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Abstract

We call the digraph D an m-coloured digraph if its arcs are coloured
with m colours. In an m-coloured digraph D we say that a subdigraph
H is: monochromatic whenever all of its arcs are coloured alike, and
almost monochromatic if with at most 1 exception all of its arcs are
coloured with the same colour.

If D is an m-coloured digraph a kmp or a kernel by monochro-
matic paths of D is a set K of vertices of D which is independent by
monochromatic paths (for any two different vertices u, v ∈ K there
are no monochromatic paths between them) such that for every other
vertex x ∈ V (D) \K there is a vertex v ∈ K such that there is an xv
monochromatic directed path in D.

A digraph D is 3-quasi-transitive if whenever (x, y), (y, w), and
(w, z) ∈ A(D) with x, y, w and z pairwise different vertices, either
(x, z) or (z, x) is in A(D), and it is asymmetric if it has no symmetric
arcs.

In 1982, Sands, Sauer, and Woodrow proved that every 2-coloured
tournament has a kmp. They also posed the following problem: Let T
be a 3-coloured tournament which does not contain Ĉ3 (the 3-coloured
cyclic tournament of order 3). Then, must T contain a kmp?

In this paper we consider asymmetric 3-quasi-transitive digraphs,
which not only generalise tournaments but also bipartite tournaments,
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and prove that if D is an m-coloured asymmetric 3-quasi-transitive di-
graph such that every C4 (the directed cycle of length 4) is monochro-
matic and every C3 (the directed cycle of length 3) is almost monochro-
matic, then D has a kernel by monochromatic paths.

We also note that the hypotheses on C3 and C4 are tight.

1 Introduction

For general concepts, we refer the reader to [1, 2]. Throughout this paper
all paths and cycles will be directed paths and directed cycles. The topic of
absorbency in graphs has been widely studied by several authors, and a com-
plete study of this topic is presented in [16, 17]. A special class of absorbency
is absorbency in digraphs, and it is defined as follows: Let D be a digraph.
A set of vertices S ⊆ V (D) is absorbent whenever for every w ∈ (V (D) \ S)
there exists a wS-arc in D. Absorbent independent sets in digraphs (kernels
in digraphs) have found many applications in different topics of mathematics
(see, for instance, [4, 5, 7, 8]) and they have been studied by several authors.
Interesting surveys of kernels in digraphs can be found in [6, 9].

Let D be an m-coloured digraph. A set N ⊆ V (D) is said to be a kernel
by monochromatic paths (kmp) if it satisfies the following two conditions:

1. for every pair of different vertices u, v ∈ N there is no monochromatic
path between them, and

2. for every vertex x ∈ (V (D)\N) there is a vertex y ∈ N such that there
is a xy-monochromatic path.

Clearly the concepts of absorbency, independence, and kernel by monochro-
matic paths in edge-coloured digraphs are a generalisation of those of ab-
sorbency, independence, and kernel in digraphs. The study of the existence
of kernels by monochromatic paths in edge-coloured digraphs starts with the
theorem of Sands, Sauer, and Woodrow, proved in [18], which asserts that
every 2-coloured digraph has a kernel by monochromatic paths. In several
papers (see [10, 11, 12]), sufficient conditions for the existence of kernels by
monochromatic paths in edge-coloured digraphs have been obtained mainly
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for tournaments and near tournaments, and require monochromaticity or al-
most monochromaticity of small subdigraphs (due to the difficulty of the
problem). Other interesting results can be found in [13]. In [10] (resp. [14])
it was proved that if D is an m-coloured tournament (resp. bipartite tour-
nament) such that every cycle of length 3 (resp. every cycle of length 4) is
monochromatic, then D has a kernel by monochromatic paths.

Here we consider asymmetric, 3-quasi-transitive digraphs, which not only
generalise tournaments, but also bipartite tournaments. In this paper we
prove that if D is a coloured asymmetric 3-quasi-transitive digraph such that
every C4 is monochromatic and every C3 is almost monochromatic, then D
has a kernel by monochromatic paths. To do this we shift our attention
to the closure of D, that is, C(D) which is a multidigraph defined thus:
V (C(D)) = V (D), and the arc (x, y) ∈ C(D) if and only if in D there is a
monochromatic path from x to y. We prove that every cycle in C(D) has a
symmetric arc, which by Lemma 1 implies D has a kernel by monochromatic
paths. Note that D has a kernel by monochromatic paths if and only if C(D)
has a kernel.

We would like to point out that the hypotheses on the 3 and 4-cycles
cannot be relaxed further. In the case of triangles, a 3-coloured triangle is
itself a counterexample to the result, and an infinite family of counterexam-
ples can be built as follows: Start with a 3-coloured triangle (x, y, z). Add
a vertex w0, and arcs (w0, x), (w0, y), and (w0, z) all the same colour. Next
add a vertex w1, and arcs (w1, w0), (w1, x), (w1, y), and (w1, z), all the same
colour. This procedure can be repeated any number of times, in each step
adding a vertex and arcs from that vertex to all previous vertices coloured in
the same way. These graphs are 3-quasi-transitive, and do not have a kernel
by monochromatic paths.

Regarding 4-cycles, as pointed out in [15], we can construct an infinite
family of counterexamples. Start with D a 3-coloured bipartite tournament
(hence 3-quasi-transitive and asymmetric) defined as follows:

V (D) = {u, v, w, x, y, z} and

A(D) = {(u, x), (x, v), (u, y), (y, w), (w, z), (z, u), (x,w), (y, u), (z, v)},

with (x,w), (w, z), and (z, u) coloured 1, (y, u), (u, x), and (x, v) coloured
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2, and (z, v), (v, y), and (y, w) coloured 3. The only 4-cycles in D are
(u, x, w, z, u), (v, y, u, x, v), and (w, z, v, y, w) which are all almost monochro-
matic, and the digraph C(D) is a complete digraph with no kernel, so D has
no kernel by monochromatic paths. For the infinite family of counterexam-
ples, let Dn be the bipartite tournament (hence 3-quasi-transitive and asym-
metric) obtained from D by adding vertices z1, . . . , zn and arcs of colour 3
from each of these vertices to u, v, and w respectively.

Finally with respect to the asymmetry hypothesis, we cannot claim that
it is tight. There are instances of 3-quasi-transitive coloured digraphs such
that their closure has a cycle γ with no symmetric arc. For example, define
D as follows: V (D) = {x, y, z, w} and

A(D) = {(x,w), (w, x), (y, w), (w, y), (z, w), (w, z)},

with (x,w) and (w, y) coloured 1, (y, w) and (w, z) coloured 2, and (z, w)
and (w, y) coloured 3. The closure of D contains the cycle γ = (x, y, z, x)
which has no symmetric arc. These digraphs are sometimes referred to as
“flowers”, and any such flower with any number of “petals” with the same
colouring pattern gives rise to a cycle in its closure with no symmetric arc.

In the method we use to prove that our digraph has a kernel by monochro-
matic paths, we use the fact that every cycle in the closure of D has a sym-
metric arc, which by Theorem 1 implies C(D) has a kernel, so by Lemma 1 D
has a kernel by monochromatic paths. We must point out, however, that the
failure of C(D) to have a symmetric arc in every cycle does not imply that
C(D) does not have a kernel, it merely renders our method of proof useless
for this case. We do not know whether our main result still holds if we drop
the asymmetry hypothesis.

2 Preliminaries

An arc-coloured digraph D is said to be m-coloured if its arcs are coloured
with m colours. The set of vertices of D will be denoted by V (D), and the
arcs of D will be A(D). An arc (u, v) ∈ A(D) is called asymmetrical (resp.
symmetrical) if (v, u) /∈ A(D) (resp. if (v, u) ∈ A(D)). The asymmetrical
part of D (resp. symmetrical) which is denoted by Asym(D) (resp. Sym(D))
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is the spanning subdigraph of D whose arcs are the asymmetrical (resp. sym-
metrical) arcs of D. If S is a non-empty subset of V (D) then the subdigraph
D[S] of D induced by S is the digraph having vertex set S and whose arcs
are the arcs of D joining vertices of S.

We call a subset K ⊆ V (D) independent if there are no arcs between its
vertices, and independent by monochromatic paths if for any two vertices in
K, there are no monochromatic paths between them. The subset K ⊆ V (D)
is absorbent if for any vertex x /∈ K there is a vertex y ∈ K such that the
arc (x, y) ∈ A(D), and absorbent by monochromatic paths if for any vertex
x outside of K, there is a vertex y in K such that there is a monochromatic
path from x to y. A subset K ⊂ V (D) is a kernel of D if it is both indepen-
dent and absorbent, and it is a kernel by monochromatic paths if it is both
independent and absorbent by monochromatic paths.

If D is an m-coloured digraph then the closure of D, denoted by C(D)
is the m-coloured multidigraph defined as follows: V (C(D)) = V (D), and
A(C(D)) = A(D)∪{(u, v)i| in D there exists a uv-monochromatic path with
colour i}, where (u, v)i denotes the arc (u, v) coloured with colour i. Notice
that for any digraph D, C(C(D)) ∼= C(D) and K is a kmp of D if and only if
K is a kernel of C(D).

A tournament T is a digraph such that between any two vertices there
is one and only one arc, and a digraph D is 3-quasi-transitive if whenever
(x, y), (y, w), (w, z) ∈ A(D) with x, y, w and z pairwise different vertices then
either (x, z) or (z, x) is in A(D).

The following easy observation will be used throughout this paper, with-
out further explanation: If D is an asymmetric digraph then every open
directed walk of length 3 is a path, that is, all vertices and arcs are pairwise
different.

3 Results

We will use the following theorem:
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Theorem 1. [Berge-Duchet] [3] Let D be a digraph. If every directed cycle
of D has at least one symmetric arc, then D has a kernel.

The following lemma is at the heart of the proof of our main result:

Lemma 1. If D is an m-coloured digraph such that every cycle γ in C(D)
has a symmetric arc, then D has a kernel by monochromatic paths.

Proof. Let D be an m-coloured digraph such that every cycle γ in C(D) has
a symmetric arc. This by Theorem 1 implies C(D) has a kernel, which in
turn implies D has a kernel by monochromatic paths.

Also, a well known result in digraphs:

Lemma 2. Let D be a digraph and x, y ∈ V (D). Then every xy-walk in D
contains a xy-path.

Lemma 3. Let D be an asymmetric 3-quasi-transitive digraph, and u, v ∈
V (D) such that there is a uv-path P and no vu-path. Then one of the fol-
lowing holds:

1. (u, v) ∈ A(D) (when l(P ) is odd), or

2. There is a vertex w ∈ P such that (u,w) and (w, v) are arcs in D (when
l(P ) is even).

Proof. Let D be an asymmetric 3-quasi-transitive digraph, and u, v ∈ V (D)
such that there is a path P = (u = w0, w1, . . . , wn = v) and no vu-path. We
have two cases:

1. l(P ) odd. We will prove, by induction on l(P ), that (u, v) ∈ A(D).
If l(P ) = 3 then there are vertices w1 and w2 in V (D) such that
P = (u,w1, w2, v) (and all these vertices are distinct). Since D is
3-quasi-transitive, either (u, v) or (v, u) is in A(D). Since we assumed
(v, u) /∈ A(D), we conclude (u, v) ∈ A(D), which proves the basis of
our induction.

Now suppose the result is true for 3 ≤ m < n = 2k + 1, and let
u, v ∈ V (D) such that there is a path P = (u = w0, w1, . . . wn = v)
with l(P ) = n = 2k + 1 and there is no vu-path in D. Since D is
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3-quasi-transitive, either (w0, w3) or (w3, w0) is in A(D).

If (w0, w3) ∈ A(D), then there is a path P ′ = (w0, w3, . . . , wn) in D
with l(P ′) = 2k − 1, with no wnw0-path, so by induction hypothesis,
(w0 = u, v = wn) ∈ A(D) and we are done.

Now suppose (w3, w0) ∈ A(D), and consider the path (which is part of
P ) Q = (w2, . . . , wn), which is of length 2k− 1. If there is a path from
wn to w2, then there is a directed walk

(wn, . . . , w2, w3, w0),

which by Lemma 2 contains a wnw0-path, contradicting our assump-
tion. Therefore there is no path from wn to w2, and by our induction
hypothesis, (w2, wn) ∈ A(D), so there is a path (w0, w1, w2, wn) in D,
and since there is no path from wn to w0 and D is 3-quasi-transitive,
we conclude (w0, wn) ∈ A(D).

2. l(P ) is even. As above, we will prove the result by induction on n =
l(P ), so first let n = 2, and the proof is immediate. For the sake of
clarity, now let n = 4, so P = (w0, w1, w2, w3, w4). Since P is a path,
these vertices are all distinct, and D 3-quasi-transitive implies either
(w0, w3) ∈ A(D) or (w3, w0) ∈ A(D), and either (w1, w4) ∈ A(D) or
(w4, w1) ∈ A(D). If both (w3, w0) and (w4, w1) are in A(D), then
(w4, w1, w2, w3, w0) is a path from w4 to w0, a contradiction, so at least
one of (w0, w3) ∈ A(D) or (w1, w4) ∈ A(D) holds. Then (w0, w3, w4)
and/or (w0, w1, w4) are/is (a) path(s) in D, which proves the lemma
for n = 4.

For the induction hypothesis, suppose the result is true for 6 ≤ k ≤ n−2
and let P = (u = w0, w1, . . . , wn−2, wn−1, wn = v) be a path in D such
that there is no wnw0-path in D.

Since P is a path, w0, . . . , wn are all distinct, and since D is 3-quasi-
transitive, for every wi, wi+3 with 0 ≤ i ≤ n − 3 either (wi, wi+3) ∈
A(D) or (wi+3, wi) ∈ A(D). If there is i ∈ {0, . . . , n − 3} such that
(wi, wi+3) ∈ A(D) then the path P ′ = (w0, . . . , wi, wi+3, . . . , wn) has
length n − 2 and there is no path from wn to w0, so by our induction
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hypothesis there is w ∈ V (D) such that (w0, w) and (w,wn) are in
A(D).

If, on the other hand, (wi+3, wi) ∈ A(D) ∀i = 0, . . . , n − 3 then
(wn, wn−3, wn−2, wn−1, wn−4, wn−3, wn−2, . . . , w1, w2, w3, w0) is a directed
walk from wn to w0, which by Lemma 2 contains a wnw0-path, a con-
tradiction.

Lemma 4. Let D be a coloured asymmetric 3-quasi-transitive digraph such
that every C4 is monochromatic, and u, v ∈ V (D) such that there is a
monochromatic uv-path P and no monochromatic vu-path. Then either:

1. (u, v) ∈ A(D) (when l(P ) is odd), or

2. There exists w ∈ V (D) such that (u,w) and (w, v) are arcs in D (when
l(P ) is even).

Proof. Let D be a coloured asymmetric 3-quasi-transitive digraph with ev-
ery C4 monochromatic, and suppose u, v ∈ V (D) are such that there is a
monochromatic uv-path P of length n and there is no monochromatic vu-
path. Let P = (u = w0, w1, . . . , wn = v) be a monochromatic uv-path in D
of minimum length, and suppose there is no monochromatic vu-path in D.

Note if n = 2 the result follows, and if n = 3 then D 3-quasi-transitive
implies either (w0, w3) ∈ A(D) or (w3, w0) ∈ A(D), the latter is a monochro-
matic vu-path, a contradiction, so (w0, wn) ∈ A(D), proving the lemma for
n = 3, and so we assume n ≥ 4.

First we will prove by induction that either the lemma holds, or for every
wi, wj with 0 ≤ i < j ≤ n and j − i ≥ 2, (wi, wj) /∈ A(D), that is, if there is
an arc between wi and wj then it is (wj, wi), that is, it goes “backwards”.

We will do the basis of our induction for both w0 and w1. Consider the
set of vertices {wi} of P such that there is an arc between w0 and wi, with
i ≥ 2, and note w3 is one such vertex since D is 3-quasi-transitive, so this
set is not empty. If for all such wi the arc (wi, w0) is in A(D), then we are
done, so suppose there is at least one vertex wi such that (w0, wi) ∈ A(D),
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and let j be the maximum subindex such that (w0, wj) ∈ A(D). If j = n
then (w0, wn) ∈ A(D) and the lemma is proved, similarly, if j = n − 1 then
(w0, wn−1) and (wn−1, wn) are in A(D), also proving the lemma, so suppose
j ≤ n− 2.

Since D is 3-quasi-transitive (w0, wj) ∈ A(D) implies there is an arc be-
tween w0 and wj+2, and j being the maximum subindex such that the arc
goes “forwards” implies (wj+2, w0) ∈ A(D). Then (w0, wj, wj+1, wj+2) is a
C4 in D, and is therefore monochromatic, which makes (w0, wj, . . . , wn) a
monochromatic uv-path of length shorter than l(P ), a contradiction. We
conclude that for every wi ∈ P such that there is an arc between w0 and wi

and i ≥ 2, (wi, w0) ∈ A(D).

We now prove the result for w1 in the same way. If for every wi ∈ P
(with i > 2) such that there is an arc between w1 and wi (wi, w1) ∈ A(D),
then we are done, so consider wj to be the vertex furthest from w1 such that
(w1, wj) ∈ A(D) and suppose j > 2. As above, if j = n then the lemma fol-
lows. If j = n− 1 then since D is 3-quasi-transitive, there is an arc between
w0 and wn. If (w0, wn) ∈ A(D) we have a monochromatic path between w0

and wn of length shorter than l(P ), a contradiction, and if (wn, w0) ∈ A(D)
then there is a monochromatic vu-path in D, another contradiction. There-
fore 2 < j ≤ n − 2. Since D is 3-quasi-transitive, there is an arc between
w1 and wj+2, and since wj is the vertex in P furthest from w1 such that
(w1, wj) ∈ A(D), we conclude (wj+2, w1) ∈ A(D) so (w1, wj, wj+1, wj+2) is a
C4 in D and therefore monochromatic, so (w0, w1, wj, . . . , wn) is a monochro-
matic uv-path in D of length shorter than l(P ), a contradiction.

Now for our induction hypothesis suppose that for every i < k, if there is
an arc between wi and wj and j > i+ 1, then (wj, wi) ∈ A(D), and consider
wk. If k = n or n− 1 then we have nothing to prove, so suppose k < n− 1.
Suppose also there is j > k + 1 such that (wk, wj) ∈ A(D), and let m be the
maximum of these subindices.

If m = n then (wk, wn) ∈ A(D), also (wk−2, wk−1) and (wk−1, wk) are in
A(D), and since D is 3-quasi-transitive, there is an arc between wk−2 and
wn, which by our induction hypothesis must be (wn, wk−2).
Then (wk−2, wk−1, wk, wn) is a C4 in D which must therefore be monochro-
matic, which implies (w0, . . . , wk, wn) is a monochromatic uv-path of length
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shorter than P , a contradiction.

If m = n − 1 then (wk−1, wk), (wk, wn−1), and (wn−1, wn) are arcs in D
which is 3-quasi-transitive, this implies there is an arc between wk−1 and wn,
which by induction hypothesis must be (wn, wk−1). Then (wk−1, wk, wn−1, wn)
is a C4 inD, which is monochromatic, so (w0, . . . , wk, wn−1, wn) is a monochro-
matic uv-path of length shorter than that of P , a contradiction.

Finally, if m < n− 1 consider the arcs (wk, wm), (wm, wm+1), and
(wm+1, wm+2). Since D is 3-quasi-transitive, there is an arc between wk and
wm+2. Since m is the maximum subindex such that (wk, wm) ∈ A(D), we
conclude (wm+2, wk) ∈ A(D), so (wk, wm, wm+1, wm+2) is a C4 in D, so it is
monochromatic. This implies (w0, . . . , wk, wm, . . . , wn) is a monochromatic
uv-path in D of shorter length than P , a contradiction, with which the proof
or our claim is complete.

Since D is 3-quasi-transitive, for every i = 0, . . . , n − 3 either (wi, wi+3)
or (wi+3, wi) is in A(D), and by the claim we have just proved, (wi+3, wi) ∈
A(D). This implies, for each i = 0, . . . , n − 3, there is a C4 in D, namely
(wi, wi+1, wi+2, wi+3), which is monochromatic.

This yields a monochromatic vu-walk in D, namely

(wn, wn−3, wn−2, wn−1, wn−4, . . . , w1, w2, w3, w0),

which by Lemma 2 contains a monochromatic uv-path, a contradiction.

Therefore the conclusions of the lemma hold.

Lemma 5. Let D be a coloured asymmetric 3-quasi-transitive digraph such
that every C4 is monochromatic, and every C3 is almost monochromatic.
Suppose there is an asymmetric cycle γ in C(D). Then l(γ) ≥ 4.

Proof. If γ is an asymmetric cycle in C(D) then it has length at least 3, so
suppose l(γ) = 3 and γ = (x, y, z) is asymmetric. Then by Lemma 4 there
are xy-, yz-, and zx-paths with length 1 or 2, so we have four cases:

1. They all have length 1, and (x, y, z) is a directed triangle in D. In
this case, since all directed triangles in D are almost monochromatic,
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there are two arcs of the same colour, say, (x, y) and (y, z). This means
there is a monochromatic xz-path, which induces the arc (x, z) in C(D),
which is a contradiction as we assumed the cycle γ to be asymmetric.

2. One of the paths, say, xy has length 2 in D, and the others have length
1, that is, there is a vertex x0 in D such that (x, x0, y, z) is a cycle in D.
This is a C4, so it must be monochromatic, so there is a monochromatic
path from any vertex to any other vertex, that is, γ is symmetric, a
contradiction.

3. Two of the paths, say xy and yz are of length 2, the other of length 1 in
D. Then there are vertices x0 and y0 in D such that (x, x0, y, y0, z) is a
cycle in D. Since D is 3-quasi-transitive and (y, y0, z, x) is a path in D,
either (x, y) or (y, x) is in A(D). If (y, x) ∈ A(D) then this is a sym-
metric arc in γ, a contradiction. If, on the other hand, (x, y) ∈ A(D)
then (y, y0, z, x) is a C4 in D, and must therefore be monochromatic,
which implies the arc (y, x) is in γ contradicting the assumption of γ
being asymmetric.

4. Finally, the three paths have length 2, so there are vertices x0, y0, and
z0 in D such that (x, x0, y, y0, z, z0) is a cycle in D. Since D is 3-
quasi-transitive, either (x, y0) or (y0, x) is in A(D). Suppose first that
(x, y0) ∈ A(D), so (x, y0, z, z0) is a C4 in D, and hence monochro-
matic. Similarly, either (z, x0) or (x0, z) is in A(D). If (z, x0) ∈ A(D)
then (z, x0, y, y0) is a C4 in D, and therefore also monochromatic.
Given the overlap of these two cycles, the path (x0, y, y0, z, z0, x) is
monochromatic, so the arc (y, x) ∈ γ, a contradiction. Suppose now
that (x0, z) ∈ A(D). Then (x0, z, z0, x) is a C4 in D, and hence
monochromatic. Again, the overlap of these two cycles implies the
path (y0, z, z0, x, x0) is monochromatic. Also, either (y, z0) or (z0, y) is
in A(D). Following the same reasoning as above, if (y, z0) ∈ A(D) then
there is a monochromatic path in D from z to y, so in γ the arc (y, z)
is symmetric, a contradiction. If, however, (z0, y) ∈ A(D) then in D
there is a monochromatic path from y to x, so the arc (x, y) in γ is
symmetric, again, a contradiction.

Now suppose (y0, x) ∈ A(D). The proof is analogous, due to symmetry.
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Lemma 6. Let D be a coloured asymmetric 3-quasi-transitive digraph such
that every C4 is monochromatic and every C3 is almost monochromatic, and
C(D) the closure of D. Suppose there is a asymmetric cycle γ in C(D) and
consider γ′ to be the corresponding closed directed walk in D, that is, the
vertices u, v and arcs (u, v) of γ when (u, v) ∈ A(D) plus the vertices w and
arcs (u,w) and (w, v) in D when (u, v) /∈ A(D).

If the vertices of the closed directed walk γ′ are x0, x1, . . . , xn, then
(x0, x2k+1) ∈ A(D) for every k such that 3 ≤ 2k+ 1 < n and for any x0 ∈ γ.

Proof. Since D is 3-quasi-transitive there is an arc between x0 and x3. Sup-
pose (x3, x0) ∈ A(D). Then (x0, x1, x2, x3) is a C4 in D (all vertices are
distinct) and is therefore monochromatic. If x1 ∈ γ then there is a monochro-
matic path from x1 to x0, contradicting the assumption that γ is asymmet-
ric. If x1 /∈ γ, then x2 ∈ γ and the same reasoning applies. Therefore
(x0, x3) ∈ A(D).

If n = 4 then we are done, so suppose n > 4, consider x5 so x5 6= x0
and note x5 6= x4. Also, D asymmetric implies x5 6= x3. If x5 = x1 then
(x0, x5) ∈ A(D). If x5 = x2 then this vertex is not in γ, which forces x1, x3,
and x4 to be all in γ. Since D is 3-quasi-transitive and (x0, x3), (x3, x4),
and (x4, x2) are all arcs in D, there must be an arc between x0 and x2. If
(x2, x0) ∈ A(D) then (x0, x3, x4, x2) is a C4 in D, and so it must be monochro-
matic, which makes the arc (x3, x4) ∈ γ symmetric, a contradiction.

Finally if x5 is none of the previous vertices since (x0, x3) ∈ A(D) and
D is 3-quasi-transitive then either (x0, x5) ∈ A(D) or (x5, x0) ∈ A(D). If
(x5, x0) ∈ A(D) then (x0, x3, x4, x5) is a C4 in D, hence monochromatic,
which implies an arc in γ is symmetric, a contradiction. Therefore (x0, x5) ∈
A(D).

Following the same reasoning, by induction, suppose the lemma is not
true and let j be the first subindex such that (x0, x2j+1) /∈ A(D) (with
2j + 1 < n). Since (x0, x2j−1) ∈ A(D) and D is 3-quasi-transitive, we con-
clude (x2j+1, x0) ∈ A(D). We observe x0 6= x2j−1, x2j, and x2j+1. Also,
x2j 6= x2j−1 and x2j+1, and since D is asymmetric x2j−1 6= x2j+1. That is,
all four vertices are distinct. Then (x0, x2j−1, x2j, x2j+1) is a C4 in D, hence
monochromatic. If x2j−1 ∈ γ then so is at least one of x2j and x2j+1, this im-
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plies there is a symmetric arc in γ, a contradiction. If x2j−1 /∈ γ then x2j ∈ γ.
If x2j+1 ∈ γ then again we get a symmetric arc in γ, a contradiction. Now
suppose neither x2j−1 nor x2j+1 are in γ (and x2j ∈ γ).

We go back to x2j−3 and note that (x0, x2j−3) ∈ A(D) (our first two
steps of induction allow us to do this). We also note x2j−2 ∈ γ. Since D
is 3-quasi-transitive, and (x2j+1, x0), (x0, x2j−3), and (x2j−3, x2j−2) are all in
A(D), there must be an arc between x2j+1 and x2j−2 (and these are distinct
vertices as one is in γ and the other one is not). If (x2j+1, x2j−2) ∈ A(D)
then (x2j−2, x2j−1, x2j, x2j+1) is a C4 in D, and hence monochromatic. This
makes the arc (x2j−2, x2j) in γ symmetric, a contradiction.

If, on the other hand, (x2j−2, x2j+1) ∈ A(D), then (x0, x2j−3, x2j−2, x2j+1)
is a C4 in D, so it is monochromatic, and as it intersects
(x0, x2j−1, x2j, x2j+1) in the arc (x2j+1, x0), the arcs in these two C4s all have
the same colour. This yields a monochromatic path from x2j to x2j−2 which
makes the arc (x2j−2, x2j) ∈ γ symmetric, a contradiction with which our
proof is now complete.

Now we prove our main result.

Theorem 2. Let D be a coloured asymmetric 3-quasi-transitive digraph such
that every C4 is monochromatic and every C3 is almost monochromatic. Then
D has a kernel by monochromatic paths.

Proof. Let D be a coloured asymmetric 3-quasi-transitive digraph such that
every C4 is monochromatic and every C3 is almost monochromatic, and con-
sider C(D), the closure of D. If every cycle in C(D) has a symmetric arc,
then by Theorem1 C(D) has a kernel, which by Lemma 1 implies D has a
kernel by monochromatic paths, and we are done. So suppose in C(D) there
is an asymmetric cycle, and let γ be such a cycle of minimum length, which,
by Lemma 5 has length at least 4.

We consider γ′ = (x0, . . . , xn) the corresponding closed directed walk in
D, that is, the vertices and arcs of γ which are in D plus the vertices w and
arcs (u,w) and (w, v) in D when u, v ∈ V (γ), (u, v) ∈ A(γ), and w /∈ V (γ),
(u, v) /∈ A(D). We can assume w.l.o.g. that x0 ∈ V (γ), and by Lemma 6
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(x0, x2j+1) ∈ A(D) for every j such that 1 ≤ 2j + 1 < n. We now consider
two cases, according to the parity of n ≥ 4.

First suppose n is odd, and consider the vertices x0, xn, xn−1, and xn−2.
Note x0 is different from any of the other vertices, otherwise the length of
γ would be shorter. Also, xn 6= xn−1 6= xn−2 since they are adjacent, and
xn 6= xn−2 because D is asymmetric. Therefore (x0, xn−2, xn−1, xn) is a C4

and so it is monochromatic. Since x0 ∈ γ then at least one of xn and xn−1
is in γ. If xn ∈ γ then the arc (xn, x0) ∈ γ is symmetric, and if xn /∈ γ then
the arc (xn−1, xn) ∈ γ is symmetric, in both cases we have a contradiction.

Now suppose n is even. As above, all the vertices x0, xn, xn−1, and xn−2
are distinct. Since D is 3-quasi-transitive, there is an arc between x0 and
xn−2. If (x0, xn−2) ∈ A(D) then as in the previous paragraph there is a
symmetric arc in γ, a contradiction. Therefore (xn−2, x0) ∈ A(D). Since
(x0, xn−1) ∈ A(D), if xn /∈ γ then xn−1 ∈ γ and γ has a symmetric arc, a
contradiction which implies xn ∈ γ. Also, the vertices (x0, xn−1, xn) form
a C3, which is almost monochromatic. If the arcs (x0, xn−1) and (xn−1, xn)
have the same colour, then there is a monochromatic path in D from x0 to
xn, which are consecutive vertices in γ, so in γ there is a symmetric arc, a
contradiction.

Now suppose (xn, x0) and (x0, xn−1) have the same colour. Then there
is a monochromatic path from xn to xn−1. This forces xn−1 /∈ γ, otherwise
(xn−1, xn) would be a symmetric arc in γ, a contradiction. Now xn−1 /∈ γ,
forces xn−2 ∈ γ. Since xn−2 6= x0, xn, and xn−1, and D is 3-quasi-transitive,
there is an arc between xn−2 and xn (because of the path (xn−2, x0, xn−1, xn)).
If (xn, xn−2) ∈ A(D) then it is a symmetric arc in γ, and if (xn−2, xn) ∈ A(D)
then in D these two vertices are at distance 1, so the existence of xn−1 in the
cycle γ′ is a contradiction. We conclude the arcs (xn−1, xn) and (xn, x0) have
the same colour (and xn−2 ∈ γ).

We have proved that if n is even and we consider a vertex in γ′ which is
also in γ, then the preceding vertex is also in γ and the arc in γ′ of which this
vertex is an end point has the same colour than the preceding arc. Going
backwards by induction, we conclude every vertex of γ′ is in γ and every arc
in γ′(= γ) has the same colour, and therefore a symmetric arc, a contradic-
tion.
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We have proved every directed cycle in C(D) has a symmetric arc. This,
by Theorem1 implies C(D) has a kernel, which in turn by Lemma 1 implies
D has a kernel by monochromatic paths.
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