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Abstract

A bicirculant is a graph admitting an automorphism whose cyclic decomposition consists
of two cycles of equal length. In this paper we introduce the Tabačjn graphs, a family of
pentavalent bicirculants which are a natural generalization of generalized Petersen graphs
obtained from them by adding two additional perfect matchings between the two orbits of a
semiregular automorphism.

The main result is the classification of symmetric Tabačjn graphs. In particular, it is shown
that the only such graphs are the complete graph K6, the complete bipartite graph minus a
perfect matching K6,6 − 6K2 and the icosahedron graph.
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1 Introductory remarks

A graph is said to be symmetric, also called arc-transitive, if its automorphism group acts
transitively on the set of arcs of the graph. A non-identity automorphism of a graph is semiregular,
in particular, (k, n)-semiregular, if it has k cycles of equal length n in its cycle decomposition. A
graph admitting a (2, n)-semiregular automorphism is said to be a bicirculant.

We may think of the classical result by Frucht, Graver and Watkins [3] in which they have
classified all symmetric generalized Petersen graphs as the main step in the classification of cubic
connected symmetric bicirculants. The classification, which was completed much later by Marušič
and Pisanski [16, 18], states that a connected cubic symmetric graph is a bicirculant if and only if it
is isomorphic to one of the following graphs: the complete graph K4, the complete bipartite graph
K3,3, the seven symmetric generalized Petersen graphs GP(4, 1), GP(5, 2), GP(8, 3), GP(10, 2),
GP(10, 3), GP(12, 5), and GP(24, 5) (see [3, 17]), the Heawood graph F014A, and a Cayley graph
Cay(D2n, {b, ba, bar+1}) on a dihedral group D2n = 〈a, b | an = b2 = baba = 1〉 of order 2n with
respect to the generating set {b, ba, bar+1}, where n ≥ 11 is odd and r ∈ Z∗n is such that r2+r+1 ≡
0 (mod n).
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(Primož Šparl).

*Corresponding author

1



The classification of connected tetravalent symmetric bicirculants was, in a sense, obtained
in a similar way. The first step was done by Kovács, Kutnar and Marušič when they classified
symmetric rose window graphs [10]. (The rose window graphs, introduced by Wilson in [21],
are a natural generalization of the generalized Petersen graphs obtained from them by adding
an additional perfect matching between the two orbits of a semiregular automorphism.) The
classification was completed quite recently by Kovács, Kuzman, Malnič and Wilson [11, 12].

The aim of this paper is to initiate the research towards the classification of pentavalent
symmetric bicirculants. In accordance with the line of research that led to classifications in the
case of valencies 3 and 4 we first consider the pentavalent symmetric bicirculants obtained from
rose window graphs by adding another perfect matching between the two orbits of a semiregular
automorphism. In particular, given natural numbers n ≥ 3 and 1 ≤ a, b, r ≤ n − 1, where
a 6= b and r 6= n/2, the Tabačjn graph T (n; a, b; r) is a pentavalent graph with vertex set {xi | i ∈
Zn} ∪ {yi | i ∈ Zn} and edge set

{{xi, xi+1} | i ∈ Zn} ∪ {{yi, yi+r} | i ∈ Zn} ∪

{{xi, yi} | i ∈ Zn} ∪ {{xi, yi+a} | i ∈ Zn} ∪ {{xi, yi+b} | i ∈ Zn}.

Three examples are shown in Figure 1. The edges from the last three of the above five sets will
be called the 0-spokes, the a-spokes and the b-spokes, respectively. A rose window graph is thus
obtained by removing all b-spokes from a Tabačjn graph while a generalized Petersen graph is
obtained by removing all a- and b-spokes.

Observe that
ρ = (x0 x1 . . . xn−1)(y0 y1 . . . yn−1)

is a (2, n)-semiregular automorphism of T (n; a, b; r). We will say that ρ gives the (n; a, b; r)-tabačjn
structure to the graph. Of course, a Tabačjn graph does not determine the quadruple (n; a, b; r)
uniquely (see Proposition 3.1 for some isomorphisms between Tabačjn graphs).

The main result of this paper is the following classification of symmetric Tabačjn graphs
which states that the only such graphs are the ones represented in Figure 1 (for the definition of
s-transitivity see Section 2).

Theorem 1.1 A Tabačjn graph is symmetric if and only if it is isomorphic to one of the graphs
T (3; 1, 2; 1) ∼= K6, T (6; 2, 4; 1) ∼= K6,6 − 6K2 and T (6; 1, 5; 2), which is isomorphic to the icosahe-
dron graph. Moreover, the first two are 2-transitive while the third one is 1-transitive.

The classification is obtained by first considering the so-called core-free Tabačjn graphs, that
is Tabačjn graphs admitting a (2, n)-semiregular automorphism ρ giving a tabačjn structure, such
that the subgroup 〈ρ〉 contains no nontrivial normal subgroup of the full automorphism group
of the graph. A remarkable group-theoretic result of Herzog and Kaplan [8], which says that
‘sufficiently large’ cyclic subgroups are never core-free (see Proposition 3.3), combined together
with a result, recently extracted by Guo and Feng [7] from the work of Weiss [19, 20], which gives
the upper bound for the order of the automorphism group (see Proposition 2.1), enable us to
prove that T (3; 1, 2; 1) ∼= K6 is the only core-free symmetric Tabačjn graph (see Theorem 3.5).
As for non-core-free symmetric Tabačjn graphs, we use the fact that any such graph is a regular
cyclic cover of a core-free symmetric Tabačjn graph (see Lemma 3.6). This then enables us to use
graph covering techniques, a short review of which is given in Subsection 2.1, to prove that the
graphs T (6; 2, 4; 1) ∼= K6,6 − 6K2 and T (6; 1, 5; 2) are the only non-core-free symmetric Tabačjn
graphs.
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Figure 1: The Tabačjn graphs T (3; 1, 2; 1), T (6; 2, 4; 1) and T (6; 1, 5; 2), which are isomorphic to the complete
graph K6, the complete bipartite graph minus a perfect matching K6,6 − 6K2, and the icosahedron, respectively.

2 Preliminaries

Throughout this paper graphs are simple, finite, undirected and connected. Given a graph
X we let V (X), E(X), A(X) and AutX be the vertex set, the edge set, the arc set and the
automorphism group of X, respectively. A sequence of k+ 1 not necessarily distinct vertices of X
such that any two consecutive vertices are adjacent and any three consecutive vertices are distinct
is called a k-arc. If v ∈ V (X) then N(v) denotes the set of neighbors of v. The girth of X is the
length of a shortest cycle contained in X.

A subgroup G ≤ AutX is said to be transitive on vertices, transitive on edges and transitive
on arcs provided it acts transitively on the sets of vertices, edges and arcs of X, respectively.
In this case the graph X is said to be G-vertex-transitive, G-edge-transitive and G-arc-transitive,
respectively. In case of G = AutX the prefix G is omitted. An arc-transitive graph is also called
symmetric. A subgroup G ≤ AutX is said to be s-arc-transitive if it acts transitively on the set of
s-arcs of X, and it is said to be s-regular if it is s-arc-transitive and the stabilizer of an s-arc in G
is trivial. A graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G is transitive or regular
on the set of s-arcs of X, respectively. A (G, s)-arc-transitive graph is said to be (G, s)-transitive
if the graph is not (G, s+ 1)-arc-transitive. By Weiss [19, 20], for a pentavalent (G, s)-transitive
graph, s ≥ 1, the order of the vertex stabilizer Gv in G is a divisor of 217 · 32 · 5. In addition, the
following result can be deduced from his work, as was recently observed by Guo and Feng [7].
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Proposition 2.1 [7, Theorem 1.1.] Let X be a connected pentavalent (G, s)-transitive graph for
some G ≤ Aut(X) and s ≥ 1. Let v ∈ V (X). Then s ≤ 5 and one of the following holds:

(i) For s = 1, Gv ∼= Z5, D10 or D20;

(ii) For s = 2, Gv ∼= F20, F20 × Z2, A5 or S5;

(iii) For s = 3, Gv ∼= F20 × Z4, A4 × A5, S4 × S5 or (A4 × A5) o Z2 with A4 o Z2 = S4 and
A5 o Z2 = S5;

(iv) For s = 4, Gv ∼= ASL(2, 4), AGL(2, 4), AΣL(2, 4) or AΓL(2, 4);

(v) For s = 5, Gv ∼= Z6
2 o ΓL(2, 4).

For a partition W of V (X), we let XW be the associated quotient graph of X relative to W,
that is, the graph with vertex set W and edge set induced naturally by the edge set E(X). In the
case when W corresponds to the set of orbits of a subgroup N of AutX, the symbol XW will be
replaced by XN .

2.1 Graph Covers

A covering projection of a graph X̃ is a surjective mapping p : X̃ → X such that for each
ũ ∈ V (X̃) the set of arcs emanating from ũ is mapped bijectively onto the set of arcs emanating
from u = p(ũ). The graph X̃ is called a covering graph of the base graph X. The set fibu = p−1(u)
is the fibre of the vertex u ∈ V (X). The subgroup K of all automorphisms of X̃ which fix each of
the fibres setwise is called the group of covering transformations. The graph X̃ is also called a K-
cover of X. It is a simple observation that the group of covering transformations of a connected
covering graph acts semiregularly on each of the fibres. In particular, if the group of covering
transformations is regular on the fibres of X̃, we say that X̃ is a regular K-cover. We say that
α ∈ Aut(X) lifts to an automorphism of X̃ if there exists an automorphism α̃ ∈ Aut(X̃), called a
lift of α, such that α̃p = pα. If the covering graph X̃ is connected then K is the lift of the trivial
subgroup of Aut(X). Note that a subgroup G ≤ Aut(X̃) projects if and only if the partition of
V (X̃) into the orbits of K is G-invariant.

A combinatorial description of a K-cover was introduced through so-called voltages by Gross
and Tucker [6] as follows. Let X be a graph and K be a finite group. A voltage assignment on X
is a mapping ζ : A(X)→ K with the property that ζ(u, v) = ζ(v, u)−1 for any arc (u, v) ∈ A(X)
(here, and in the rest of the paper, ζ(u, v) is written instead of ζ((u, v)) for the sake of brevity).
The voltage assignment ζ extends to walks in X in a natural way. In particular, for any walk
D = u1u2 · · ·ut of X we let ζ(D) denote the product voltage ζ(ut−1, ut) · · · ζ(u2, u3)ζ(u1, u2) of
D, that is, the ζ-voltage of D.

The values of ζ are called voltages, and K is the voltage group. The voltage graph X ×ζ K
derived from a voltage assignment ζ : A(X)→ K has vertex set V (X)×K, and edges of the form
{(u, g), (v, ζ(x)g)}, where x = (u, v) ∈ A(X). Clearly, X×ζK is a covering graph of X with respect
to the projection to the first coordinate. By letting K act on V (X ×ζ K) as (u, g)g

′
= (u, gg′),

(u, g) ∈ V (X ×ζ K), g′ ∈ K, one obtains a semiregular group of automorphisms of X ×ζ K,
showing that X ×ζ K can in fact be viewed as a K-cover of X.

Given a spanning tree T of X, the voltage assignment ζ : A(X) → K is said to be T -reduced
if the voltages on the tree arcs are trivial, that is, if they equal the identity element in K. In [5]
it is shown that every regular covering graph X̃ of a graph X can be derived from a T -reduced
voltage assignment ζ with respect to an arbitrary fixed spanning tree T of X.
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The problem of whether an automorphism α of X lifts or not is expressed in terms of voltages
as follows (see Proposition 2.2). Given α ∈ Aut(X) and the set of fundamental closed walks C
based at a fixed vertex v ∈ V (X), we define ᾱ = {(ζ(C), ζ(Cα)) | C ∈ C} ⊆ K ×K. Note that
if K is abelian, ᾱ does not depend on the choice of the base vertex, and the fundamental closed
walks at v can be substituted by the fundamental cycles generated by the cotree arcs of X. Also,
from the definition, it is clear that for a T -reduced voltage assignment ζ the derived graph X×ζK
is connected if and only if the voltages of the cotree arcs generate the voltage group K.

We conclude this section with four propositions dealing with lifting of automorphisms in graph
covers. The first one may be deduced from [14, Theorem 4.2], the second one from [9] whereas
the third one is taken from [2, Proposition 2.2], but it may also be deduced from [15, Corollaries
9.4, 9.7, 9.8].

Proposition 2.2 [14] Let K be a finite group, and let X ×ζ K be a connected regular cover of a
graph X derived from a voltage assignment ζ with the voltage group K. Then an automorphism
α of X lifts if and only if ᾱ is a function which extends to an automorphism α∗ of K.

For a connected regular coverX×ζK of a graphX derived from a T -reduced voltage assignment
ζ with an abelian voltage group K and an automorphism α ∈ Aut(X) that lifts, ᾱ will always
denote the mapping from the set of voltages of the fundamental cycles on X to the voltage group
K and α∗ will denote the automorphism of K arising from ᾱ.

Two coverings pi : X̃i → X, i ∈ {1, 2}, are said to be isomorphic if there exists a graph
isomorphism φ : X̃1 → X̃2 such that φp2 = p1.

Proposition 2.3 [9] Let K be a finite group. Two connected regular covers X×ζK and X×ϕK,
where ζ and ϕ are T -reduced, are isomorphic if and only if there exists an automorphism σ ∈
Aut(K) such that ζ(u, v)σ = ϕ(u, v) for any cotree arc (u, v) of X.

Proposition 2.4 [2] Let K be a finite group, and let X ×ζ K be a connected regular cover of
a graph X derived from a voltage assignment ζ with the voltage group K, and let the lifts of
α ∈ Aut(X) centralize K, considered as the group of covering transformations. Then for any
closed walk W in X, there exists k ∈ K such that ζ(Wα) = kζ(W )k−1. In particular, if K is
abelian, ζ(Wα) = ζ(W ) for any closed walk W of X.

Given a voltage assignment ζ on X and β ∈ Aut(X), we let ζβ be the voltage assignment on
X given by ζβ(u, v) = ζ(uβ

−1
, vβ

−1
), (u, v) ∈ A(X); and we let β̃ be the permutation of V (X)×K

acting as (u, k)β̃ = (uβ, k). Our last proposition is straightforward.

Proposition 2.5 Let K be a finite group, and let X̃ = X ×ζ K be a connected regular cover of
a graph X derived from a voltage assignment ζ with the voltage group K, and let β ∈ Aut(X).
Then the following hold.

(i) β̃ is an isomorphism from X̃ to X ×ζβ K.

(ii) If α̃ is in Aut(X̃) which projects to α, then β̃−1α̃β̃ is in Aut(X ×ζβ K), and it projects to
β−1αβ.

(iii) If α̃ ∈ Aut(X̃) centralizes the group K of covering transformations, then also β̃−1α̃β̃ cen-
tralizes K.
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3 Symmetric Tabačjn graphs

We first record some fairly obvious isomorphisms between Tabačjn graphs which will be used
in the subsequent analysis of symmetric Tabačjn graphs. Recall that the vertices of a Tabačjn
graph T (n; a, b; r) are indexed by elements of the additive group Zn, and so all the computations
regarding the elements a, b and r are to be performed modulo n.

Proposition 3.1 Let n ≥ 3 and let 1 ≤ a, b, r ≤ n− 1 be such that a 6= b and r 6= n/2. Then

T (n; a, b; r) ∼= T (n; a, b;−r) ∼= T (n;−a,−b; r) ∼= T (n;−a, b− a; r) ∼= T (n;−b, a− b; r).

Moreover, if gcd(n, r) = 1, then also T (n; a, b; r) ∼= T (n;−ar−1,−br−1; r−1) holds.

The first step towards the proof of Theorem 1.1 is the following result stating that the Tabačjn
graphs can be at most 2-arc-transitive.

Proposition 3.2 There exists no 3-arc-transitive Tabačjn graph.

Proof. Suppose to the contrary that for some n ≥ 3 and 1 ≤ a, b, r ≤ n − 1, where a 6= b
and r 6= n/2, the Tabačjn graph X = T (n; a, b; r) is 3-arc-transitive. We first show that then
girth(X) = 6. Notice that, in general, g ≤ 6, since x0x1y1x1−ax−ay0 is always a 6-cycle.

Since a regular 3-arc-transitive graph of valence more than 2 cannot have girth 3, we must
have that girth(X) ≥ 4. The difference between any of 0, a and b is thus at least 2, and so n ≥ 6.
Consequently the 3-arc

(x0, x1, x2, x3) (1)

does not lie on a 4-cycle, and so girth(X) ≥ 5. Since any pentavalent graph of girth at least 5 is
of order at least 26, it follows that n ≥ 13. Moreover, none of a, b and b− a can be contained in
{±1,±2}. Now, suppose girth(X) = 5. The 3-arc (1) then lies on a 5-cycle of X, and so n ≥ 13
implies that one of a, b and b− a is 3 or −3. Similarly, the 3-arc

(y0, x0, x1, y1) (2)

lies on a 5-cycle of X, and so the fact that b − a 6= ±1 implies that 2r ± 1 = 0. In particular, n
is odd and gcd(n, r) = 1. By Proposition 3.1 we can thus assume that r = n−1

2 , and hence that
X ∼= T (n; 2a, 2b;−2) ∼= T (n; 2a, 2b; 2). We can now repeat the above argument to show that one of
2a, 2b and 2(b−a) is equal to 3 or −3. But then X contains a 4-cycle, contradicting girth(X) > 4.
This proves that girth(X) > 5, and so the fact that x0x1y1x1−ax−ay0 is a 6-cycle of X implies
girth(X) = 6. Observe that this implies that no two distinct 6-cycles can contain a common 4-arc.
It is easy to see that each 5-valent graph of girth 6 is of order at least 42, and so n ≥ 21 holds.
Moreover, girth(X) = 6 also gives various restrictions on the parameters a, b and r. In particular,
we have that

n ≥ 21, r /∈ {±1,±2},
a, b, b− a /∈ {±1,±2,±3} and 0 /∈ {2a, 2b, 2(a− b), a+ b, 2a− b, 2b− a}. (3)

We now show that each 3-arc of X lies on precisely two 6-cycles. To prove that observe that
the 3-arc (2) lies on the 6-cycles

x0x1y1x1−ax−ay0 and x0x1y1x1−bx−by0. (4)
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Suppose now that there exists an additional 6-cycle C of X containing the 3-arc (2). Since no
4-arc of X is contained on more than one 6-cycle, none of the edges of C containing y0 or y1 can
be an a- or b-spoke. The only possibility is thus 3r ± 1 = 0. This implies gcd(r, n) = 1, and so
Proposition 3.1 implies that we can assume r = 3. But applying the same argument, we find that
9± 1 = 0 holds in Zn, which is impossible in view of (3). Thus the 3-arc (2), and hence any 3-arc
of X, lies on exactly two 6-cycles. This fact has the following consequence. As X is of valence 5
it has 5 · 42 · 2n = 160n 3-arcs. Since every 6-cycle contains 12 3-arcs a simple counting argument
shows that 12c = 2 · 160n = 320n, where c is the number of 6-cycles of X, and so

3 | n. (5)

Consider again the 3-arc (1) and let C1 and C2 be the two 6-cycles containing it. Observe
that r 6= ±3 (otherwise the 3-arc (1) would be contained on at least three different 6-cycles of
X, namely, the ones using two 0-spokes, two a-spokes and two b-spokes, respectively). Now, as
n ≥ 21 none of the 6-cycles C1 and C2 contains both x−1 and x4. We distinguish two cases
depending on whether any of the vertices x−1 and x4 is contained on one of C1 and C2 or not.
Before doing this analysis observe that one of C1 and C2 contains x−1 or x4 if and only if one of
a, b and a− b is equal to 4 or −4. Consequently, either C1 and C2 each contain five vertices from
the set {xi : i ∈ Zn} or they both contain just the four vertices x0, x1, x2 and x3 from this set.

Case 1: Neither of x−1 and x4 is contained in any of C1 and C2 (that is, x−1, x4 /∈ C1 ∪ C2).

As noted above this implies that both C1 and C2 contain two vertices from the set {yi : i ∈ Zn}.
Using an isomorphism from Proposition 3.1 and the fact that r 6= ±3, we can assume, without
lost of generality, that C1 = x0x1x2x3ya+3y0 and hence that

r = a+ 3 (6)

holds. Let u and v be the two vertices of C2 from the set {yi : i ∈ Zn}, where u is the neighbor of
x0 and v is the neighbor of x3. Since no 4-arc is contained on more than one 6-cycle we have that
u ∈ {ya, yb} and v ∈ {y3, yb+3}. Assume first that u = yb. Since u and v are adjacent, r 6= ±3
then implies that v = y3, and so 3±r = b. If 3−r = b, then (6) implies b = −a, contradicting (3).
Therefore, 3 + r = b, and so b− a = 6. Assume now that u = ya. If v = y3, then for u and v to be
adjacent a± r = 3 must hold. However, in view of (6), a− r = 3 implies that 6 = 0 holds in Zn,
while a + r = 3 implies 2a = 0, both of which contradict (3). Thus v = yb+3, and consequently
a ± r = b + 3 holds. Now, a + r = b + 3 implies 2a = b, which contradicts (3). It follows that
a− r = b+ 3, and so b+ 6 = 0.

We have thus shown that in the case of u = yb we have that v = y3 and b− a = 6 holds, while
in the case of u = ya we have that v = yb+3 and b + 6 = 0 holds. In view of the isomorphism
T (n; a, b; r) ∼= T (n;−a, b− a,−r) these two possibilities are equivalent. Without loss of generality
we can thus assume that u = ya and v = yb+3, and consequently that

b+ 6 = 0. (7)

We next consider the 3-arc
(x0, x1, y1, yr+1). (8)

Let C ′1 and C ′2 be the two 6-cycles of X containing it. Recall that the two 6-cycles containing the
3-arc (2) are the ones given in (4). Since none of them contains yr+1 we have that none of C ′1 and
C ′2 contains the vertex y0. It follows that two of the vertices xn−1, ya and yb must be contained
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on the 6-cycles C ′1 and C ′2, one on each. In a similar way we can show that none of C ′1 and C ′2
contains the vertex xr+1, and hence that two of the vertices xr−a+1, xr−b+1 and y2r+1 must be
contained on the 6-cycles C ′1 and C ′2, one on each.

We first show that xr−a+1 is not contained on any of C ′1 and C ′2. Suppose to the contrary
that, say C ′1, contains xr−a+1. If the remaining vertex v of C ′1 is xn−1, then n−2 = r−a+1 must
hold, and so a − 3 = r = a + 3, contradicting (3). If v = yb, then xr−a+1 and yb are connected
by a 0-spoke, and so r − a + 1 = b, which by (7) implies that a − 7 = r = a + 3 holds, again
contradicting (3). Finally, if v = ya, then xr−a+1 and ya are connected by a 0-spoke or a b-spoke.
In the former case r = 2a − 1 holds, and so (6) implies a = 4, which cannot hold since neither
of x−1 and x4 is contained on any of C1 and C2. In the latter case r − a+ 1 + b = a, and so (7)
implies r = 2a+ 5, forcing a = −2, which contradicts (3). This proves that xr−a+1 is indeed not
contained on any of C ′1 and C ′2.

We can thus assume that C ′1 contains xr−b+1 = xr+7 and C ′2 contains y2r+1. If the remaining
vertex v of C ′1 is xn−1, then n− 2 = r+ 7 must hold, and so r = −9, which by (6) gives a = −12.
But then a = 2b, contradicting (3). If v = ya, then xr+7 and ya are connected via a 0-spoke, and
so r = a − 7. In view of (6) this contradicts (3). It follows that v = yb = yn−6. The vertices
xr+7 and yn−6 are connected via a 0-spoke or an a-spoke. We thus have that either r = −13 or
r = −a− 13 holds. In view of (6) this implies that either

2r = −26 or 2r = −10 (9)

holds. We now consider the 6-cycle C ′2 (recall that we already know that it contains y2r+1). Since
no 4-arc is contained on more than one 6-cycle the remaining vertex v of the 6-cycle C ′2 is either
xn−1 or ya. We cannot have v = ya for otherwise 1+3r = a must hold, which in view of (6) implies
2r = −4. Combining together (5), (3) and (9), we find that this is not possible. It thus follows
that v = xn−1, implying that the equation −1 + i = 1 + 2r has a solution for some i ∈ {0, a, b}. If
i = a, then 2r = a− 2 = r− 5, but then x0yn−6yn−1xn−1 is a 4-cycle, contradicting girth(X) = 6.
For i = 0 and i = b we get 2r = n− 2 and 2r = n− 8, respectively. The latter case is impossible
in view of (3) and (9). It thus follows that 2r = n−2 holds, and so (3) and (9) imply that n = 24.
Moreover, r = n− 13 = 11, a = 8 and b = 18. But then x0x1y19y8 is a 4-cycle of X, contradicting
girth(X) = 6. This completes the analysis of Case 1.

Case 2: At least one of x−1 and x4 is contained in one of C1 and C2.

As noted above Proposition 3.1 enables us to assume a = 4. Observe that in this case the
6-cycles C1 and C2 are x0x1x2x3x4y4 and x−1x0x1x2x3y3, and so there exists no 6-cycle of X
containing (1) and two vertices from the set {yi : i ∈ Zn}. The equation 3 + i± r− j = 0, where
i, j ∈ {0, 4, b}, thus has no solution. In addition to (3) we therefore have that

r /∈ {±3,±7,±(b− 1),±(b+ 3),±(b− 3),±(b− 7)}. (10)

Consider now again the 3-arc (8) and let C ′1 and C ′2 be the two 6-cycles of X containing it. As in
Case 1 we find that two of the vertices xr−3, xr+1−b and y2r+1 must be contained on C ′1 and C ′2,
one on each, and similarly, two of the vertices xn−1, y4 and yb must be contained on C ′1 and C ′2,
one on each. We again first show that xr−3 is not contained on C ′1 or C ′2. Suppose to the contrary
that, say C ′1, contains xr−3. If the remaining vertex v of C ′1 is xn−1, then n−2 = r−3 must hold,
contradicting (3). If v = y4, then xr−3 and y4 are connected by a 0-spoke or a b-spoke. In the
former case r− 3 = 4 and in the latter case r− 3 + b = 4, each of which contradicts (10). Finally,
if v = yb, then xr−3 and yb are connected by a 0-spoke, and so r− 3 = b, contradicting (10). This
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proves that xr−3 is indeed not contained on any of C ′1 and C ′2. With no loss of generality we can
thus assume that C ′1 contains the vertex xr+1−b. Now, if the remaining vertex v of C ′1 is xn−1,
then n− 2 = r + 1− b, contradicting (10). Similarly if v = y4, then xr+1−b and y4 are connected
via a 0-spoke, so that r + 1 − b = 4, which again contradicts (10). Thus v = yb, and so either
r + 1− b = b or r + 1− b+ 4 = b must hold. In other words, we have that either

r = 2b− 1 or r = 2b− 5 (11)

holds. We can now repeat the whole argument for the 3-arc (x0, x1, y1, y1−r) to find that either
−r = 2b− 1 or −r = 2b− 5 holds. Since 2r 6= 0, we thus must have that 2b− 1 = 5− 2b, that is
4b = 6. Thus either 2r = 4b− 2 = 4 = a or −2r = 4 = a, contradicting girth(X) = 6. This finally
proves that no 3-arc-transitive Tabačjn graph exists, as claimed.

Recall that the core of the subgroup K in a group G (denoted by coreG(K)) is the largest
normal subgroup of G contained in K. Let ST be the family of all symmetric Tabačjn graphs. A
graph X ∈ ST of order 2n is said to be a core-free Tabačjn graph if there exists a (2, n)-semiregular
automorphisms ρ ∈ Aut(X) giving rise to a tabačjn structure of X such that the cyclic subgroup
〈ρ〉 has trivial core in Aut(X). In other words, a graph X ∈ ST of order 2n is not core-free if each
of its (2, n)-semiregular automorphisms ρ giving rise to a tabačjn structure of X are such that 〈ρ〉
has nontrivial core in Aut(X). To obtain the classification of core-free symmetric Tabačjn graphs
(see Theorem 3.5) the following group-theoretic result will be used.

Proposition 3.3 [8, Theorem B] If H is a cyclic subgroup of a finite group G with |H| ≥
√
|G|,

then H contains a non-trivial normal subgroup of G, that is coreG(H) is nontrivial.

In the proof of Theorem 3.5 we shall see that this proposition implies that core-free symmetric
Tabačjn graphs are of order less than 480. Moreover, the 1-transitive ones are of order less than
80. We thus first study such symmetric Tabačjn graphs. The proof of the next lemma is computer
assisted. Here we explain the necessary theoretic arguments and the algorithm to obtain the
results. The corresponding code for the actual algorithm can be provided by the first author upon
request.

Lemma 3.4 The graphs T (3; 1, 2; 1) ∼= K6 and T (6; 2, 4; 1) ∼= K6,6 − 6K2 are the only two 2-arc-
transitive Tabačjn graphs T (n; a, b; r) for n < 240 and T (6; 1, 5; 2) is the only 1-transitive Tabačjn
graph T (n; a, b; r) for n < 40.

Proof. We first consider symmetric Tabačjn graphs of order less than 80. In this case the number
of possible quadruples (n; a, b; r) is small enough that an exhaustive computer search checking all
of them can be performed. Using a standard software package (MAGMA [1] or GAP) one can
verify that the graphs T (3; 1, 2; 1), T (6; 2, 4; 1) and T (6; 1, 5; 2) are the only symmetric Tabačjn
graphs of order less than 80. Since the first two are isomorphic to K6 and K6,6−6K2, respectively,
they are clearly 2-arc-transitive. Moreover, the icosahedron graph T (6; 1, 5; 2) is of girth 3 and is
thus 1-transitive. This proves the second part of the proposition.

We now determine the 2-arc-transitive Tabačjn graphs X = T (n; a, b; r) for n < 240. (Observe
that by the above paragraph we could restrict to the n such that 40 ≤ n < 240 but as this would
not shorten the argument we decided not to.) Note first that if the girth of a 2-arc-transitive
graph of valence 5 is 3, it must be the complete graph K6

∼= T (3; 1, 2; 1). For the rest of the proof
we can thus assume that girth(X) is at least 4, and consequently that a, b, b − a /∈ {±1}. This
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implies n ≥ 6. Now, if n = 6, then X ∼= T (6; 2, 4; 1), which is indeed 2-arc-transitive. We now
show there is no other 2-arc-transitive Tabačjn graph of girth 4.

Suppose to the contrary that n > 6 and that X = T (n; a, b; r) is a 2-arc-transitive Tabačjn
graph of girth 4. The 2-arc (x0, x1, x2) must then lie on a 4-cycle of X, and so n > 6 implies that
one of a, b and b − a equals 2 or −2. By Proposition 3.1 we can assume a = 2. Likewise the
2-arc (x0, y0, xn−b) is contained on a 4-cycle, say C. The remaining vertex v of C cannot be x−1,
for then n − b = n − 2 would hold, which cannot occur since b 6= a. Suppose v = y2 or v = x1
holds. Then b = n− 2, and so the 2-arc (x0, x1, x2) is contained in x0x1x2y2 and x0x1x2y0 while
in view of n > 6 the 2-arc (x0, y2, x4) is contained on just one 4-cycle. This contradiction shows
that v = yb must hold, and so either 2b = 0 or 2b = 2 holds. Observe that we have now also shown
that each 2-arc lies on precisely one 4-cycle of X. Consequently r 6= ±1.

We next consider the 2-arc (x0, y2, x2−b). Using similar arguments as above we find that 2b = 0
cannot hold, and so 2b = 2. Thus n is even and b = n

2 + 1. Considering the 2-arc (x0, x1, yn/2+2)
we find that the remaining vertex of the unique 4-cycle containing it is y0, and so we can assume
that r = n

2 + 2. Observe that this implies n ≥ 10 (otherwise x0y2y0 is a 3-cycle). Considering
finally the 2-arc (y0, yn/2+2, y4) we find that the remaining vertex of the 4-cycle containing it must
be of the form xi (otherwise n = 8), and so one of ±a, ±b and ±(b− a) is 4. As n ≥ 10 the only
possibilities are −b = 4 and b− a = 4 which both occur if and only if n = 10. But then the 2-arc
(y0, y3, y6) lies on two 4-cycles of X, a contradiction. This finally proves that for n > 6 we have
that girth(X) > 4.

To complete the proof we thus only need to consider quadruples (n; a, b; r), where 6 < n <
240, and a, b and r are such that the girth of the corresponding Tabačjn graph T (n; a, b; r)
is at least 5. In view of the isomorphisms from Proposition 3.1 it suffices to consider those
a and b, 3 ≤ a, b ≤ n − 3, for which a is the smallest of the elements ±a,±b,±(b − a) in
Zn. We can thus assume that 3 ≤ a < n

3 , 2a < b < n − a and 2b /∈ {0, a, 2a}. Moreover,
we can assume that 2 ≤ r < n

2 is such that 3r 6= 0 and 4r 6= 0, and that none of r, r +
1, r − 1 and 2r is contained in the set {±a,±b,±(b − a)}. We run a Python code that checked
which of such quadruples (n; a, b; r) (there are 53 000 862 of them) have the property, that in
the corresponding Tabačjn graph T (n; a, b; r) the 2-arcs (x0, x1, x2), (x0, x1, y1), (x0, x1, ya+1),
(x0, x1, yb+1), (x0, ya, xa), (x0, yb, xb) and (x0, yb, xb−a) all lie on the same number of 6-cycles.
The computations revealed there are 225 842 such quadruples. Of course this check does not
guarantee that in such Tabačjn graphs every 2-arc lies on a constant number of 6-cycles, but some
preliminary calculations indicated, that these seven 2-arcs were the ones that need to be tested in
order to get rid of most of the possibilities. Analyzing the remaining quadruples (n; a, b; r) which
could thus potentially give rise to 2-arc-transitive Tabačjn graphs we found that for each of them
n is even and r = n

2 −1 holds. Moreover, the above seven 2-arcs are all contained on three 6-cycles
of the corresponding Tabačjn graph T (n; a, b; r). However, the 2-arc

(x0, x1, y1) (12)

is clearly contained on the 6-cycles x0x1y1x1−ax−ay0, x0x1y1x1−bx−by0 and x0x1y1yr+1yn−1xn−1
(recall that r = n

2 − 1). Two of these 6-cycles contain the neighbor y0 of the endvertex x0 of (12).
Thus, if T (n; a, b; r) was indeed 2-arc-transitive, it would admit an automorphism reversing the
2-arc (12), and so there would have to exist at least two 6-cycles both containing the 2-arc (12)
and some neighbor of its other endvertex y1. As this does not hold, this shows that there exists
no 2-arc-transitive Tabačjn graph T (n; a, b; r) for n > 6.

We are now ready to classify all core-free symmetric Tabačjn graphs.
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Theorem 3.5 A graph X ∈ ST is core-free if and only if it is isomorphic to the complete graph
T (3; 1, 2; 1) ∼= K6.

Proof. Let X = T (n; a, b; r) be a core-free symmetric Tabačjn graph and let ρ ∈ Aut(X) be a
(2, n)-semiregular automorphism giving the (n; a, b; r)-tabačjn structure ofX. Letm = |Aut(X)x0 |
be the order of the vertex stabilizer of x0 in Aut(X). Since X is core-free, Proposition 3.3 implies
that n2 < |Aut(X)| = 2nm, and consequently n < 2m. Now, by Proposition 3.2 we have that X
is s-transitive for some 1 ≤ s ≤ 2. Proposition 2.1 implies that in the case of s = 2 we have that
m ≤ 120, while in the case of s = 1 we have that m ≤ 20. Therefore, if X is 2-transitive n < 240
and if X is 1-transitive n < 40 holds. By Lemma 3.4 X is one of T (3; 1, 2; 1), T (6; 2, 4; 1) and
T (6; 1, 5; 2). It is clear that T (3; 1, 2; 1) ∼= K6 is core-free (the only nontrivial normal subgroups of
the symmetric group S6 are A6 and S6) while for the other two graphs the following can be verified
(using MAGMA or GAP, for instance). The automorphism group of T (6; 1, 5; 2) (which is of order
120 and is isomorphic to A5×Z2) has only one conjugacy class of cyclic semiregular subgroups of
order 6 none of which is core-free in the full automorphism group of the graph. This shows that
T (6; 1, 5; 2) is not a core-free Tabačjn graph. The automorphism group of T (6; 2, 4; 1) (which is of
order 1440 and is isomorphic to S6×Z2) has 3 conjugacy classes of cyclic semiregular subgroups of
order 6, but only one conjugacy class consists of subgroups generated by (2, 6)-semiregular auto-
morphisms giving rise to a tabačjn structure of the graph (one of the other conjugacy classes gives
a bipartite presentation, that is, there are five perfect matchings between the two orbits of the
semiregular automorphism, and the other gives a presentation in which there are only two match-
ings between the two orbits of the semiregular automorphism). It follows that also T (6; 2, 4; 1) is
not a core-free Tabačjn graph.

The following lemma is a straightforward generalization of [13, Theorem 9].

Lemma 3.6 Let X ∈ ST with a (2, n)-semiregular automorphism ρ ∈ Aut(X) giving the tabačjn
structure, and let N be the core of 〈ρ〉 in Aut(X). Then N is the kernel of the action of Aut(X)
on the set of orbits of N and Aut(X)/N acts arc-transitively on XN . Morever, XN ∈ ST is a
core-free Tabačjn graph of order 2n

|N | .

We are now ready to prove the main theorem of this paper.

Theorem 1.1 A Tabačjn graph is symmetric if and only if it is isomorphic to one of the graphs
T (3; 1, 2; 1) ∼= K6, T (6; 2, 4; 1) ∼= K6,6 − 6K2 and T (6; 1, 5; 2), which is isomorphic to the icosahe-
dron graph. Moreover, the first two are 2-transitive while the third one is 1-transitive.

Proof. Let X = T (n; a, b; r) be a symmetric Tabačjn graph and let ρ ∈ Aut(X) be a (2, n)-
semiregular automorphism of X giving the (n; a, b; r)-tabačjn structure. If X is core-free then, by
Theorem 3.5, X is isomorphic to T (3; 1, 2; 1) ∼= K6.

Suppose now that X is not core-free. Then there exists a nontrivial subgroup N of 〈ρ〉 which
is normal in Aut(X). By Lemma 3.6, the quotient graph XN is a connected core-free symmetric
Tabačjn graph, and hence, by Theorem 3.5, it is isomorphic to XN

∼= T (3; 1, 2; 1) ∼= K6. In fact,
since N is a cyclic group, X is isomorphic to a regular Zm-cover of this graph, where |N | = m. Note
also that the natural action of ρ on the quotient graph XN is a (2, n/m)-semiregular automorphism
of XN giving the (3; 1, 2; 1)-tabačjn structure of XN . (Below, all arithmetic operations are to be
taken modulo m if at least one argument is from Zm and the symbol mod m is always omitted.)
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The graph T (3; 1, 2; 1) is illustrated in Figure 2. Let us choose the automorphisms

α = (x0 x1 y0 y2 x2)(y1) and β = (x0 x1 x2)(y0 y1 y2)

of T (3; 1, 2; 1), and let G = 〈α, β〉. It can be checked directly (for instance using MAGMA)
that every (2, 3)-semiregular automorphism of T (3; 1, 2; 1) is conjugate to β, and that every arc-
transitive subgroup of its automorphism group is conjugate to a subgroup containing the subgroup
G. By Lemma 3.6 the natural action of Aut(X)/N on the quotient graph XN is arc-transitive,
and so Proposition 2.5 implies that we may assume, without loss of generality, that ρ projects to
β (therefore, the lifts of β centralize the group N of covering transformations) and that G lifts to
an arc-transitive subgroup of Aut(X).

Since X is a regular Zm cover of K6 it can be derived from K6 through a suitable voltage
assignment ζ : A(K6) → Zm. To find the possible voltage assignments ζ fix the spanning tree T
of K6 consisting of the edges

{y0, y1}, {y0, y2}, {x0, y0}, {x0, x1}, {x0, x2}

(see also Figure 2).

Figure 2: The voltage assignment ζ on T (3; 1, 2; 1) ∼= K6. The spanning tree consists of undirected bold edges, all
carrying trivial voltage.

The covering graph X is then completely determined by the voltages t1, t2, . . . , t10 of the ten
arcs

(y0, x1), (x0, y1), (y1, x1), (y1, x2), (y1, y2), (y2, x2), (y2, x0), (x2, y0), (x2, x1) and (x1, y2),

respectively, corresponding to the ten co-tree edges (see Figure 2). We denote the corresponding
fundamental cycles by C1, C2, . . . , C10 (see Table 1). By Proposition 2.2 the relation ᾱ extends
to an automorphism α∗ of Zm, and, by Proposition 2.4, the relation β̄ extends to the identity
automorphism of Zm. In Table 1 all fundamental cycles Ci and the voltages of their images Cα

and Cβ under the action of the automorphisms α and β are listed (for easier determination of the
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C ζ(C) Cα ζ(Cα)

1 C1 (y0, x1, x0, y0) t1 (y2, y0, x1, y2) t1 + t10
2 C2 (y0, x0, y1, y0) t2 (y2, x1, y1, y2) −t10 − t3 + t5
3 C3 (y0, y1, x1, x0, y0) t3 (y2, y1, y0, x1, y2) −t5 + t1 + t10
4 C4 (y0, y1, x2, x0, y0) t4 (y2, y1, x0, x1, y2) −t5 − t2 + t10
5 C5 (y0, y1, y2, y0) t5 (y2, y1, x2, y2) −t5 + t4 − t6
6 C6 (y0, y2, x2, x0, y0) t6 (y2, x2, x0, x1, y2) t6 + t10
7 C7 (y0, y2, x0, y0) t7 (y2, x2, x1, y2) t6 + t9 + t10
8 C8 (y0, x0, x2, y0) t8 (y2, x1, x0, y2) −t10 − t7
9 C9 (x0, x2, x1, x0) t9 (x1, x0, y0, x1) t1
10 C10 (y0, x0, x1, y2, y0) t10 (y2, x1, y0, x2, y2) −t10 − t1 − t8 − t6

C ζ(C) Cβ ζ(Cβ)

11 C1 (y0, x1, x0, y0) t1 (y1, x2, x1, y1) t4 + t9 − t3
12 C2 (y0, x0, y1, y0) t2 (y1, x1, y2, y1) t3 + t10 − t5
13 C3 (y0, y1, x1, x0, y0) t3 (y1, y2, x2, x1, y1) t5 + t6 + t9 − t3
14 C4 (y0, y1, x2, x0, y0) t4 (y1, y2, x0, x1, y1) t5 + t7 − t3
15 C5 (y0, y1, y2, y0) t5 (y1, y2, y0, y1) t5
16 C6 (y0, y2, x2, x0, y0) t6 (y1, y0, x0, x1, y1) −t3
17 C7 (y0, y2, x0, y0) t7 (y1, y0, x1, y1) t1 − t3
18 C8 (y0, x0, x2, y0) t8 (y1, x1, x0, y1) t3 + t2
19 C9 (x0, x2, x1, x0) t9 (x1, x0, x2, x1) t9
20 C10 (y0, x0, x1, y2, y0) t10 (y1, x1, x2, y0, y1) t3 − t9 + t8

Table 1: Fundamental cycles and their images with corresponding voltages.

corresponding voltages of cycles the vertices of the cycle are comma separated and the starting
vertex is repeated at the end).

Now, by assumption the (2, n)-semiregular automorphism ρ, giving the tabačjn structure of
X, projects to β, and so the lift of at least one of the two orbits of β must induce an n-cycle.
With no loss of generality we can assume it is the orbit {x0, x1, x2}, and so 〈t9〉 = Zm holds. By
Proposition 2.3 we can thus assume t9 = 1. Since α∗ is an automorphism of the cyclic group
Zm there exists some s ∈ Z∗m, coprime to m, such that α∗(i) = si for all i ∈ Zm. Since α is of
order 5, we of course have that s5 = 1. Moreover, by Rows 16 and 17 of Table 1 (for the rest of
this proof, whenever we refer to a row we mean the corresponding row of Table 1) we have that
t7 − t6 = t1, and so Rows 6 and 7 imply that α∗(t1) = α∗(t7 − t6) = t9 = 1. Row 9 then forces
s2 = (α∗)2(t9) = α∗(t1) = 1, and so s = s4s = 1 must hold, that is, also the automorphism α∗ is
the identity automorphism of Zm. Row 9 thus implies t1 = 1, and so Row 11 forces t4 = t3. Then
Rows 3 and 4 imply that t2 = −t1 = −1. On the other hand, Rows 2 and 12 imply t2 = −t2, and
so m = 2. Using Table 1 it is now straightforward to show that the voltages ti depend solely on
whether t3 = 0 or t3 = 1 holds. In particular, if we let t3 = t, then

t1 = t2 = t9 = 1, t10 = 0, t3 = t4 = t6 = t and t5 = t7 = t8 = 1− t.

It is now easy to see that in the case of t = 0 we get that X ∼= T (6; 2, 4; 1) and in the case of t = 1
we get that X ∼= T (6; 1, 5; 2).
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