K_{h,l}) = \pm 1 \). We choose the fundamental class in such a way that \(\sigma(K_{h,l}) = 1 \), i.e., such that \(\langle \beta^2, [K_{h,l}] \rangle = 1 \) (we can always do this by reversing the orientation). Thus we get an equation of the form

\[
45 = 7p_2(K_{h,l}) - (\pm 2(h - l))^2 \langle \beta^2, [K_{h,l}] \rangle
\]

\[
= 7p_2(K_{h,l}) - 4(h - l)^2 \langle \beta^2, [K_{h,l}] \rangle
\]

\[
= 7p_2(K_{h,l}) - 4(h - l)^2.
\]

Reducing modulo 7 we have

\[
3 = -4(h - l)^2 \mod 7
\]

\[
= 3(h - l)^2 \mod 7,
\]

which simplifies to

\[
(h - l)^2 = 1 \mod 7.
\]

This equation does not always hold! Just take \(h, l \) such that \((h - l)^2 \neq 1 \mod 7 \), then the differentiable structure cannot coincide with the standard structure because we have a contradiction.

4 A comparison with Milnor’s original work

In his famous paper of 1956, see [Mil56], Milnor defines an invariant associated to 7-manifolds.

We begin with a 7-dimensional, compact, oriented manifold \(M \) subject to the following condition

\[
H^3(M) = 0 = H^4(M).
\]

An important result is the following:
Lemma 37 (Thom). The oriented bordism group in degree 7 is trivial.

As a consequence, M is the boundary of an 8-dimensional manifold which we denoted by B. The Poincaré duality relates the long exact sequence of the pair (B, M) in cohomology and homology. This is the following commutative diagram

\[\cdots \to H^3(M) \to H^4(B, M) \xrightarrow{j} H^4(B) \to H^4(M) \to \cdots \]

\[\cdots \to H_3(M) \to H_4(M) \xrightarrow{j} H_4(B, M) \to H_3(M) \to \cdots \]

Since $H^3(M) = H_3(M) = H_4(M) = H^4(M) = 0$ we get that the morphisms j’s are isomorphisms.

For the fundamental classes $[B] \in H_8(B, M)$ and $[M] \in H_7(M)$, we set $V = H^4(B, M)/\text{Torsion}$ and we get a quadratic form $Q : V \times V \to \mathbb{Z}$ given by

\[Q(\alpha) = \langle \alpha \sim \alpha, [B] \rangle. \]

The Poincaré duality implies that Q is non-degenerate.

Denote by $\tau(B)$ the index of Q and since j is an isomorphism we define

\[q(B) := \langle (j^{-1}p_1)^2, [B] \rangle. \]

The invariant $\lambda(M)$ is the residue modulo 7 of $2q(B) - \tau(B)$. Now we show that $\lambda(M)$ is well-defined (it is independent of B and only depends on M).

Take two disjoint manifolds B_1, B_2 such that $\partial B_1 = \partial B_2 = M$. We construct a new manifold C obtained by smoothly gluing B_1 and B_2 along M, where we keep the original orientation of B_1 and we reverse the orientation of B_2. We illustrate C in the following picture:

![Figure 8](image)

Figure 8: The manifold $C := B_1 \cup -M_2$.

By our choice of orientation, the fundamental class $[C]$ restricts to $[B_1]$ and $-[B_2]$.

Lemma 38. The following equalities hold:

\[\sigma(C) = \tau(B_1) - \tau(B_2) \]

\[\langle p_1^2(C), [C] \rangle = q(B_1) - q(B_2). \]
Proof. Using the Mayer-Vietories exact sequence we have a commutative square
\[
\begin{array}{ccc}
H^n(B_1, M) \oplus H^n(B_2, M) & \xrightarrow{\text{h}} & H^n(C, M) \\
\downarrow j_{1 \oplus j_2} & & \downarrow j' \\
H^n(B_1) \oplus H^n(B_2) & \xleftarrow{k} & H^n(C).
\end{array}
\]
Since \(H^3(M) = H^4(M) = 0\), for \(n = 4\), the square consists of isomorphisms. In particular, if \(\alpha \in H^4(C)\) is any cohomology class, then there exist \(\alpha_1, \alpha_2\) such that \(\alpha = j'h^{-1}(\alpha_1 \oplus \alpha_2)\). Thus
\[
\langle \alpha^2, [C] \rangle = \langle (j'h^{-1}(\alpha_1 \oplus \alpha_2))^2, [C] \rangle \\
= \langle \alpha_1^2 \oplus \alpha_2^2, [B_1] \oplus (-[B_2]) \rangle \\
= \langle \alpha_1^2, [B_1] \rangle - \langle \alpha_2^2, [B_2] \rangle.
\]
The index of the left hand side is simply the signature of \(C\) (compare with section 1.1). This implies that \(\sigma(C) = \tau(B_1) - \tau(B_2)\).

Moreover, let \(\alpha_1, \alpha_2\) be defined by \(\alpha_1 = j_1^{-1}p_1(B_1)\) and \(\alpha_2 = j_2^{-1}p_1(B_2)\). If \(\iota_i : B_i \hookrightarrow M\) denote the inclusions, then we have \(\iota_i^*p_1(C) = p_1(B_i)\) by naturality of characteristic classes. As a consequence,
\[
k(p_1(C)) = p_1(B_1) \oplus p_1(B_2)
\]
where \(k\) is the isomorphism in (4). This implies
\[
j'h^{-1}(\alpha_1 \oplus \alpha_2) = p_1(C).
\]
Similarly as in the computation for the signature, we get
\[
\langle p_2^2(C), [C] \rangle = \langle \alpha_1^2, [B_1] \rangle - \langle \alpha_2^2, [B_2] \rangle = q(B_1) - q(B_2).
\]
Recall the Hirzebruch’s signature theorem (Corollary 27):
\[
\sigma(C) = \langle \frac{1}{45} (7p_2(C) - p_1^2(C)), [C] \rangle.
\]
After some manipulation we obtain
\[
\langle p_2^2(C), [C] \rangle + 45\sigma(C) = 7\langle p_2, [C] \rangle.
\]
Reducing modulo 7 it follows that
\[
\langle p_2^2(C), [C] \rangle + 3\sigma(C) = 0 \mod 7
\]
and multiplying by 2 and reducing the coefficients gives
\[
2\langle p_2^2(C), [C] \rangle - \sigma(C) = 0 \mod 7.
\]
Lemma 38 implies the following

\[2q(B_1) - \tau(B_1) = 2q(B_2) - \tau(B_2) \mod 7. \]

This implies that \(\lambda(M) \) is well-defined.

In particular, if \(h + l = -1 \) we know that \(M_{h,l} \) is homeomorphic to \(S^7 \), which obviously satisfies the condition \(H^4(S^7) = H^3(S^7) = 0 \). Furthermore, we can explicitly calculate \(\lambda(M_{h,l}) \) using that \(\partial N_{h,l} = M_{h,l} \). In Section 3.3.3 we have computed

\[p_1(N_{h,l}) = \pm 2(h - l)\zeta \]

with \(\zeta = \pi^*(\eta) \). We chose an orientation of \(N_{h,l} \) such that \(\langle (J^{-1})^2, [N_{h,l}] \rangle = 1 \) (we can always do this, up to reversing the orientation) and from this we see

\[q(N_{h,l}) = \langle (J^{-1})^2(\pm 2(h - l)\zeta), [N_{h,l}] \rangle = 4(h - l)^2. \]

Besides that the index \(\tau \) is given by \(\langle (J^{-1})^2, [N_{h,l}] \rangle \) which is exactly 1 due to our choice of orientation. Therefore,

\[\lambda(M_{h,l}) = 2q - \tau = 8(h - l)^2 - 1 \equiv (h - l)^2 - 1 \mod 7. \]

In the case \(M_{h,l} \) is diffeomorphic to the standard sphere, we take the standard 8-ball as a bounding manifold. For this case, both \(q \) and \(\tau \) are zero since the fourth cohomology group is trivial. Thus \(\lambda(M_{h,l}) = 0 \) which means that for all values of \(h, l \) with \(h + l = -1 \), we must have \((h - l)^2 - 1 \neq 0 \mod 7 \). This is obviously false.

5 Closing remarks

5.1 In summary

The proof of the existence of exotic spheres resides in a plethora of topological results that were freshly developed in the fifties.

On one hand, the simple classification of oriented vector bundles over the sphere due to Steenrod’s theorem and the relatively easy computation of \(\pi_3(SO(4)) \), allows us to understand all sphere bundles with structure group \(SO(4) \) over the 4-sphere. Then we use the Reeb’s theorem in order to conclude that among all that bundles, some of them are homeomorphic to the sphere.

The work of Thom and Hirzebruch provides powerful invariants associated to manifolds. The cohomological description of these spaces implies prescribed values for the signature and the first Pontryagin class. If they were diffeomorphic to the standard sphere, it would be possible to construct new spaces which also admit a simple, but rigid, description of these invariants. Eliminating the second Pontryagin class by working modulo 7 we get a contradiction by a specific choice of indices. From this we conclude that said manifolds are homeomorphic to the 7-sphere, but not diffeomorphic.
5.2 A glimpse ahead

This was only the beginning of the discovery of the so-called ‘Exotic structures’. The most immediate progress came from Milnor and Kervaire [Ker63] who enumerated all exotic spheres in 1963, summing up to 28 different exotic spheres in dimension 7. In general, the monoid of exotic structures in dimensions different from four has been extensively studied, and turns out to be a group.

It is worth mentioning that even if many important results have been obtained in this direction we still understand very little about exotic structures. A combination of the work by Moise and Stallings [Sta62] shows that \mathbb{R}^n has no exotic structure for n different from 4, while Freedman was the first to exhibit the existence of an ‘exotic \mathbb{R}^4’ [Fre82]. In fact, a continuum of exotic structures has been found for \mathbb{R}^4. Finally, the question about exotic structures in the 4-sphere remains open.

![Figure 9: Michel Kervaire.](image)

References

[San07] José Carlos Santos. *When is a group homomorphism a covering homomorphism?*, Extracta Mathematicae, 2007

[Giu09] Giulio Tiozzo. *Differentiable structures on the 7-sphere* Yale University, 2009 Article