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Abstract

In this paper we prove that there is no biplane admitting a flag-
transitive automorphism group of almost simple type, with exceptional
socle of Lie type. A biplane is a (v, k, 2)-symmetric design, and a flag
is an incident point-block pair. A group G is almost simple with socle
X if X is the product of all the minimal normal subgroups of G, and
X E G ≤ Aut (G).

Throughout this work we use the classification of finite simple
groups, as well as results from P. B. Kleidman’s Ph.D. thesis which
have not been published elsewhere.

.

1 Introduction

A biplane is a (v, k, 2)-symmetric design, that is, an incidence structure of v
points and v blocks such that every point is incident with exactly k blocks,
and every pair of blocks is incident with exactly two points. Points and
blocks are interchangeable in the previous definition, due to their dual role.
A nontrivial biplane is one in which 1 < k < v − 1. A flag of a biplane D
is an ordered pair (p, B) where p is a point of D, B is a block of D, and
they are incident. Hence if G is an automorphism group of D, then G is
flag-transitive if it acts transitively on the flags of D.

The only values of k for which examples of biplanes are known are k = 3,
4, 5, 6, 9, 11, and 13 [7, pp.76]. Due to arithmetical restrictions on the
parameters, there are no examples with k = 7, 8, 10, or 12.
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For k = 3, 4, and 5 the biplanes are unique up to isomorphism [5], for
k = 6 there are exactly three non-isomorphic biplanes [11], for k = 9 there
are exactly four non-isomorphic biplanes [32], for k = 11 there are five known
biplanes [3, 9, 10], and for k = 13 there are two known biplanes [1], in this
case, it is a biplane and its dual.

In [29] it is shown that if a biplane admits an imprimitive, flag-transitive
automorphism group, then it has parameters (16,6,2). There are three non-
isomorphic biplanes with these parameters [4], two of which admit flag-
transitive automorphism groups which are imprimitive on points, (namely
24S4 and (Z2 × Z8)S4 [29]). Therefore, if any other biplane admits a flag-
transitive automorphism group G, then G must be primitive. The O’Nan-
Scott Theorem classifies primitive groups into five types [17]. It is shown
in [29] that if a biplane admits a flag-transitive, primitive, automorphism
group, it can only be of affine or almost simple type. The affine case was
treated in [29]. The almost simple case when the socle of G is an alternating
or a sporadic group was treated in [30], in which it is shown that no such
biplane exists. The almost simple case with classical socle was treated in [31]
where it was shown that if such a biplane exists, it must have parameters
(7,4,2) or (11,4,2) and is unique up to isomorphism. In this paper we treat
the almost simple case when the socle X of G is an exceptional group of Lie
type, and we prove that no such biplane exists, namely:

Theorem 1 (Main). There is no biplane admitting a flag-transitive, prim-
itive almost simple automorphism group with exceptional socle of Lie type.

In [31] the proof for biplanes follows the proof given in [33] for linear
spaces. The last section in [33] is an appendix on exceptional groups of Lie
type, the presentation of which is also followed here.

2 Preliminary Results

In this section we state some results that we will use in the proof of our
Main Theorem.

Lemma 1. If D is a (v, k, 2)-biplane, then 8v − 7 is a square.

Proof. The result follows from [29, Lemma 3].

Corollary 2. If D is a flag-transitive (v, k, 2)-biplane, then 2v < k2, and
hence 2|G| < |Gx|3.
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Proof. The equality k(k − 1) = 2(v − 1), implies k2 = 2v − 2 + k, so clearly
2v < k2. Since v = |G : Gx|, and k ≤ |Gx|, the result follows.

Lemma 3 (Tits Lemma). [34, 1.6] If X is a simple group of Lie type in
characteristic p, then any proper subgroup of index prime to p is contained
in a parabolic subgroup of X.

Lemma 4. If X is a simple group of Lie type in characteristic 2, (X � A5

or A6), then any proper subgroup H such that [X : H]2 ≤ 2 is contained in
a parabolic subgroup of X.

Proof. First assume that X = Cln(q) is classical (q a power of 2), and take
H maximal in X. By a theorem of Aschbacher [2], H is contained in a
member of the collection C of subgroups of ΓLn(q), or in S, that is, H(∞) is
quasisimple, absolutely irreducible, not realisable over any proper subfield
of F(q). (For a more precise description of this collection of subgroups,
see [14]).

We check for every family Ci that if H is contained in Ci, then 2|H|2 <
|X|2, except when H is parabolic.

Now we take H ∈ S. Then by [15, Theorem 4.2], |H| < q2n+4, or H and
X are as in [15, Table 4]. If |X|2 ≤ 2|H|2 ≤ q2n+4, then if X = Lε

n(q) we
have n ≤ 6, and if X = SPn(q) or PΩε

n(q) then n ≤ 10. We check the list
of maximal subgroups of X for n ≤ 10 in [12, Chapter 5], and we see that
no group H satisfies 2|H|2 ≤ |X|2. We then check the list of groups in [15,
Table 4], and again, none of them satisfy this bound.

Finally, assume X to be an exceptional group of Lie type in character-
istic 2. Then by [20], if 2|H| ≥ |X|2, H is either contained in a parabolic
subgroup, or H and X are as in [20, Table 1]. Again, we check all the groups
in [20, Table 1], and in all cases 2|H|2 < |X|2.

As a consequence, we have a strengthening of Corollary 2:

Corollary 5. Suppose D is a biplane with a primitive, flag-transitive almost
simple automorphism group G with simple socle X of Lie type in character-
istic p, and the stabiliser Gx is not a parabolic subgroup of G. If p is odd
then p does not divide k; and if p = 2 then 4 does not divide k. Hence
|G| < 2|Gx||Gx|2p′.

Proof. We know from Corollary 2 that |G| < |Gx|3. Now, by Lemma 3, p
divides v = [G : Gx]. Since k divides 2(v − 1), if p is odd then (k, p) = 1,
and if p = 2 then (k, p) ≤ 2. Hence k divides 2|Gx|p′ , and since 2v < k2, we
have |G| < 2|Gx||Gx|2p′ .
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From the previous results we have the following lemma, which will be
quite useful throughout this paper:

Lemma 6. Suppose p divides v, and Gx contains a normal subgroup H of
Lie type in characteristic p which is quasisimple and p - |Z(H)|; then k is
divisible by [H : P ], for some parabolic subgroup P of H.

Proof. As p divides v, then since k divides 2(v − 1) we have (k, p) ≤ (2, p).
Also, we have k = [Gx : Gx,B] (where B is a block incident with x), so
[H : HB] divides k, and therefore ([H : HB], p) ≤ (2, p), so by Lemmas 3
and 4 HB is contained in a parabolic subgroup P of Gx, and since P is
maximal, we have Gx,B is contained in P , so k is divisible by [Gx : P ].

We will also use the following two lemmas:

Lemma 7. [18] If X is a simple group of Lie type in odd characteristic, and
X is neither PSLd(q) nor E6(q), then the index of any parabolic subgroup
is even.

Lemma 8. [22, 3.9] If X is a group of Lie type in characteristic p, acting
on the set of cosets of a maximal parabolic subgroup, and X is not PSLd(q),
PΩ+

2m(q) (with m odd), nor E6(q), then there is a unique subdegree which is
a power of p.

Before stating the next result, we give the following [21]:

Definition 9. Let H be a simple adjoint algebraic group over an alge-
braically closed field of characteristic p > 0, and σ be an endomorphism of
H such that X = (Hσ)′ is a finite simple exceptional group of Lie type over
Fq, where (q = pa). Let G be a group such that Soc(G) = X. The group
Aut(X) is generated by Hσ, together with field and graph automorphisms.
If D is a σ-stable closed connected reductive subgroup of H containing a
maximal torus T of H, and M = NG(D), then we call M a subgroup of
maximal rank in G.

We now have the following theorem and table [24, Theorem 2, Table III]:

Theorem 10. If X is a finite simple exceptional group of Lie type such
that X ≤ G ≤ Aut(X), and Gx is a maximal subgroup of G such that
X0 = Soc(Gx) is not simple, then one of the following holds:

(1) Gx is parabolic.

(2) Gx is of maximal rank.
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(3) Gx = NG(E), where E is an elementary abelian group given in [6,
Theorem 1(II).].

(4) X = E8(q), (p > 5), and X0 is either A5 ×A6 or A5 × L2(q).

(5) X0 is as in Table 1.

X X0

F4(q) L2(q)×G2(q) (p > 2, q > 3)
Eε

6(q) L3(q)×G2(q), U3(q)×G2(q) (q > 2)
E7(q) L2(q)× L2(q) (p > 3), L2(q)×G2(q) (p > 2, q > 3)

L2(q)× F4(q) (q > 3), G2(q)× PSp6(q)
E8(q) L2(q)× Lε

3(q) (p > 3), G2(q)× F4(q)
L2(q)×G2(q)×G2(q) (p > 2, q > 3), L2(q)×G2(q2) (p > 2, q > 3)

Table 1:

We will also use the following theorem [23, Theorem 3]:

Theorem 11. Let X be a finite simple exceptional group of Lie type, with
X ≤ G ≤ Aut(X). Assume Gx is a maximal subgroup of G, and Soc(Gx) =
X0(q) is a simple group of Lie type over Fq (q > 2) such that 1

2rk(X) <
rk(X0). Then one of the following holds:

(1) Gx is a subgroup of maximal rank.

(2) X0 is a subfield or twisted subgroup.

(3) X = E6(q) and X0 = C4(q) (q odd) or F4(q).

Finally, we will use the following theorem [26, Theorem 1.2]:

Theorem 12. Let X be a finite exceptional group of Lie type such that
X ≤ G ≤ Aut(X), and Gx a maximal subgroup of G with socle X0 = X0(q)
a simple group of Lie type in characteristic p. Then if rk(X0) ≤ 1

2rk(X), we
have the following bounds:

(1) If X = F4(q) then |Gx| < q20.4 logp(q),

(2) If X = Eε
6 then |Gx| < q28.4 logp(q),

(3) If X = E7(q) then |Gx| < q30.4 logp(q), and

(4) If X = E8(q) then |Gx| < q56.12 logp(q).

In all cases, |Gx| < |G|
5
13 .5 logp(q).
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3 Proof of our Main Theorem

Lemma 13. The group X is not a Suzuki group 2B2(q), with q = 22e+1.

Proof. Suppose that the socle X is a Suzuki group 2B2(q), with q = 22e+1.
Then |G| = f |X| = f(q2 + 1)q2(q − 1), where f | (2e + 1), and so the order
of any point stabiliser Gx is one of the following [35]:

(1) fq2(q − 1)

(2) 4f(q +
√

2q + 1)

(3) 4f(q −
√

2q + 1)

(4) f(q2
0 + 1)q2

0(q0 − 1), where 8 ≤ qm
0 = q, with m ≥ 3.

Case (1) Here v = (q2 + 1), so from k(k − 1) = 2(v − 1) we obtain
k(k − 1) = 2q2, a power of 2, which is a contradiction.

Cases (2) and (3) From the inequality |G| < |Gx|3, we have

f ·7
8
q5 < f(q2+1)q2(q−1) < 44f3(q±

√
2q+1)3 < 44f3(2q+1)3 ≤ 44

(
17
8

fq

)3

,

so

q2 <
44 · (17)3 · f2

82 · 7
< 2808f2,

hence q ≤ 128.
First assume q = 128. Then v = 58781696 in case (2), and 75427840

in case (3), and |Gx| = 4060 in case (2), and 3164 in case (3). We know k
divides 2(|Gx|, v − 1), but here (|Gx|, v − 1) = 1015 in case (2), and 113 in
case (3). In both cases k2 < v, which is a contradiction.

Next assume q = 32. Then v = 198400 in case (2), and 325376 in
case (3). In case (2), (|G−x|, v− 1) = 41, and in case (3) (|Gx|, v− 1) = 25
or 125, depending on whether f = 1 or 5. In all cases we see k2 < v, a
contradiction.

Finally assume q = 8. Then v = 560 in case (2), and 1456 in case (3).
In case (2), (|Gx|, v − 1) = 13, and in case (3) (|Gx|, v − 1) = 5f . Therefore
k is again too small.
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Case (4) Here |Gx| = f
(
q2
0 + 1

)
q2
0(q0 − 1), so q0 divides v and hence q0

and v − 1 are relatively prime, so from |G| < 2|Gx||Gx|2p′ we obtain:(
q2m
0 + 1

)
q2m
0 (qm

0 − 1) < 4f2
(
q2
0 + 1

)3
q2
0(q0 − 1)3.

Now, q5m−1
0 <

(
q2m
0 + 1

)
q2m
0 (qm

0 − 1), and also

4f2
(
q2
0 + 1

)3
q2
0(q0 − 1)3 = 4f2q2

0

(
q3
0 − q2

0 + q0 − 1
)3

< f2q13
0 ,

so
q5m−1
0 < f2q13

0 < q13+m
0 .

Therefore 5m− 1 < 13 + m, which forces m = 3. Then

v =
(
q4
0 − q2

0 + 1
)
q4
0

(
q2
0 + q0 + 1

)
,

and so k ≤ 2(|Gx|, v−1) ≤ 2fq3
0 < 2q

9
2
0 . The inequality v < k2 forces q0 = 2,

and so q = 8. Then v = 1456, and |Gx| = 20f , with f = 1 or 3. Hence
(|Gx|, v − 1) = 5f , and therefore k2 < v, which is a contradiction.

This completes the proof of Lemma 13.

Lemma 14. The point stabiliser Gx is not a parabolic subgroup of G.

Proof. First assume X 6= E6(q). Then by Lemma 8 there is a unique sub-
degree which is a power of p. Therefore k divides twice a power of p, but it
also divides 2(v − 1), so it is too small.

Now assume X = E6(q). If G contains a graph automorphism or Gx = Pi

with i = 2 or 4, then there is a unique subdegree which is a power of p and
again k is too small. If Gx = P3, the A1A4 type parabolic, then

v =

(
q3 + 1

) (
q4 + 1

) (
q12 − 1

) (
q9 − 1

)
(q2 − 1) (q − 1)

.

Since k divides 2(|Gx|, v − 1), then k divides 2q
(
q5 − 1

)
(q − 1)5 logp q, and

hence k2 < v, which is a contradiction. If Gx = P1, then

v =

(
q12 − 1

) (
q9 − 1

)
(q4 − 1) (q − 1)

,

and the nontrivial subdegrees are ([19])
q(q8−1)(q3+1)

(q−1) , and
q8(q5−1)(q4+1)

(q−1) .
The fact that k divides twice the highest common factor of these forces
k2 < v, again, a contradiction.
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This completes the proof of Lemma 14.

Lemma 15. The group X is not a Chevalley group G2(q).

Proof. Assume X = G2(q), with q > 2 since G2(q)′ = U3(3). The list of
maximal subgroups of G2(q) with q odd can be found in [13], and in [8] for
q even.

First consider the case where X ∩Gx = SLε
3(q).2. Here

v =
q3

(
q3 + ε

)
2

.

From the factorization Ω7(q) = G2(q)N ε
1 ([16]), it follows that the sub-

orbits of Ω7(q) are unions of G2-suborbits, and so k divides each of the
Ω7-subdegrees. Now q cannot be odd, since this is ruled out by the first case
with i = 1 in the section of orthogonal groups of odd dimension in [31]. For
q even, the subdegrees for Sp6(q), given in the last case of the section on

symplectic groups in [31] are
(
q3 − ε

) (
q4 + ε

)
and

(q−2)q2(q3−ε)
2 . This im-

plies that k divides 2
(
q3 − ε

) (
q − 2, q2 + ε

)
, and since v < k2 then ε = −,

and so

v =
q3

(
q3 − 1

)
2

.

So k divides 2
(
q3 + 1

) (
q − 2, q2 − 1

)
≤ 6

(
q3 + 1

)
, and k(k−1) = 2(v−1) =(

q3 + 1
) (

q3 − 2
)
. This is impossible.

If X ∩ Gx = G2(q0) < G2(q) or 2G2(q) < G2(q) then p does not divide
[Gx : GxB], so by Lemma 6 k is divisible by the index of a parabolic subgroup
of Gx which is q6

0−1
q0−1 in the case of G2(q0), or q3 + 1 in the case of 2G2(q).

But this is not so since k also divides 2 (v − 1, |Gx|).
If Gx = NG (SL2(q) ◦ SL2(q)), then

v =
q4

(
q6 − 1

)
q2 − 1

.

Now k divides 2
(
q2 − 1

)2 logp q but
(
q2 − 1, v − 1

)
≤ 2, so k is too small.

If X ∩Gx = J2 < G2(4) then v = 416. But k divides 2(|Gx|, 415), which
is too small.

Now suppose X ∩ Gx = G2(2), with p = q ≥ 5. Then the inequality
v < k2 forces q = 5 or 7. In both cases (v − 1, |Gx|) is too small.

If X ∩ Gx = PGL2(q), or L2(8), then the inequality |G| < |Gx|3 is not
satisfied.
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Next consider X ∩Gx = L2(13). Then the inequality |G| < |Gx|3 forces
q ≤ 5. If q = 5 then v = 23 · 32 · 56 · 13 · 31, so (v − 1, |Gx|) ≤ 7, hence k is
too small. If q = 3 then v = 23 · 35, and k divides 2(v − 1, |Gx|) ≤ 2 · 7 · 13,
this does not satisfy the equation k(k − 1) = 2(v − 1).

Finally, if X ∩ Gx = J1 with q = 11 then the inequality v < k2 cannot
be satisfied.

There is no other maximal subgroup Gx satisfying the inequality |G| <
|Gx|.

This completes the proof of Lemma 15.

Lemma 16. The group X is not a Ree group 2G2(q), (q > 3).

Proof. Suppose X =2G2(q), with q = 32e+1 > 3. A complete list of maximal
subgroups of G can be found in [13, p.61]. First suppose Gx∩X = 2×SL2(q).
Then

v =
q2

(
q2 − q + 1

)
2

,

so 2(v−1) = q4−q3+q2−2, and k divides 2(|Gx|, v−1). But
(
q
(
q2 − 1

)
, q4 − q3 + q2 − 1

)
=

q − 1, which is too small.
The groups X ∩Gx = NX(S2), (where S2 is a Sylow 2-subgroup of X of

order 8), of order 23 · 3 · 7 and L2(8) are not allowed since |G| < |Gx|3 forces
q = 3.

If X ∩Gx =2G2(q0), with qm
0 = q and m prime, then

v = q
3(m−1)
0

(
q
3(m−1)
0 − q

3(m−2)
0 + . . . + (−1)mq3

0 + (−1)m−1
) (

qm−1
0 + qm−2

0 + . . . + 1
)
.

Now k divides 2mq3
0

(
q3
0 + 1

)
(q0−1), but since q0 and v−1 are relatively

prime, q0 does not divide k, so in fact k ≤ 2m
(
q3
0 + 1

)
(q0 − 1), and the

inequality v < k2 forces m = 2, which is a contradiction.
If X ∩ Gx = Zq±

√
3q+1 : Z6, since q ≥ 27 we have that the inequality

|G| < |Gx|3 is not satisfied.
Finally, if X ∩Gx =

(
22 ×D( 1

2)(q+1)

)
: 3, since q ≥ 27 then the inequal-

ity |G| < |Gx|3 is not satisfied.

This completes the proof of Lemma 16.

Lemma 17. The group X is not a Ree group 2F4(q).

Proof. Suppose X = 2F4(q). Then from [27] we see there are no maxi-
mal subgroups Gx that are not parabolic satisfying the inequality |G| <
2|Gx||Gx|22′ , except for the case q = 2. In this case Gx ∩ X = L3(3).2 or
L2(25). In both cases, since k must divide 2(v − 1, |Gx|) it is too small.
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Lemma 18. The group X is not 3D4(q).

Proof. Suppose X =3D4(q). If X∩Gx = G2(q) or SL2(q3)◦SL2(q).(2, q−1)
then v = qe

(
q8 + q4 + 1

)
, where e = 6 or 8 respectively. By Lemma 6, k is

divisible by q + 1, which forces q = 3 (since q + 1 also divides 2(v− 1)), but
then in neither case is 8v − 7 a square.

If X∩Gx = PGLε
3(q) then the inequality |G| < |Gx|3 is not satisfied.

Lemma 19. The group X is not F4(q).

Proof. Suppose X = F4(q). First assume that X0 = Soc(X ∩ Gx) is not
simple. Then by Theorem 10 and Table 1, Gx ∩X is one of the following,

(1) Parabolic.

(2) Maximal rank.

(3) 33.SL3(3).

or X0 = L2(q)×G2(q)(p > 2, q > 3).
The parabolic subgroups have been ruled out by Lemma 14.
The possibilities for the second case are given in [21, Table 5.1]. We

check that in every case there is a large power of q dividing v, and since
(k, v) ≤ 2, then q does not divide k (unless q = 2, but then 4 does not divide
k). Therefore k divides 2 (|Gx|, v − 1), and in each case

(
|Gx|p′ , v − 1

)
is too

small for k to satisfy k2 > v.
The local subgroup is too small to satisfy the bound |Gx|3 > |G|.
Finally, |L2(q)×G2(q)| ≤ q7

(
q2 − 1

)2 (
q6 − 1

)
< |F4(q)|

1
3 . Therefore X0

is simple.
First suppose X0 /∈ Lie(p). Then by [25, Table 1], it is one of the

following:
A7, A8, A9, A10, L2(17), L2(25), L2(27), L3(3), U4(2), Sp6(2), Ω+

8 (2),
3D4(2), J2, A11(p = 11), L3(4)(p = 3), L4(3)(p = 2), 2B2(8)(p = 5),
M11(p = 11).

The only possibilities for X0 that could satisfy the bound |Gx|3 > |G| are
A9, A10(q = 2), Sp6(2)(q = 2), Ω+

8 (2)(q = 2, 3), 3D4(2)(q = 3), J2(q = 2),
and L4(3)(q = 2). However, since k divides 2 (|Gx|, v − 1), in all these cases
k2 < v.

Now assume X0 ∈ Lie(p). First consider the case rk(X0) > 1
2rk(G),

where X0 = X0(r). If r > 2, then by Theorem 11 it is a subfield subgroup.
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We have seen earlier that the only subgroups which could satisfy the bound
|Gx|3 > |G| are F4

(
q

1
2

)
and F4

(
q

1
3

)
. If q0 = q

1
2 , then

v = q12
(
q6 + 1

) (
q4 + 1

) (
q3 + 1

)
(q + 1) > q26.

Now k divides 2F4

(
q

1
2

)
, and (k, v) ≤ 2. Since (q, k) ≤ 2, then k divides

2
(
2(q6 − 1)(q4 − 1)(q3 − 1)(q − 1), v − 1

)
< q13,

so k2 < v, a contradiction.
If q0 = q

1
3 , then

v =
q16

(
q12 − 1

) (
q4 + 1

) (
q6 − 1

)(
q

8
3 − 1

) (
q

2
3 − 1

) ,

but k < q10 so k2 < v, which is a contradiction.
If r = 2, then the subgroups X0(2) with rk(X0) > 1

2rk(G) that satisfy
the bound |Gx|3 > |G| are Aε

4(2), B3(2), B4(2), C3(2), C4(2), and Dε
4(2).

Again, in all cases the fact that k divides 2 (|Gx|, v − 1) forces k2 < v, a
contradiction.

Now consider the case rk(X0) ≤ 1
2rk(G). Theorem 12 implies |Gx| <

q20.4 logp q. Looking at the orders of groups of Lie type, we see that if
|Gx| < q20.4 logp q, then |Gx|p′ < q12, so 2|Gx||Gx|2p′ < |G|, contrary to
Corollary 5.

This completes the proof of Lemma 19.

Lemma 20. The group X is not Eε
6(q).

Proof. Suppose X = Eε
6(q). As in the previous lemma, assume first that X0

is not simple. Then Theorem 10 implies Gx ∩X is one of the following,

(1) Parabolic.

(2) Maximal rank.

(3) 36.SL3(3).

or X0 = L3(q)×G2(q), U3(q)×G2(q)(q > 2).
The first case was ruled out in Lemma 14.
The possibilities for the second case are given in [21, Table 5.1]. In

some cases |Gx|3 < |G|, and in each of the remaining cases, calculating
2 (|Gx|, v − 1) we obtain k2 < v.
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The local subgroup for the third case is too small.
Finally, the order of the groups in the last case is less than q17 < |Eε

6|
1
3 .

Now assume X0 is simple. If X0 /∈ Lie(p), then we find the possibilities
in [25, Table 1]. However, the only two cases which satisfy Corollary 2 have
order that does not divide |Eε

6|. Hence X0 = X0(r) ∈ Lie(p).
If rk(X0) > 1

2rk(G), then when r > 2 by Theorem 11 are Eε
6

(
q

1
s

)
with

s = 2 or 3, C4(q), and F4(q). In all cases k is too small. When q = 2 then
the possibilities satisfying |Gx|3 > |G| with order dividing Eε

6(2) are Aε
5(2),

B4(2), C4(2), Dε
4(2), and Dε

5(2). However since k divides 2 (|Gx|, v − 1), in
all cases k2 < v, a contradiction.

If rk(X0) ≤ 1
2rk(G), then Theorem 12 implies |Gx| < q28.4 logp q. Look-

ing at the p and p′ parts of the orders of the possible subgroups, we see that
the p′-part is always less than q17. Hence |Gx|p′ < q17, so 2|Gx||Gx|2p′ < |G|,
contradicting Corollary 5.

This completes the proof of Lemma 20.

Lemma 21. The group X is not E7(q).

Proof. Suppose X = E7(q). First assume X0 is not simple. Then by Theo-
rem 10, Gx ∩X is one of the following,

(1) Parabolic.

(2) Maximal rank.

(3) 22.S3.

or X0 = L2(q)×L2(q)(p > 3), L2(q)×G2(q)(p > 2, q > 3), L2(q)×F4(q)(q >
3), or G2(q)× PSp6(q).

The parabolic subgroups have been ruled out in Lemma 14. The sub-
groups of maximal rank can be found in [21, Table 5.1]. Of these, the
only ones with order greater than |E7(q)|

1
3 are d.

(
L2(q)× PΩ+

12(q)
)
.d and

f.Lε
8(q).g.

(
2×

(
2
f

))
, where d = (2, q − 1), f =

(
4, q−ε

d

)
, and g =

(
8, q−ε

d

)
.

However in both cases the fact that (k, v) ≤ 2 forces k2 < v, a contradiction.
The local subgroup is too small to satisfy |Gx|3 > |G|.
In the last case, the only group that is not too small to satisfy |Gx|3 > |G|

is L2(q) × F4(q), but here q38 divides v, and since (v, k) ≤ 2, then k2 < v.
So X0 is simple.

First assume X0 /∈ Lie(p). Then by [25, Table 1], the possibilities are
A14(p = 7), M22(p = 5), Ru(p = 5), and HS(p = 5). None of these groups
satisfy Corollary 2.
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Now assume X0 = X0(r) ∈ Lie(p). If rk(X0) ≤ 1
2rk(G), then by Theo-

rem 12, |Gx|3 < |G|, which is a contradiction.
If rk(X0) > 1

2rk(G) then if r > 2 Theorem 11 implies X∩Gx = E7

(
q

1
s

)
,

with s = 2 or 3. However in both cases (v, k) ≤ 2 forces k2 < v, a contradic-
tion. If r = 2 then the possible subgroups satisfying the bound |Gx|3 > |G|
and having order dividing |E7(2)| are Aε

6(2), Aε
7(2), B5(2), C5(2), Dε

5(2),
and Dε

6(2). However in all of these cases (v, k) ≤ 2 forces k2 < v.

Lemma 22. The group X is not E8(q).

Proof. Suppose X = E8(q). First suppose that X0 is not simple. Then by
Theorem 10 Gx ∩X is one of the following,

(1) Parabolic.

(2) Maximal rank.

(3) (215).L5(2) (q odd) or 53.SL3(5) (5|q2 − 1).

(4) Gx ∩X = (A5 ×A6).22.

or X0 = L2(q) × Lε
3(q)(p > 3), G2(q) × F4(q), L2(q) × G2(q) × G2(q)(p >

2, q > 3), or L2(q)×G2(q2)(p > 2, q > 3).
We know from Lemma 14 that the first case does not hold.
From [21, Table 5.1] the only subgroups of maximal rank such that

|Gx|3 ≥ |G| are d.PΩ+
16(q).d, d. (L2(q)× E7(q)) .d, f.Lε

9(q).e.2, and e. (Lε
3(q)× Eε

6(q)) .e.2,
(where d = (2, q− 1), e = (3, q− ε), and f = (9,q−ε)

e ). In all cases, (k, v) ≤ 2
implies k2 < v, which is a contradiction.

In all other cases, for all possible groups we have that |Gx|3 < |G|, a
contradiction. Hence X0 is simple.

First consider the case X0 /∈ Lie(p). Then by [25, Table 1] the possi-
bilities are Alt14, Alt15, Alt16, Alt17, Alt18(p = 3), L2(16), L2(31), L2(32),
L2(41), L2(49), L2(61), L3(5), L4(5)(p = 2), PSp4(5), G2(3), 2B2(8), 2B2(32)(p =
5), and Th(p = 3). In every case the inequality |Gx|3 > |G| is not satisfied.

Now consider the case X0 ∈ Lie(p). If rk(X0) ≤ 1
2rk(G), then by Theo-

rem 12 we have |Gx|3 ≥ |G|, which is a contradiction.
So rk(X0) > 1

2rk(G). If r > 2, then by Theorem 11 Gx ∩X is a subfield
subgroup. The only cases in which |Gx|3 > |G| can be satisfied are when
q = q2

0 or q = q3
0, but in all cases since (v, k) ≤ 2 then k is too small.

13



If r = 2, then rk(X0) ≥ 5. The groups for which |G| < |Gx|3 are
Aε

8(2), B8(2), B7(2), C8(2), C7(2), Dε
8(2), and Dε

7(2). However, in all cases
(v, k) ≤ 2 forces k2 < v, which is a contradiction.

This completes the proof of Lemma 22, completing thus the proof of our
Main Theorem. As a consequence of this and the results in [30, 31] we have
the following:

Theorem 2. If D is a biplane with a primitive, flag-transitive automor-
phism group of almost simple type, then D has parameters either (7,4,2), or
(11,5,2), and is unique up to isomorphism.
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