Biplanes with Flag-Transitive Automorphism Groups of Almost Simple Type, with Exceptional Socle of Lie Type.

Eugenia O'Reilly-Regueiro

November 21, 2007

Abstract

In this paper we prove that there is no biplane admitting a flagtransitive automorphism group of almost simple type, with exceptional socle of Lie type. A biplane is a (v, k, 2)-symmetric design, and a flag is an incident point-block pair. A group G is almost simple with socle X if X is the product of all the minimal normal subgroups of G, and $X \leq G \leq \text{Aut } (G)$.

Throughout this work we use the classification of finite simple groups, as well as results from P. B. Kleidman's Ph.D. thesis which have not been published elsewhere.

1 Introduction

A biplane is a (v, k, 2)-symmetric design, that is, an incidence structure of v points and v blocks such that every point is incident with exactly k blocks, and every pair of blocks is incident with exactly two points. Points and blocks are interchangeable in the previous definition, due to their dual role. A nontrivial biplane is one in which 1 < k < v - 1. A flag of a biplane D is an ordered pair (p, B) where p is a point of D, B is a block of D, and they are incident. Hence if G is an automorphism group of D, then G is flag-transitive if it acts transitively on the flags of D.

The only values of k for which examples of biplanes are known are k = 3, 4, 5, 6, 9, 11, and 13 [7, pp.76]. Due to arithmetical restrictions on the parameters, there are no examples with k = 7, 8, 10, or 12.

For k = 3, 4, and 5 the biplanes are unique up to isomorphism [5], for k = 6 there are exactly three non-isomorphic biplanes [11], for k = 9 there are exactly four non-isomorphic biplanes [32], for k = 11 there are five known biplanes [3, 9, 10], and for k = 13 there are two known biplanes [1], in this case, it is a biplane and its dual.

In [29] it is shown that if a biplane admits an imprimitive, flag-transitive automorphism group, then it has parameters (16,6,2). There are three nonisomorphic biplanes with these parameters [4], two of which admit flagtransitive automorphism groups which are imprimitive on points, (namely 2^4S_4 and $(\mathbb{Z}_2 \times \mathbb{Z}_8)S_4$ [29]). Therefore, if any other biplane admits a flagtransitive automorphism group G, then G must be primitive. The O'Nan-Scott Theorem classifies primitive groups into five types [17]. It is shown in [29] that if a biplane admits a flag-transitive, primitive, automorphism group, it can only be of affine or almost simple type. The affine case was treated in [29]. The almost simple case when the socle of G is an alternating or a sporadic group was treated in [30], in which it is shown that no such biplane exists. The almost simple case with classical socle was treated in [31] where it was shown that if such a biplane exists, it must have parameters (7,4,2) or (11,4,2) and is unique up to isomorphism. In this paper we treat the almost simple case when the socle X of G is an exceptional group of Lie type, and we prove that no such biplane exists, namely:

Theorem 1 (Main). There is no biplane admitting a flag-transitive, primitive almost simple automorphism group with exceptional socle of Lie type.

In [31] the proof for biplanes follows the proof given in [33] for linear spaces. The last section in [33] is an appendix on exceptional groups of Lie type, the presentation of which is also followed here.

2 Preliminary Results

In this section we state some results that we will use in the proof of our Main Theorem.

Lemma 1. If D is a (v, k, 2)-biplane, then 8v - 7 is a square.

Proof. The result follows from [29, Lemma 3]. \Box

Corollary 2. If D is a flag-transitive (v, k, 2)-biplane, then $2v < k^2$, and hence $2|G| < |G_x|^3$.

Proof. The equality k(k-1) = 2(v-1), implies $k^2 = 2v - 2 + k$, so clearly $2v < k^2$. Since $v = |G: G_x|$, and $k \le |G_x|$, the result follows.

Lemma 3 (Tits Lemma). [34, 1.6] If X is a simple group of Lie type in characteristic p, then any proper subgroup of index prime to p is contained in a parabolic subgroup of X.

Lemma 4. If X is a simple group of Lie type in characteristic 2, $(X \cong A_5 \text{ or } A_6)$, then any proper subgroup H such that $[X : H]_2 \leq 2$ is contained in a parabolic subgroup of X.

Proof. First assume that $X = Cl_n(q)$ is classical (q a power of 2), and take H maximal in X. By a theorem of Aschbacher [2], H is contained in a member of the collection \mathcal{C} of subgroups of $\Gamma L_n(q)$, or in \mathcal{S} , that is, $H^{(\infty)}$ is quasisimple, absolutely irreducible, not realisable over any proper subfield of $\mathbb{F}_{(q)}$. (For a more precise description of this collection of subgroups, see [14]).

We check for every family C_i that if H is contained in C_i , then $2|H|_2 < |X|_2$, except when H is parabolic.

Now we take $H \in S$. Then by [15, Theorem 4.2], $|H| < q^{2n+4}$, or H and X are as in [15, Table 4]. If $|X|_2 \leq 2|H|_2 \leq q^{2n+4}$, then if $X = L_n^{\epsilon}(q)$ we have $n \leq 6$, and if $X = SP_n(q)$ or $P\Omega_n^{\epsilon}(q)$ then $n \leq 10$. We check the list of maximal subgroups of X for $n \leq 10$ in [12, Chapter 5], and we see that no group H satisfies $2|H|_2 \leq |X|_2$. We then check the list of groups in [15, Table 4], and again, none of them satisfy this bound.

Finally, assume X to be an exceptional group of Lie type in characteristic 2. Then by [20], if $2|H| \ge |X|_2$, H is either contained in a parabolic subgroup, or H and X are as in [20, Table 1]. Again, we check all the groups in [20, Table 1], and in all cases $2|H|_2 < |X|_2$.

As a consequence, we have a strengthening of Corollary 2:

Corollary 5. Suppose D is a biplane with a primitive, flag-transitive almost simple automorphism group G with simple socle X of Lie type in characteristic p, and the stabiliser G_x is not a parabolic subgroup of G. If p is odd then p does not divide k; and if p = 2 then 4 does not divide k. Hence $|G| < 2|G_x||G_x|_{p'}^2$.

Proof. We know from Corollary 2 that $|G| < |G_x|^3$. Now, by Lemma 3, p divides $v = [G : G_x]$. Since k divides 2(v - 1), if p is odd then (k, p) = 1, and if p = 2 then $(k, p) \le 2$. Hence k divides $2|G_x|_{p'}$, and since $2v < k^2$, we have $|G| < 2|G_x||G_x|_{p'}^2$.

From the previous results we have the following lemma, which will be quite useful throughout this paper:

Lemma 6. Suppose p divides v, and G_x contains a normal subgroup H of Lie type in characteristic p which is quasisimple and $p \nmid |Z(H)|$; then k is divisible by [H:P], for some parabolic subgroup P of H.

Proof. As p divides v, then since k divides 2(v-1) we have $(k,p) \leq (2,p)$. Also, we have $k = [G_x : G_{x,B}]$ (where B is a block incident with x), so $[H : H_B]$ divides k, and therefore $([H : H_B], p) \leq (2, p)$, so by Lemmas 3 and 4 H_B is contained in a parabolic subgroup P of G_x , and since P is maximal, we have $G_{x,B}$ is contained in P, so k is divisible by $[G_x : P]$. \Box

We will also use the following two lemmas:

Lemma 7. [18] If X is a simple group of Lie type in odd characteristic, and X is neither $PSL_d(q)$ nor $E_6(q)$, then the index of any parabolic subgroup is even.

Lemma 8. [22, 3.9] If X is a group of Lie type in characteristic p, acting on the set of cosets of a maximal parabolic subgroup, and X is not $PSL_d(q)$, $P\Omega_{2m}^+(q)$ (with m odd), nor $E_6(q)$, then there is a unique subdegree which is a power of p.

Before stating the next result, we give the following [21]:

Definition 9. Let H be a simple adjoint algebraic group over an algebraically closed field of characteristic p > 0, and σ be an endomorphism of H such that $X = (H_{\sigma})'$ is a finite simple exceptional group of Lie type over \mathbb{F}_q , where $(q = p^a)$. Let G be a group such that $\operatorname{Soc}(G) = X$. The group $\operatorname{Aut}(X)$ is generated by H_{σ} , together with field and graph automorphisms. If D is a σ -stable closed connected reductive subgroup of H containing a maximal torus T of H, and $M = N_G(D)$, then we call M a subgroup of maximal rank in G.

We now have the following theorem and table [24, Theorem 2, Table III]:

Theorem 10. If X is a finite simple exceptional group of Lie type such that $X \leq G \leq \operatorname{Aut}(X)$, and G_x is a maximal subgroup of G such that $X_0 = \operatorname{Soc}(G_x)$ is not simple, then one of the following holds:

- (1) G_x is parabolic.
- (2) G_x is of maximal rank.

- (3) $G_x = N_G(E)$, where E is an elementary abelian group given in [6, Theorem 1(II).].
- (4) $X = E_8(q)$, (p > 5), and X_0 is either $A_5 \times A_6$ or $A_5 \times L_2(q)$.
- (5) X_0 is as in Table 1.

X	X_0
$\overline{F_4(q)}$	$L_2(q) \times G_2(q) \ (p > 2, q > 3)$
$E_6^{\epsilon}(q)$	$L_3(q) \times G_2(q), U_3(q) \times G_2(q) \ (q > 2)$
$E_7(q)$	$L_2(q) \times L_2(q) \ (p > 3), \ L_2(q) \times G_2(q) \ (p > 2, q > 3)$
	$L_2(q) \times F_4(q) \ (q > 3), \ G_2(q) \times PSp_6(q)$
$E_8(q)$	$L_2(q) \times L_3^{\epsilon}(q) \ (p > 3), \ G_2(q) \times F_4(q)$
_	$L_2(q) \times G_2(q) \times G_2(q) \ (p > 2, q > 3), \ L_2(q) \times G_2(q^2) \ (p > 2, q > 3)$

Table 1:

We will also use the following theorem [23, Theorem 3]:

Theorem 11. Let X be a finite simple exceptional group of Lie type, with $X \leq G \leq \operatorname{Aut}(X)$. Assume G_x is a maximal subgroup of G, and $\operatorname{Soc}(G_x) = X_0(q)$ is a simple group of Lie type over \mathbb{F}_q (q > 2) such that $\frac{1}{2}\operatorname{rk}(X) < \operatorname{rk}(X_0)$. Then one of the following holds:

- (1) G_x is a subgroup of maximal rank.
- (2) X_0 is a subfield or twisted subgroup.
- (3) $X = E_6(q)$ and $X_0 = C_4(q)$ (q odd) or $F_4(q)$.

Finally, we will use the following theorem [26, Theorem 1.2]:

Theorem 12. Let X be a finite exceptional group of Lie type such that $X \leq G \leq \operatorname{Aut}(X)$, and G_x a maximal subgroup of G with socle $X_0 = X_0(q)$ a simple group of Lie type in characteristic p. Then if $\operatorname{rk}(X_0) \leq \frac{1}{2}\operatorname{rk}(X)$, we have the following bounds:

- (1) If $X = F_4(q)$ then $|G_x| < q^{20}.4 \log_p(q)$,
- (2) If $X = E_6^{\epsilon}$ then $|G_x| < q^{28}.4 \log_p(q)$,
- (3) If $X = E_7(q)$ then $|G_x| < q^{30}.4 \log_p(q)$, and
- (4) If $X = E_8(q)$ then $|G_x| < q^{56} \cdot 12 \log_p(q)$.

In all cases, $|G_x| < |G|^{\frac{5}{13}} \cdot 5 \log_p(q)$.

3 Proof of our Main Theorem

Lemma 13. The group X is not a Suzuki group ${}^{2}B_{2}(q)$, with $q = 2^{2e+1}$.

Proof. Suppose that the socle X is a Suzuki group ${}^{2}B_{2}(q)$, with $q = 2^{2e+1}$. Then $|G| = f|X| = f(q^{2} + 1)q^{2}(q - 1)$, where $f \mid (2e + 1)$, and so the order of any point stabiliser G_{x} is one of the following [35]:

- (1) $fq^2(q-1)$
- (2) $4f(q + \sqrt{2q} + 1)$
- (3) $4f(q \sqrt{2q} + 1)$
- (4) $f(q_0^2+1)q_0^2(q_0-1)$, where $8 \le q_0^m = q$, with $m \ge 3$.

Case (1) Here $v = (q^2 + 1)$, so from k(k - 1) = 2(v - 1) we obtain $k(k - 1) = 2q^2$, a power of 2, which is a contradiction.

Cases (2) and (3) From the inequality $|G| < |G_x|^3$, we have

$$f \cdot \frac{7}{8}q^5 < f(q^2+1)q^2(q-1) < 4^4 f^3 (q \pm \sqrt{2q}+1)^3 < 4^4 f^3 (2q+1)^3 \le 4^4 \left(\frac{17}{8}fq\right)^3,$$

 \mathbf{SO}

$$q^2 < \frac{4^4 \cdot (17)^3 \cdot f^2}{8^2 \cdot 7} < 2808f^2,$$

hence $q \leq 128$.

First assume q = 128. Then v = 58781696 in case (2), and 75427840 in case (3), and $|G_x| = 4060$ in case (2), and 3164 in case (3). We know k divides $2(|G_x|, v - 1)$, but here $(|G_x|, v - 1) = 1015$ in case (2), and 113 in case (3). In both cases $k^2 < v$, which is a contradiction.

Next assume q = 32. Then v = 198400 in case (2), and 325376 in case (3). In case (2), (|G - x|, v - 1) = 41, and in case (3) $(|G_x|, v - 1) = 25$ or 125, depending on whether f = 1 or 5. In all cases we see $k^2 < v$, a contradiction.

Finally assume q = 8. Then v = 560 in case (2), and 1456 in case (3). In case (2), $(|G_x|, v - 1) = 13$, and in case (3) $(|G_x|, v - 1) = 5f$. Therefore k is again too small. **Case** (4) Here $|G_x| = f(q_0^2 + 1) q_0^2(q_0 - 1)$, so q_0 divides v and hence q_0 and v - 1 are relatively prime, so from $|G| < 2|G_x||G_x||_{p'}^2$ we obtain:

$$\left(q_0^{2m}+1\right)q_0^{2m}\left(q_0^m-1\right) < 4f^2\left(q_0^2+1\right)^3q_0^2(q_0-1)^3.$$

Now, $q_0^{5m-1} < (q_0^{2m} + 1) q_0^{2m} (q_0^m - 1)$, and also

$$4f^2 \left(q_0^2 + 1\right)^3 q_0^2 (q_0 - 1)^3 = 4f^2 q_0^2 \left(q_0^3 - q_0^2 + q_0 - 1\right)^3 < f^2 q_0^{13},$$

 \mathbf{SO}

$$q_0^{5m-1} < f^2 q_0^{13} < q_0^{13+m}.$$

Therefore 5m - 1 < 13 + m, which forces m = 3. Then

$$v = (q_0^4 - q_0^2 + 1) q_0^4 (q_0^2 + q_0 + 1),$$

and so $k \leq 2(|G_x|, v-1) \leq 2fq_0^3 < 2q_0^{\frac{9}{2}}$. The inequality $v < k^2$ forces $q_0 = 2$, and so q = 8. Then v = 1456, and $|G_x| = 20f$, with f = 1 or 3. Hence $(|G_x|, v-1) = 5f$, and therefore $k^2 < v$, which is a contradiction. \Box

This completes the proof of Lemma 13.

Lemma 14. The point stabiliser G_x is not a parabolic subgroup of G.

Proof. First assume $X \neq E_6(q)$. Then by Lemma 8 there is a unique subdegree which is a power of p. Therefore k divides twice a power of p, but it also divides 2(v-1), so it is too small.

Now assume $X = E_6(q)$. If G contains a graph automorphism or $G_x = P_i$ with i = 2 or 4, then there is a unique subdegree which is a power of p and again k is too small. If $G_x = P_3$, the A_1A_4 type parabolic, then

$$v = \frac{(q^3+1)(q^4+1)(q^{12}-1)(q^9-1)}{(q^2-1)(q-1)}.$$

Since k divides $2(|G_x|, v-1)$, then k divides $2q(q^5-1)(q-1)^5 \log_p q$, and hence $k^2 < v$, which is a contradiction. If $G_x = P_1$, then

$$v = \frac{\left(q^{12} - 1\right)\left(q^9 - 1\right)}{\left(q^4 - 1\right)\left(q - 1\right)}$$

and the nontrivial subdegrees are ([19]) $\frac{q(q^8-1)(q^3+1)}{(q-1)}$, and $\frac{q^8(q^5-1)(q^4+1)}{(q-1)}$. The fact that k divides twice the highest common factor of these forces $k^2 < v$, again, a contradiction. This completes the proof of Lemma 14.

Lemma 15. The group X is not a Chevalley group $G_2(q)$.

Proof. Assume $X = G_2(q)$, with q > 2 since $G_2(q)' = U_3(3)$. The list of maximal subgroups of $G_2(q)$ with q odd can be found in [13], and in [8] for q even.

First consider the case where $X \cap G_x = SL_3^{\epsilon}(q).2$. Here

$$v = \frac{q^3 \left(q^3 + \epsilon\right)}{2}.$$

From the factorization $\Omega_7(q) = G_2(q) N_1^{\epsilon}$ ([16]), it follows that the suborbits of $\Omega_7(q)$ are unions of G_2 -suborbits, and so k divides each of the Ω_7 -subdegrees. Now q cannot be odd, since this is ruled out by the first case with i = 1 in the section of orthogonal groups of odd dimension in [31]. For q even, the subdegrees for $Sp_6(q)$, given in the last case of the section on symplectic groups in [31] are $(q^3 - \epsilon) (q^4 + \epsilon)$ and $\frac{(q-2)q^2(q^3 - \epsilon)}{2}$. This implies that k divides $2(q^3 - \epsilon) (q - 2, q^2 + \epsilon)$, and since $v < k^2$ then $\epsilon = -$, and so

$$v = \frac{q^3 \left(q^3 - 1\right)}{2}.$$

So k divides $2(q^3+1)(q-2,q^2-1) \le 6(q^3+1)$, and k(k-1) = 2(v-1) = 2(v-1) = 2(v-1) $(q^3+1)(q^3-2)$. This is impossible.

If $X \cap G_x = G_2(q_0) < G_2(q)$ or ${}^2G_2(q) < G_2(q)$ then p does not divide $[G_x : G_{xB}]$, so by Lemma 6 k is divisible by the index of a parabolic subgroup of G_x which is $\frac{q_0^6-1}{q_0-1}$ in the case of $G_2(q_0)$, or $q^3 + 1$ in the case of ${}^2G_2(q)$. But this is not so since k also divides $2(v-1, |G_x|)$.

If $G_x = N_G (SL_2(q) \circ SL_2(q))$, then

$$v = \frac{q^4 \left(q^6 - 1\right)}{q^2 - 1}.$$

Now k divides $2(q^2-1)^2 \log_p q$ but $(q^2-1, v-1) \le 2$, so k is too small. If $X \cap G_x = J_2 < G_2(4)$ then v = 416. But k divides $2(|G_x|, 415)$, which

is too small.

Now suppose $X \cap G_x = G_2(2)$, with $p = q \ge 5$. Then the inequality $v < k^2$ forces q = 5 or 7. In both cases $(v - 1, |G_x|)$ is too small.

If $X \cap G_x = PGL_2(q)$, or $L_2(8)$, then the inequality $|G| < |G_x|^3$ is not satisfied.

Next consider $X \cap G_x = L_2(13)$. Then the inequality $|G| < |G_x|^3$ forces $q \le 5$. If q = 5 then $v = 2^3 \cdot 3^2 \cdot 5^6 \cdot 13 \cdot 31$, so $(v - 1, |G_x|) \le 7$, hence k is too small. If q = 3 then $v = 2^3 \cdot 3^5$, and k divides $2(v - 1, |G_x|) \le 2 \cdot 7 \cdot 13$, this does not satisfy the equation k(k - 1) = 2(v - 1).

Finally, if $X \cap G_x = J_1$ with q = 11 then the inequality $v < k^2$ cannot be satisfied.

There is no other maximal subgroup G_x satisfying the inequality $|G| < |G_x|$.

This completes the proof of Lemma 15.

Lemma 16. The group X is not a Ree group ${}^{2}G_{2}(q)$, (q > 3).

Proof. Suppose $X = {}^{2}G_{2}(q)$, with $q = 3^{2e+1} > 3$. A complete list of maximal subgroups of G can be found in [13, p.61]. First suppose $G_{x} \cap X = 2 \times SL_{2}(q)$. Then

$$v = \frac{q^2 \left(q^2 - q + 1\right)}{2},$$

so $2(v-1) = q^4 - q^3 + q^2 - 2$, and k divides $2(|G_x|, v-1)$. But $(q(q^2 - 1), q^4 - q^3 + q^2 - 1) = q - 1$, which is too small.

The groups $X \cap G_x = N_X(S_2)$, (where S_2 is a Sylow 2-subgroup of X of order 8), of order $2^3 \cdot 3 \cdot 7$ and $L_2(8)$ are not allowed since $|G| < |G_x|^3$ forces q = 3.

If $X \cap G_x = {}^2G_2(q_0)$, with $q_0^m = q$ and m prime, then

$$v = q_0^{3(m-1)} \left(q_0^{3(m-1)} - q_0^{3(m-2)} + \ldots + (-1)^m q_0^3 + (-1)^{m-1} \right) \left(q_0^{m-1} + q_0^{m-2} + \ldots + 1 \right)$$

Now k divides $2mq_0^3 (q_0^3 + 1) (q_0 - 1)$, but since q_0 and v - 1 are relatively prime, q_0 does not divide k, so in fact $k \leq 2m (q_0^3 + 1) (q_0 - 1)$, and the inequality $v < k^2$ forces m = 2, which is a contradiction.

If $X \cap G_x = \mathbb{Z}_{q \pm \sqrt{3q}+1} : \mathbb{Z}_6$, since $q \ge 27$ we have that the inequality $|G| < |G_x|^3$ is not satisfied.

Finally, if $X \cap G_x = \left(2^2 \times D_{\left(\frac{1}{2}\right)(q+1)}\right)$: 3, since $q \ge 27$ then the inequality $|G| < |G_x|^3$ is not satisfied.

This completes the proof of Lemma 16.

Lemma 17. The group X is not a Ree group ${}^{2}F_{4}(q)$.

Proof. Suppose $X = {}^{2}F_{4}(q)$. Then from [27] we see there are no maximal subgroups G_{x} that are not parabolic satisfying the inequality $|G| < 2|G_{x}||G_{x}|_{2'}^{2}$, except for the case q = 2. In this case $G_{x} \cap X = L_{3}(3).2$ or $L_{2}(25)$. In both cases, since k must divide $2(v-1, |G_{x}|)$ it is too small. \Box

Lemma 18. The group X is not ${}^{3}D_{4}(q)$.

Proof. Suppose $X = {}^{3}D_{4}(q)$. If $X \cap G_{x} = G_{2}(q)$ or $SL_{2}(q^{3}) \circ SL_{2}(q).(2, q-1)$ then $v = q^{e}(q^{8} + q^{4} + 1)$, where e = 6 or 8 respectively. By Lemma 6, k is divisible by q + 1, which forces q = 3 (since q + 1 also divides 2(v - 1)), but then in neither case is 8v - 7 a square.

If $X \cap G_x = PGL_3^{\epsilon}(q)$ then the inequality $|G| < |G_x|^3$ is not satisfied. \Box

Lemma 19. The group X is not $F_4(q)$.

Proof. Suppose $X = F_4(q)$. First assume that $X_0 = \text{Soc}(X \cap G_x)$ is not simple. Then by Theorem 10 and Table 1, $G_x \cap X$ is one of the following,

- (1) Parabolic.
- (2) Maximal rank.
- (3) $3^3.SL_3(3).$

or $X_0 = L_2(q) \times G_2(q) (p > 2, q > 3).$

The parabolic subgroups have been ruled out by Lemma 14.

The possibilities for the second case are given in [21, Table 5.1]. We check that in every case there is a large power of q dividing v, and since $(k, v) \leq 2$, then q does not divide k (unless q = 2, but then 4 does not divide k). Therefore k divides $2(|G_x|, v - 1)$, and in each case $(|G_x|_{p'}, v - 1)$ is too small for k to satisfy $k^2 > v$.

The local subgroup is too small to satisfy the bound $|G_x|^3 > |G|$.

Finally, $|L_2(q) \times G_2(q)| \le q^7 (q^2 - 1)^2 (q^6 - 1) < |F_4(q)|^{\frac{1}{3}}$. Therefore X_0 is simple.

First suppose $X_0 \notin \text{Lie}(p)$. Then by [25, Table 1], it is one of the following:

 $A_7, A_8, A_9, A_{10}, L_2(17), L_2(25), L_2(27), L_3(3), U_4(2), Sp_6(2), \Omega_8^+(2), {}^{3}D_4(2), J_2, A_{11}(p = 11), L_3(4)(p = 3), L_4(3)(p = 2), {}^{2}B_2(8)(p = 5), M_{11}(p = 11).$

The only possibilities for X_0 that could satisfy the bound $|G_x|^3 > |G|$ are $A_9, A_{10}(q=2), Sp_6(2)(q=2), \Omega_8^+(2)(q=2,3), {}^3D_4(2)(q=3), J_2(q=2),$ and $L_4(3)(q=2)$. However, since k divides $2(|G_x|, v-1)$, in all these cases $k^2 < v$.

Now assume $X_0 \in \text{Lie}(p)$. First consider the case $\text{rk}(X_0) > \frac{1}{2}\text{rk}(G)$, where $X_0 = X_0(r)$. If r > 2, then by Theorem 11 it is a subfield subgroup.

We have seen earlier that the only subgroups which could satisfy the bound $|G_x|^3 > |G|$ are $F_4\left(q^{\frac{1}{2}}\right)$ and $F_4\left(q^{\frac{1}{3}}\right)$. If $q_0 = q^{\frac{1}{2}}$, then

$$v = q^{12} (q^6 + 1) (q^4 + 1) (q^3 + 1) (q + 1) > q^{26}.$$

Now k divides $2F_4\left(q^{\frac{1}{2}}\right)$, and $(k, v) \leq 2$. Since $(q, k) \leq 2$, then k divides

$$2\left(2(q^6-1)(q^4-1)(q^3-1)(q-1), v-1\right) < q^{13},$$

so $k^2 < v$, a contradiction.

If $q_0 = q^{\frac{1}{3}}$, then

$$v = \frac{q^{16} \left(q^{12} - 1\right) \left(q^{4} + 1\right) \left(q^{6} - 1\right)}{\left(q^{\frac{8}{3}} - 1\right) \left(q^{\frac{2}{3}} - 1\right)},$$

but $k < q^{10}$ so $k^2 < v$, which is a contradiction.

If r = 2, then the subgroups $X_0(2)$ with $\operatorname{rk}(X_0) > \frac{1}{2}\operatorname{rk}(G)$ that satisfy the bound $|G_x|^3 > |G|$ are $A_4^{\epsilon}(2)$, $B_3(2)$, $B_4(2)$, $C_3(2)$, $C_4(2)$, and $D_4^{\epsilon}(2)$. Again, in all cases the fact that k divides $2(|G_x|, v-1)$ forces $k^2 < v$, a contradiction.

Now consider the case $\operatorname{rk}(X_0) \leq \frac{1}{2}\operatorname{rk}(G)$. Theorem 12 implies $|G_x| < q^{20}.4 \log_p q$. Looking at the orders of groups of Lie type, we see that if $|G_x| < q^{20}.4 \log_p q$, then $|G_x|_{p'} < q^{12}$, so $2|G_x||G_x|_{p'}^2 < |G|$, contrary to Corollary 5.

This completes the proof of Lemma 19.

Lemma 20. The group X is not $E_6^{\epsilon}(q)$.

Proof. Suppose $X = E_6^{\epsilon}(q)$. As in the previous lemma, assume first that X_0 is not simple. Then Theorem 10 implies $G_x \cap X$ is one of the following,

- (1) Parabolic.
- (2) Maximal rank.
- (3) 3⁶.SL₃(3).

or $X_0 = L_3(q) \times G_2(q), U_3(q) \times G_2(q)(q > 2).$

The first case was ruled out in Lemma 14.

The possibilities for the second case are given in [21, Table 5.1]. In some cases $|G_x|^3 < |G|$, and in each of the remaining cases, calculating $2(|G_x|, v-1)$ we obtain $k^2 < v$.

The local subgroup for the third case is too small.

Finally, the order of the groups in the last case is less than $q^{17} < |E_6^{\epsilon}|^{\frac{1}{3}}$. Now assume X_0 is simple. If $X_0 \notin \text{Lie}(p)$, then we find the possibilities in [25, Table 1]. However, the only two cases which satisfy Corollary 2 have order that does not divide $|E_6^{\epsilon}|$. Hence $X_0 = X_0(r) \in \text{Lie}(p)$.

If $\operatorname{rk}(X_0) > \frac{1}{2}\operatorname{rk}(G)$, then when r > 2 by Theorem 11 are $E_6^{\epsilon}\left(q^{\frac{1}{s}}\right)$ with s = 2 or 3, $C_4(q)$, and $F_4(q)$. In all cases k is too small. When q = 2 then the possibilities satisfying $|G_x|^3 > |G|$ with order dividing $E_6^{\epsilon}(2)$ are $A_5^{\epsilon}(2)$, $B_4(2)$, $C_4(2)$, $D_4^{\epsilon}(2)$, and $D_5^{\epsilon}(2)$. However since k divides $2(|G_x|, v-1)$, in all cases $k^2 < v$, a contradiction.

If $\operatorname{rk}(X_0) \leq \frac{1}{2}\operatorname{rk}(G)$, then Theorem 12 implies $|G_x| < q^{28}.4 \log_p q$. Looking at the p and p' parts of the orders of the possible subgroups, we see that the p'-part is always less than q^{17} . Hence $|G_x|_{p'} < q^{17}$, so $2|G_x||G_x|_{p'}^2 < |G|$, contradicting Corollary 5.

This completes the proof of Lemma 20.

Lemma 21. The group X is not $E_7(q)$.

Proof. Suppose $X = E_7(q)$. First assume X_0 is not simple. Then by Theorem 10, $G_x \cap X$ is one of the following,

- (1) Parabolic.
- (2) Maximal rank.
- (3) $2^2.S_3$.

or $X_0 = L_2(q) \times L_2(q)(p > 3)$, $L_2(q) \times G_2(q)(p > 2, q > 3)$, $L_2(q) \times F_4(q)(q > 3)$, or $G_2(q) \times PSp_6(q)$.

The parabolic subgroups have been ruled out in Lemma 14. The subgroups of maximal rank can be found in [21, Table 5.1]. Of these, the only ones with order greater than $|E_7(q)|^{\frac{1}{3}}$ are $d.(L_2(q) \times P\Omega_{12}^+(q)).d$ and $f.L_8^\epsilon(q).g.(2 \times (\frac{2}{f}))$, where $d = (2, q - 1), f = (4, \frac{q-\epsilon}{d})$, and $g = (8, \frac{q-\epsilon}{d})$. However in both cases the fact that $(k, v) \leq 2$ forces $k^2 < v$, a contradiction.

The local subgroup is too small to satisfy $|G_x|^3 > |G|$.

In the last case, the only group that is not too small to satisfy $|G_x|^3 > |G|$ is $L_2(q) \times F_4(q)$, but here q^{38} divides v, and since $(v, k) \leq 2$, then $k^2 < v$. So X_0 is simple.

First assume $X_0 \notin \text{Lie}(p)$. Then by [25, Table 1], the possibilities are $A_{14}(p=7), M_{22}(p=5), Ru(p=5)$, and HS(p=5). None of these groups satisfy Corollary 2.

Now assume $X_0 = X_0(r) \in \text{Lie}(p)$. If $\text{rk}(X_0) \leq \frac{1}{2}\text{rk}(G)$, then by Theorem 12, $|G_x|^3 < |G|$, which is a contradiction.

If $\operatorname{rk}(X_0) > \frac{1}{2}\operatorname{rk}(G)$ then if r > 2 Theorem 11 implies $X \cap G_x = E_7\left(q^{\frac{1}{s}}\right)$, with s = 2 or 3. However in both cases $(v, k) \leq 2$ forces $k^2 < v$, a contradiction. If r = 2 then the possible subgroups satisfying the bound $|G_x|^3 > |G|$ and having order dividing $|E_7(2)|$ are $A_6^{\epsilon}(2)$, $A_7^{\epsilon}(2)$, $B_5(2)$, $C_5(2)$, $D_5^{\epsilon}(2)$, and $D_6^{\epsilon}(2)$. However in all of these cases $(v, k) \leq 2$ forces $k^2 < v$.

Lemma 22. The group X is not $E_8(q)$.

Proof. Suppose $X = E_8(q)$. First suppose that X_0 is not simple. Then by Theorem 10 $G_x \cap X$ is one of the following,

- (1) Parabolic.
- (2) Maximal rank.
- (3) $(2^{15}).L_5(2)$ (q odd) or $5^3.SL_3(5)$ $(5|q^2-1).$
- (4) $G_x \cap X = (A_5 \times A_6).2^2$.

or $X_0 = L_2(q) \times L_3^{\epsilon}(q)(p > 3)$, $G_2(q) \times F_4(q)$, $L_2(q) \times G_2(q) \times G_2(q)(p > 2, q > 3)$, or $L_2(q) \times G_2(q^2)(p > 2, q > 3)$.

We know from Lemma 14 that the first case does not hold.

From [21, Table 5.1] the only subgroups of maximal rank such that $|G_x|^3 \ge |G|$ are $d.P\Omega_{16}^+(q).d$, $d.(L_2(q) \times E_7(q)).d$, $f.L_9^\epsilon(q).e.2$, and $e.(L_3^\epsilon(q) \times E_6^\epsilon(q)).e.2$, (where $d = (2, q - 1), e = (3, q - \epsilon)$, and $f = \frac{(9, q - \epsilon)}{e}$). In all cases, $(k, v) \le 2$ implies $k^2 < v$, which is a contradiction.

In all other cases, for all possible groups we have that $|G_x|^3 < |G|$, a contradiction. Hence X_0 is simple.

First consider the case $X_0 \notin \text{Lie}(p)$. Then by [25, Table 1] the possibilities are Alt_{14} , Alt_{15} , Alt_{16} , Alt_{17} , $Alt_{18}(p = 3)$, $L_2(16)$, $L_2(31)$, $L_2(32)$, $L_2(41)$, $L_2(49)$, $L_2(61)$, $L_3(5)$, $L_4(5)(p = 2)$, $PSp_4(5)$, $G_2(3)$, ${}^2B_2(8)$, ${}^2B_2(32)(p = 5)$, and Th(p = 3). In every case the inequality $|G_x|^3 > |G|$ is not satisfied.

Now consider the case $X_0 \in \text{Lie}(p)$. If $\text{rk}(X_0) \leq \frac{1}{2}\text{rk}(G)$, then by Theorem 12 we have $|G_x|^3 \geq |G|$, which is a contradiction.

So $\operatorname{rk}(X_0) > \frac{1}{2}\operatorname{rk}(G)$. If r > 2, then by Theorem 11 $G_x \cap X$ is a subfield subgroup. The only cases in which $|G_x|^3 > |G|$ can be satisfied are when $q = q_0^2$ or $q = q_0^3$, but in all cases since $(v, k) \leq 2$ then k is too small.

If r = 2, then $\operatorname{rk}(X_0) \geq 5$. The groups for which $|G| < |G_x|^3$ are $A_8^{\epsilon}(2), B_8(2), B_7(2), C_8(2), C_7(2), D_8^{\epsilon}(2)$, and $D_7^{\epsilon}(2)$. However, in all cases $(v, k) \leq 2$ forces $k^2 < v$, which is a contradiction.

This completes the proof of Lemma 22, completing thus the proof of our Main Theorem. As a consequence of this and the results in [30, 31] we have the following:

Theorem 2. If D is a biplane with a primitive, flag-transitive automorphism group of almost simple type, then D has parameters either (7,4,2), or (11,5,2), and is unique up to isomorphism.

Acknowledgements

The results in the present paper were obtained during the course of my Ph.D. under the supervision of Martin W. Liebeck, with a grant from the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México. I am very grateful to Martin for his guidance and help. I would also like to thank Jan Saxl for allowing me to view his notes before [33] was published, and Sasha Ivanov for providing me with these notes.

References

- M. Aschbacher, On Collineation Groups of Symmetric Block Designs, J. Combin. Theory (11) (1971) 272-281.
- [2] M. Aschbacher, On the Maximal Subgroups of the Finite Classical Groups, *Invent. Math.* 76 (1984), 469-514.
- [3] E.F. Assmus Jr., J.A. Mezzaroba, and C.J. Salwach, Planes and Biplanes, Proceedings of the 1976 Berlin Combinatorics Conference, Vancerredle, 1977.
- [4] E.F. Assmus Jr., and C.J. Salwach, The (16,6,2) Designs, International J. Math. and Math. Sci. Vol. 2 No. 2 (1979) 261-281.
- [5] P.J. Cameron, Biplanes, Math. Z. 131 (1973) 85-101.
- [6] A.M. Cohen, M.W. Liebeck, J. Saxl, and G.M. Seitz, The Local Maximal Subgroups of Exceptional Groups of Lie Type, Finite and Algebraic, Proc. London Math. Soc (3) 64 (1992) 21-48.

- [7] C.J. Colburn, and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, Florida, 1996.
- [8] B. N. Cooperstein, Minimal Degree for a Permutation Representation of a Classical Group, Israel J. Math 30 (1978), 213-235.
- [9] R.H.F. Denniston, On Biplanes with 56 points., Ars. Combin. 9 (1980) 167-179.
- [10] M. Hall Jr., R. Lane, and D. Wales, Designs derived from Permutation Groups, J. Combin. Theory 8 (1970) 12-22.
- [11] Q.M. Hussain, On the Totality of the Solutions for the Symmetrical Incomplete Block Designs $\lambda = 2, k = 5$ or 6, Sankhya 7 (1945) 204-208.
- [12] P.B. Kleidman, The Subgroup Structure of Some Finite Simple Groups, Ph.D. Thesis, University of Cambridge, 1987.
- [13] P.B. Kleidman, The Maximal Subgroups of the Chevalley Groups $G_2(q)$ with q Odd, the Ree Groups ${}^2G_2(q)$, and Their Automorphism Groups, J. Algebra **117** (1998), 30-71.
- [14] P.B. Kleidman and M.W. Liebeck, *The Subgroup Structure of the Finite Classical Groups*, London Math. Soc. Lecture Note Series, Vol. 129, Cambridge Univ. Press, Cambridge, UK, 1990.
- [15] M.W. Liebeck, On the Orders of Maximal Subgroups of the Finite Classical Groups, Proc. London Math Soc. 50 (1985), 426-446.
- [16] M.W. Liebeck, C.E. Praeger, and J. Saxl, The Maximal Factorizations of the Finite Simple Groups and their Automorphism Groups, *Mem. Amer. Math. Soc.* 86 No. 432 (1990), 1-151.
- [17] M.W. Liebeck, C.E. Praeger, J. Saxl, On the O'Nan-Scott Theorem for Finite Primitive Permutation Groups, J. Austral. Math. Soc. (Series A) 44 (1988) 389-396.
- [18] M.W. Liebeck and J. Saxl, The Primitive Permutation Groups of Odd Degree, J. London Math. Soc. 31 (1985), 250-264
- [19] M.W. Liebeck and J. Saxl, The Finite Primitive Permutation Groups of Rank Three, Bull. London Math. Soc. 18 (1986), 165-172.

- [20] M.W. Liebeck and J. Saxl, On the Orders of Maximal Subgroups of the Finite Exceptional Groups of Lie Type, Proc. London Math. Soc. 55 (1987), 299-330.
- [21] M.W. Liebeck, J. Saxl, and G.M. Seitz, Subgroups of Maximal Rank in Finite Exceptional Groups of Lie Type, *Proc. London Math. Soc.* 65 (1992), 297-325.
- [22] M.W. Liebeck, J. Saxl, and G.M. Seitz, On the Overgroups of Irreducible Subgroups of the Finite Classical Groups, *Proc. London Math.* Soc. 55 (1987), 507-537.
- [23] M.W. Liebeck, J. Saxl, and D.M. Testerman, Simple Subgroups of Large Rank in Groups of Lie Type, Proc. London Math. Soc. (3) 72 (1996), 425-457.
- [24] M.W. Liebeck and G.M. Seitz, Maximal Subgroups of Exceptional Groups of Lie Type, Finite and Algebraic, *Geometriae Dedicata* 35 (1990), 353-387.
- [25] M.W. Liebeck and G.M. Seitz, On Finite Subgroups of Exceptional Algebraic Groups, J. reine. angew. Math. 515 (1999), 25-72.
- [26] M.W. Liebeck and A. Shalev, The Probability of Generating a Finite Simple Group, *Geometriae Dedicata* 56 (1995), 103-113.
- [27] G. Malle, The Maximal Subgroups of ${}^{2}F_{4}(q^{2})$, J. Algebra **139** (1991), 53-69.
- [28] E. O'Reilly Regueiro, Flag-Transitive Symmetric Designs, Ph.D. Thesis, University of London, 2003.
- [29] E. O'Reilly Regueiro, On Primitivity and Reduction for Flag-Transitive Symmetric Designs, J. Combin. Theory, Ser. A 109 (2005) 135-148.
- [30] E. O'Reilly Regueiro, Biplanes with Flag-Transitive Automorphism Groups of Almost Simple Type, with Alternating or Sporadic Socle, *European Journal of Combinatorics* 26 (2005) 577-584.
- [31] E. O'Reilly-Regueiro, Biplanes with Flag-Transitive Automorphism Groups of Almost Simple Type, with Classical Socle, submitted.
- [32] C.J. Salwach, and J.A. Mezzaroba, The Four Biplanes with k = 9, J. Combin. Theory, Ser. A 24 (1978) 141-145.

- [33] J. Saxl, On Finite Linear Spaces with Almost Simple Flag-Transitive Automorphism Groups, J. Combin. Theory, Ser. A, 100 2 (2002) 322-348.
- [34] G.M. Seitz, Flag-Transitive subgroups of Chevalley Groups, Annals of Math. 97 1, (1973), 27-56.
- [35] M. Suzuki, On a Class of Doubly Transitive Groups, Annals of Math. 75 (1962), 105-145.