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29 December 2014
北京交通大学
北京,中国



The sequence 1, 2, 5, 15, 51, 187, 715, 2795, 11051, 43947, · · ·
with the form:

g(n) =
(2n + 1)(2n−1 + 1)

3
.

This sequence have the number A007581 in the webpage

The On-Line Encyclopedia of Integer Sequences and
have the following interpretations:

(1) The density of a language with four letters.

(2) The dimension of the universal embedding of the dual polar
space.

(3) The number of isomorphy classes of regular fourfold covering
of a graph L with Betti number n = β(L) and with voltage
group F2 × F2.

(4) The rank of the fundamental group of the classifying space of
the Fn

2-cobordism category in dimension 1+1.



Languages

Consider the following game: We form words (a = a1a2 · · · am)
made with letters ai ∈ {1, 2, 3, 4} satisfying the property

0 < ai ≤ maxj<i{aj}+ 1

Thus a1 = 1 and we are not going to write it. Let Ln be the set of
words of length n. For n = 1 there are two words 1 and 2, for n = 2
the words are 11, 12, 21, 22, 23, while for n = 3 we have 15 words

111 112 121 122 123
211 212 213 221 222
223 231 232 233 234 .

The density of a language with four letters in degree n is the
number of elements of Ln. Nelma Moreira and Rogério Reis
consider partition of a set of n elements in subsets.



For n = 2,

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

11 12 ∅ ∅ ∅ ∅ 22
21 23

For n = 3,

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

111 112 212 222 232 ∅ 122
121 123 233
211 213
221 223
231 234



For n = 4,

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

1111 1112 2112 2122 2132 2342 1122
1121 1123 2312 2322 2332 2343 1233
1211 1213 1212 1222 1232 2133
1221 1223 2212 2222 2232 2233
1231 1234 2313 2323 2333
2111 2113
2121 2123
2131 2134
2211 2213
2221 2223
2231 2234
2311 2314
2321 2324
2331 2334
2341 2344



Let Ln(j) the words in Ln of the case j ∈ {1, ..., 7} and we denote
by Ln(1, 2) = Ln − (Ln(1) ∪ Ln(2)), we have bijections:

1. A1 : Ln−1 −→ Ln(1), A2 : Ln−1 −→ Ln(2).

2. Aj : Ln−1(1, 2) −→ Ln(j) (j = 3, 4, 5).

3. A6 : Ln−1(1, 2) −→ (Ln(6) ∪ Ln(7))− {11 · · · 122},

a = a′an−1 7−→
{

a′4an−1 ∈ Ln(6) if a′ has a 3
a′33 ∈ Ln(7) else.

Thus |Ln(1)| = |Ln(2)| = g(n − 1), |Ln(j)| = g(n − 1)− 2g(n − 2)
(j = 3, 4, 5) and |Ln(6)|+ |Ln(7)| = g(n − 1)− 2g(n − 2) + 1
Therefore,

|Ln| =2g(n − 1) + 4 (g(n − 1)− 2g(n − 2)) + 1 =

=6g(n − 1)− 8g(n − 2) + 1

=
(2n + 1)(2n−1 + 1)

3
.



Dual polar space
Let G = (P,L) be a partial linear vector space (P points and L

lines). Hence they satisfy:

I any line is at least incident with two points, and

I any pair of distinct points is incident with at most one line.

We assume that every line contain exactly three different points.
An embedding of G in an F2-vector space E is a function
θ : P −→ E such that:

I E is spanned by the image of θ, i.e. E = 〈Pθ〉; and

I for every line {p, q, r} ∈ L, the vectors pθ, qθ, rθ form a
projective line in E , i.e. pθ + qθ + rθ = 0.

The universal embedding satisfies

P //

θ !!

U(G)

��

′′largest′′

E ∀θ : P −→ E



The Sp2n(2) dual polar space is the partial linear space
Gn = (Pn,Ln) constructed from a 2n-dimensional nondegenerate
symplectic space over F2 with:

I Pn = { the maximal totally isotropic subspaces},
I Ln = { the totally isotropic subspaces of dimension n-1},
I the incidence is given by inclusion.

This is a partial linear space with lines with exactly three points
since:

I every maximal totally isotropic subspace has dimension n, and

I every totally isotropic subspace of dimension n − 1 is
contained in exactly three maximal totally isotropic subspaces.

The dimension of the universal embedding of the dual polar space
is the dimension of U(Gn). A. E. Brouwer produce an embedding
of Gn of dimension exactly g(n) = (2n + 1)(2n−1 + 1)/3. Thus

dimU(Gn) > g(n) .



The Brouwer’s conjecture state the equality dimU(Gn) = g(n), so
in order to prove this conjecture, it suffice to show that U(Gn) is
spanned by g(n) vectors. For n = 1, P1 = {10, 01, 11} and
L1 = {0}. Hence dimU(G1) = 2.
For n = 2, P2 is
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K
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They form the Cremona-Richmond configuration
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Counterexample
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To find a set of generators, for n ≥ 3, this could be a difficult
problem. The number of maximal isotropic spaces is given by the
formula

(2n + 1)(2n−1 + 1) · · · (22 + 1)(2 + 1) = 3, 15, 135, 2295, · · ·

Paul Li proposes a strategy:
Let Γ the collinearity graph of Gn. Fix a vertex x0 ∈ Γ and let Γk

(0 6 k 6 n) denote the set of vertices at distance k from x0.
Then y ∈ Γk if and only if dim(y ∩ x0) = n − k. The geometry of
Gn has the following properties:

I every line of Gn contains two elements from Γk and one from
Γk−1, for some 1 6 k 6 n;

I every point y ∈ Γk−1 is adjacent to at least a point in Γk , for
1 6 k 6 n.

Therefore we have a filtration

0 6 〈Γθ0〉 6 · · · 6 〈Γθn〉 = U(Gn) ,



We say that two elements p, q ∈ Γk are connected if
p ∩ x0 = q ∩ x0, where x0 ∈ Γ is the fixed point. Therefore, the
connected components of Γk correspond to the n − k-subspaces of
x0.
Since Γ0, Γ1, and Γn, respectively have 1, 2n − 1. and 1 connected
components, we obtain

dimU(Gn) 6 1 + (2n − 1) +
n−2∑
k=1

dim
〈Γθk+1〉
〈Γθk〉

+ 1 .

Theorem
For the universal embedding U(Gn). There exists a subset Nn of
subspaces of x0, such that for a subset T n ⊂ Pn with the map
y ∈ T 7−→ y ∩ x0 a bijection restricted to Nn. Therefore, the set
T n is a basis for U(Gn).



For example for n = 2 we take x0 = A
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Properties of Nn:

I the cardinality is exactly the number
g(n) = (2n + 1)(2n−1 + 1)/3;

I the set is participated in seven families which are denoted
Nn(i) for i = 1, 2, ..., 7;

I there are bijections Ej : Nn(j) −→ Nn−1 for j = 1, 2;

I there are bijections Ej : Nn(j) −→ Nn−1(1, 2) for j = 3, 4, 5;

I there is a bijection
E6 : (Nn(6) ∪Nn(7))− 〈00 · · · 011〉 −→ Nn−1(1, 2);

I inductively we can define bijections with the languages where

Nn(i)
Fn //

Ei
��

Ln(i)

Nn−1
Fn−1

// Ln−1

Ai

OO
Nn(j)

Fn //

Ej

��

Ln(j)

Nn−1(1, 2)
Fn−1

// Ln−1(1, 2)

Aj

OO

for i = 1, 2, j = 3, 4, 5 and similarly for the case 6 with
〈00 · · · 011〉 7−→ 11 · · · 122.



Case 1 Case 2 Case 3, 4, 5, 6 Case 7

11 12 ∅ 22
(0 0) (0 1) (1 1)

21 23

(1 0)

(
1 1
0 1

)
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 7

111 112 212 222 232 122

(000) (001) (101)

(
110
011

) (
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010

)
(011)

121 123 233

(010)

(
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) (
100
011

)
211 213
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(
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221 223
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(
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001

)
231 234(
110
010

)  110
010
001





Coverings of graphs
We take L = (V (L),D(L)) a (directed) graph where V (L) are the
vertices and D(L) the edges.
A covering of L,

K // L

is a surjection p : V (K ) −→ V (L) such that
p|N(ṽ) : N(ṽ) −→ N(v) is a bijection for all v and ṽ ∈ p−1(v).
Where N(v) is the neighborhood of v , i.e. the set of vertices
adjacent to v .
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I K is an n-fold covering of L if the projection is n to 1;

I a covering p : K −→ L is regular if there is a group G which
acts free and transitively over K , i.e. there is monomorphism
of groups G −→ Aut(K ) and the quotient K/G is isomorphic
to L;

I two covering graphs p1 : K1 −→ L and p2 : K2 −→ L are
isomorphic if there is a graph isomorphism Φ : K1 −→ K2

such that p1 = p2Φ.

I every regular covering of a graph L can be constructed
through a voltage map φ : D(L) −→ G with G a finite group
called the voltage group (Gross and Tucker);

I A voltage map has a graph associated, called the
voltage graph, which we denote by L×φ G and which vertex
set is V (L)× G and an edge joints a vertex (u, g) to
(v , φ(uv)g).
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Theorem
Let G be an abelian group. Any two n-fold voltage coverings
L×φ G and L×ψ G are isomorphic if only if there exists a
permutation f in Sn such that

ψ(uv) = f (v) (φ(uv) + g)− f (u)(g) .

From here we suppose G = Fr
p the r -dimensional vector space over

the field Fp, where p is a prime number. Let Isom(L,Fr
p) be the set

of isomorphism regular graph covering with voltage group Fr
p. Now

we show the isomorphism

Isom(L,Fr
p) ∼= (Fr

p)β(L)/Glr (Fp) .

where β(L) = |D(L)| − |V (L)|+ 1 is the Betti number of L and
Glr (Fp) is the general linear group.



I φ a voltage map, fix vertex u0, a spanning tree T . We replace
by

φ(Pw ) =
∑

xy∈Pw

φ(xy) , φT (uv) = φ(Pu)+φ(uv)−φ(Pv ) ,

f (v)(g) = g−φ(Pv ) , φT (uv) = f (v)(g+φ(uv))−f (u)(g) .

Pu the unique path in T from u0 to u. φT ≡ 0 on T .
I φ1, φ2 voltage maps with isomorphic voltage graphs and
φ1 ≡ φ2 ≡ 0 on T .

f (aφ1(u1v1) + bφ1(u2v2)) = aφ2(u1v1) + bφ2(u2v2) + f (0) ,

for a, b ∈ Z. Thus there exists A ∈ Gl(2,Z) with
f (g) = Ag + f (0) for g ∈ Fr

p. Therefore, φ2(uv) = Aφ1(uv).
I The isomorphisms follows since the cotree T ∗ of the spanning

tree has β(L) edges.
I For p = r = 2 we have the initial sequen 2ce.

The number of isomorphism classes of regular coverings
of a graph L with voltage group F2

2.



( 0, 0 ) ( 0, 1 ) ( 1, 0 ) ( 1, 1 )

( 0, 0 )

( 0, 0 )

( 0, 0 )

( 1, 0 )

( 0, 0 )

( 1, 0 )

( 1, 0 )

( 1, 0 )

( 1, 1 )

( 1, 0 )



Cobordism category
A category is a collection of objects and morphisms. Example: the
category of sets and functions, the category of topological spaces
and continuous functions, the category of smooth manifolds and
smooth maps, etc.
The cobordism category. Its objects are finite disjoint unions of
circles. A cobordism between two objects Σ1 and Σ2 is an oriented
surface M whose boundary is the disjoint union ∂M = Σ1 t Σ2.
We consider two cobordisms as equal if there exists a
diffeomorphism between them which is the identity in the
boundary. The equivalence classes of the cobordisms are the
morphisms of the cobordism category.



Let G a finite abelian group of order |G | = n. The G-cobordism
category has objects finite sequences (g1, ..., gm) of elements in G .
Each g ∈ G defines an n-fold covering of the unit circle by taking
the product G × [0, 1] up to the identification (h, 0) ∼ (h + g , 1),
for every h ∈ G . For G = Z15 and g = 3, we have a 15-fold
covering of the circle whose total space is the disjoint union of
three circles, see the following figure



For (g1, . . . , gm) and (h1, . . . , hl) objects, consider cobordisms
between the total spaces of the n-fold coverings. Every such
cobordism comes with a free action of the group G . We identify
two G -cobordisms if there exists a diffeomorphism between them
which commutes with the action and which is the identity in the
boundary. The equivalence classes of the G -cobordisms obtained
by this identification are the morphisms of the G -cobordism
category. They are generated by elementary components

h

ghkg g

g

1

We denote by CobG the G -cobordism category.



For C a small category we denote by C[C−1] the groupoid obtained
by formally adjoint the inverses of all arrows. For example
Z = N[N−1] and Q = Z[Z−1]. For C, we associate a topological
space called the classifying space BC. For example BZ ' S1 ' BN.

Theorem (Quillen)

The fundamental group π1(BC, x) is canonical isomorphic with
C[C−1]x for x and object of C.

There are two properties in the G -cobordism category which let us
to find the fundamental group of its classifying space

0 0=0 0
-1

=g0 0 0 0

0

g



For G = 0 the assignment genus − spheres gives the isomorphism
π1(B Cob0) = Z, so the rank is 1. For an arbitrary finite abelian
group, the group π1(B CobG ) is generated by elements of the form

 k 
 g 

0  0 

up to the identification given by the diffeomorphism of the torus,
which are generated essentially by two which give the
identifications (g , k) ∼ (g , g + k) and (g , k) ∼ (k ,−g). Thus
the rank of the fundamental group of the
classifying space of the G -cobordism category is given by the
cardinality of the quotient of G × G under the action of Sl2(F2).



(g , k) ∼ (g , g + k)

Dehn twist

(e iθ, t) 7−→ (e i(θ+2πt), t)

(g , k) ∼ (k ,−g)

g

k

k

g

k
- g



Resume

I We establish a relation between languages and subvector
spaces which give a set of representatives of the dual polar
space by bijections

Fn : Nn −→ Ln

where both sets have cardinality g(n) = (2n + 1)(2n−1 + 1)/3.

I We prove that the number of isomorphism of regular
coverings of a graph with Betti number n with voltage group
Fr
p is given by

k(r , p, n) := | Isom(L,Fr
p)| =

∣∣(Fr
p)n/Glr (Fp)

∣∣
and the rank of the Fn

p-cobordism category is the cardinality
of the quotient

m(p, n) :=
∣∣(F2

p)n/Sl2(Fp)
∣∣

Thus
k(2, p, n) ≤ m(p, n) .
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