Categorical approach to equivariant Morse theory

Carlos Segovia González

Instituto de Matemáticas UNAM-Oaxaca México

August 11, 2016

Jagiellonian University Kraków, Poland

Morse theory

Let M be C^{∞} , compact, Riemannian manifold (without boundary), and

 $f: M \longrightarrow \mathbb{R}$

a C^∞ map. A critical point $p \in M$ is *Morse* if the bilinear form

$$Hess_p(f) = \left(\begin{array}{c} rac{\partial^2 f}{\partial x_i \partial x_j}(p) \end{array}
ight)$$

is non-degenerate.

The gradient flow lines γ : $\mathbb{R} \longrightarrow M$ satisfying

$$rac{d\gamma}{dt} +
abla_\gamma(f) = 0\,.$$

For *a* critical point, the *stable* and *unstable* manifold are

$$W^{s}(a) = \{x \in M : \lim_{t \to +\infty} \gamma_{x}(t) = a\}$$

$$W^u(a) = \{x \in M : \lim_{t \to -\infty} \gamma_x(t) = a\}$$

Classifying spaces

Definition

For \mathcal{C} a category, the classifying space $B\mathcal{C}$ is the realization of the nerve $N\mathcal{C}$. Where for a simplicial set (space) X the realization is defined as the quotient $\coprod_{n\geq 0}\Delta_n \times X_n / \sim$ with $(s, X(f)a) \sim (\Delta_f(s), a)$ and we get:

- Category $\mathfrak{C} \longmapsto$ Topological space $B\mathfrak{C}$
- Functor $F : \mathcal{C} \to \mathcal{D} \longmapsto$ Continuous function $BF : B\mathcal{C} \to B\mathcal{D}$
- Natural transformation $\alpha: F \Rightarrow G \mapsto Homotopy H_{\alpha}: B\mathfrak{C} \times I \rightarrow B\mathfrak{D}$

Definition

Let $F : \mathcal{C} \to \mathcal{D}$ functor, y in \mathcal{D} . The category $y \setminus F$ has objects (x, v), $v : y \to F(x)$, morphisms from (x, v) to (x', v') is $u : x \to x'$, v' = F(u)v.

Theorem A (Quillen)

If the category $y \setminus F$ is contractible for every object y of \mathcal{D} , then the functor F is a homotopy equivalence.

Morse theory and classifying spaces

For $f: M \to \mathbb{R}$ a Morse function we define the "flow category" C_f as follows:

• the objects, are just the union of all the critical points

$$\operatorname{Obj} \mathfrak{C}_f = \bigsqcup_{p \in \operatorname{Crit}_f} p$$

• for two critical points a and b we define the space of objects $\operatorname{Hom}_{\mathcal{C}_f}(a, b)$ as the compactification of the moduli space $\mathcal{M}(a, b) = (W^u(a) \cap W^s(b))/\mathbb{R}$. We denote this space by $\overline{\mathcal{M}}(a, b)$.

Theorem (Cohen-Jones-Segal)

- For $f : M \longrightarrow \mathbb{R}$ a Morse function, the classifying space of \mathcal{C}_f is of the homotopy type of M.
- For f : M → ℝ a Morse-Smale function, the classifying space of C_f is homeomorphic with M.

• For a category ${\mathfrak C}$ there are pair of functors

where $s(\mathcal{C})$ has objects $a \xrightarrow{\gamma} b$ and morphism from $a_1 \xrightarrow{\gamma_1} b_1$ to $a_2 \xrightarrow{\gamma_2} b_2$ pairs $a_2 \xrightarrow{\alpha} a_1$ and $b_1 \xrightarrow{\beta} b_2$ with $\gamma_2 = \beta \gamma_1 \alpha$. This functors are prefibred and

$$S^{-1}(x) = x \setminus C, \ T^{-1}(y) = (C/y)^{o}$$

- Let <u>M</u> the category with objects the elements of M and morphism only identities, so <u>BM</u> = M. There are functors <u>M</u> ↔ s(C_f), defined by x → (γ_x, x) and projection. This categories are homotopy equivalent.

Semi-direct product

Definition

Suppose *G* acts on \mathcal{C} , the semi-direct product $\mathcal{C} \rtimes G$ is a category with:

- the objects of C;
- the morphisms are pairs $(\gamma, g) : x \longrightarrow y$ with $g \in G$ and $\gamma : gx \longrightarrow y$ a morphism in \mathbb{C} ; and
- the composition of (γ, g) : x → y with (δ, h) : y → z is (δhγ, hg). This is described as follows.

Theorem

The classifying space of the semi-direct product $\mathbb{C} \rtimes G$ has the weak homotopy type of the Borel construction $B\mathbb{C} \times_G EG$.

Theorem A (Quillen-Moerdijk)

Let $F : \mathfrak{D} \longrightarrow \mathfrak{C}$ be a G-<u>invariant continuous functor</u> between topological categories. If for $n \ge 0$, the quotient map

$$B(\operatorname{Nerve}_n(\mathcal{C}) \setminus F) / G \longrightarrow \operatorname{Nerve}_n(\mathcal{C})$$

is a weak homotopy equivalence, then

$$\widehat{BF}: B\mathcal{D}/G \longrightarrow B\mathcal{C}$$

is a weak homotopy equivalence.

- For F : D → C functor and φ : X → C₀ continuous map, with C₀ the objects. The objects of X \ F are triples (x, u, y) with x ∈ X, y ∈ D₀ and u : φ(x) → F(y); the morphisms γ : (x, u, y) → (x', u', y') for x = x' are arrows γ : y → y' with F(γ) ∘ u = u'.
- Let G be the category with objects G and only one morphism between any pair of objects. Consider the functor T : C × G → C × G defined in objects (x,g) → g⁻¹x and in morphisms
 (x,g) (^{γ,h⁻¹g)}/_→ (y,h) the image by T is (h⁻¹γ, h⁻¹g). Denote the

 $(x,g) \xrightarrow{\leftarrow} (y,h)$ the image by T is $(h^{-1}\gamma, h^{-1}g)$. Denote the category $\mathcal{T} := \operatorname{Nerve}_n(\mathfrak{C} \rtimes G)/T$

$$B\mathfrak{T} = \coprod_{\mathsf{Nerve}_n(\mathbb{C}\rtimes G)} B\mathfrak{T}_{\overline{x}} \simeq \coprod_{\mathsf{Nerve}_n(\mathbb{C}\rtimes G)} \coprod_{k\in G} B\mathfrak{T}_k \cong \coprod_{\mathsf{Nerve}_n(\mathbb{C}\rtimes G)} \coprod_{g\in G} EG$$

where we have the action relates $\mathfrak{T}_k \xrightarrow{g} \mathfrak{T}_{gk}$ and the inclusion $\mathfrak{T}_k \hookrightarrow \overline{G}$ is a homotopy equivalence. Thus $B\mathfrak{T}/G$ is of the (weak) homotopy type of $\operatorname{Nerve}_n(\mathfrak{C} \rtimes G)$ and hence $B(\mathfrak{C} \times \overline{G})/G \simeq B(\mathfrak{C} \rtimes G)$.

Let M be a compact manifold with an action of a Lie group G, that is $M \times G \longrightarrow M$.

Furthermore, if N_1 , N_2 are two Morse submanifolds, then we have an action

$$G \times W(N_1, N_2) \times \mathbb{R} \longrightarrow W(N_1, N_2)$$

given by $(g, x, t) \longrightarrow g\gamma_x(t)$ where suppose $g\gamma_x = \gamma_{gx}$ as sets. Thus we have an action of G over the flow category \mathcal{C}_f and we get the following result.

Theorem

• For a G-invariant Morse function we get

$$B(\mathfrak{C}_f\rtimes G)\simeq B\mathfrak{C}_f\times_G EG$$
.

• For G a finite group we get

 $B(\mathfrak{C}_f \rtimes G) \simeq B\mathfrak{C}_f \times_G EG \simeq B(B\mathfrak{C}_f \rtimes G).$

Corollary

For G a group acting free over a manifold M and $f : M \longrightarrow \mathbb{R}$ a G-invariant function, we get the (weak) homotopy equivalence

 $B(\mathfrak{C}_f \rtimes G) \simeq M/G$.

Thanks!!