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Abstract

In this paper we prove that if a biplane D admits a flag-transitive
automorphism group G of almost simple type with classical socle, that
is, if X is the socle of G (the product of all its minimal normal sub-
groups) then X E G ≤ Aut G, and X is a simple classical group,
then D is either the unique (11,5,2) or the unique (7,4,2) biplane, and
G ≤ PSL2(11) or PSL2(7), respectively.

1 Introduction

A biplane is a (v, k, 2)-symmetric design, that is, an incidence structure of v
points and v blocks such that every point is incident with exactly k blocks,
and every pair of blocks is incident with exactly two points. Points and
blocks are interchangeable in the previous definition, due to their dual role.
A nontrivial biplane is one in which 2 < k < v − 1. A flag of a biplane D
is an ordered pair (p, B) where p is a point of D, B is a block of D, and
they are incident. Hence if G is an automorphism group of D, then G is
flag-transitive if it acts transitively on the flags of D.

The only values of k for which examples of biplanes are known are k = 3,
4, 5, 6, 9, 11, and 13 [7, pp.76]. Due to arithmetical restrictions on the
parameters, there are no examples with k = 7, 8, 10, or 12.

For k = 3, 4, and 5 the biplanes are unique up to isomorphism [6], for
k = 6 there are exactly three non-isomorphic biplanes [13], for k = 9 there
are exactly four non-isomorphic biplanes [29], for k = 11 there are five known
biplanes [3, 10, 11], and for k = 13 there are two known biplanes [1], in this
case, it is a biplane and its dual.
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In [25] it is shown that if a biplane admits an imprimitive, flag-transitive
automorphism group, then it has parameters (16,6,2). There are three non-
isomorphic biplanes with these parameters [4], two of which admit flag-
transitive automorphism groups which are imprimitive on points, (namely
24S4 and (Z2 × Z8)S4 [25]). Therefore, if any other biplane admits a flag-
transitive automorphism group G, then G must be primitive. The O’Nan-
Scott Theorem classifies primitive groups into five types [20]. It is shown
in [25] that if a biplane admits a flag-transitive, primitive, automorphism
group, it can only be of affine or almost simple type. The affine case was
treated in [25]. The almost simple case when the socle of G is an alternating
or a sporadic group was treated in [26], in which it is shown that no such
biplane exists. Here we treat the almost simple case when the socle X of G
is a classical group. We now state the main result of this paper:

Theorem 1 (Main Theorem). If D is a nontrivial biplane with a primi-
tive, flag-transitive automorphism group G of almost simple type with classi-
cal socle X, then D has parameters either (7,4,2), or (11,5,2), and is unique
up to isomorphism.

This, together with [25, Theorem 3] and [26, Theorem 1] yield the fol-
lowing:

Corollary 1. If D is a nontrivial biplane with a flag-transitive automor-
phism group G, then one of the following holds:

(1) D has parameters (7,4,2),

(2) D has parameters (11,5,2),

(3) D has parameters (16,6,2),

(4) G ≤ AΓL1(q), for some odd prime power q, or

(5) G is of almost simple type, and the socle X of G is an exceptional
group of Lie type.

For the purpose of proving our Main Theorem, we will consider D to be
a nontrivial biplane, with a primitive, flag-transitive, almost simple auto-
morphism group G, with simple socle X, such that X = Xd(q) is a simple
classical group, with a natural projective action on a vector space V of
dimension d over the field Fq, where q = pe, (p prime).

For this we will proceed as in [28], in which the case for finite linear
spaces with almost simple flag-transitive automorphism groups of Lie type
is treated.
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2 Preliminary Results

In this section we state some preliminary results we will use throughout this
paper.

Lemma 2. If D is a (v, k, 2)-biplane, then 8v − 7 is a square.

Proof. The result follows from [25, Lemma 3].

Corollary 3. If D is a flag-transitive (v, k, 2)-biplane, then 2v < k2, and
hence 2|G| < |Gx|3.

Proof. The equality k(k − 1) = 2(v − 1), implies k2 = 2v − 2 + k, so clearly
2v < k2. The result follows from v = |G : Gx| and k ≤ |Gx|.

From [9] we get the following two lemmas:

Lemma 4. If D is a biplane with a flag-transitive automorphism group G,
then k divides 2di for every subdegree di of G.

Lemma 5. If G is a flag-transitive automorphism group of a biplane D,
then k divides 2 · gcd (v − 1, |Gx|).

Lemma 6 (Tits Lemma). [30, 1.6] If X is a simple group of Lie type in
characteristic p, then any proper subgroup of index prime to p is contained
in a parabolic subgroup of X.

Lemma 7. If X is a simple group of Lie type in characteristic 2, (X � A5

or A6), then any proper subgroup H such that [X : H]2 ≤ 2 is contained in
a parabolic subgroup of X.

Proof. First assume X = Cln(q) is classical (q a power of 2), and take H
maximal in X. By Aschbacher’s Theorem [2], H is contained in a member of
the collection C of subgroups of ΓLn(q), or in S, that is, H(∞) is quasisimple,
absolutely irreducible, and not realisable over any proper subfield of F(q).

We check for every family Ci that if H is contained in Ci, then 2|H|2 <
|X|2, except when H is parabolic.

Now we take H ∈ S. Then by [18, Theorem 4.2], |H| < q2n+4, or H and
X are as in [18, Table 4]. If |X|2 ≤ 2|H|2 ≤ q2n+4, then either X = Lε

n(q)
and n ≤ 6, or X = SPn(q) or PΩε

n(q) and n ≤ 10. We check the list of
maximal subgroups of X for n ≤ 10 in [15, Chapter 5], and we see that no
group H satisfies 2|H|2 ≤ |X|2. We then check the list of groups in [18,
Table 4], and again, none of them satisfy this bound.
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Finally, assume X to be an exceptional group of Lie type in character-
istic 2. By [23], if 2|H| ≥ |X|2, then H is either contained in a parabolic
subgroup, or H and X are as in [23, Table 1]. Again, we check all the groups
in [23, Table 1], and in all cases 2|H|2 < |X|2.

As a consequence, we have a strengthening of Corollary 3:

Corollary 8. Suppose D is a biplane with a primitive, flag-transitive almost
simple automorphism group G with simple socle X of Lie type in character-
istic p, and the stabiliser Gx is not a parabolic subgroup of G. If p is odd
then p does not divide k; and if p = 2 then 4 does not divide k. Hence
|G| < 2|Gx||Gx|2p′.

Proof. We know from Corollary 3 that |G| < |Gx|3. Now, by Lemma 6, p
divides v = [G : Gx]. Since k divides 2(v − 1), if p is odd then (k, p) = 1,
and if p = 2 then (k, p) ≤ 2. Hence k divides 2|Gx|p′ , and since 2v < k2, we
have |G| < 2|Gx||Gx|2p′ .

From the previous results we have the following lemma, which will be
quite useful throughout this chapter:

Lemma 9. Suppose p divides v, and Gx contains a normal subgroup H of
Lie type in characteristic p which is quasisimple and p - |Z(H)|; then k is
divisible by [H : P ], for some parabolic subgroup P of H.

Proof. The assumption that p divides v and the fact that k divides 2(v −
1) imply (k, p) ≤ (2, p). Also, we know k = [Gx : Gx,B] (where B is a
block incident with x), so [H : HB] divides k, and therefore ([H : HB], p) ≤
(2, p). By Lemmas 6 and 7 we conclude that HB is contained in a parabolic
subgroup P of H, and P maximal in H implies that HB is contained in P ,
so k is divisible by [H : P ].

Lemma 10. [22, 3.9] If X is a group of Lie type in characteristic p, acting
on the set of cosets of a maximal parabolic subgroup, and X is not PSLd(q),
PΩ+

2m(q) (with m odd), nor E6(q), then there is a unique subdegree which is
a power of p.

3 X is a Linear Group

In this case we consider the socle of G to be PSLn(q), and β = {v1, v2, . . . , vn}
a basis for the natural n-dimensional vector space V for X.
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Lemma 11. If the group X is PSL2(q), then it is one of the following:

(1) PSL2(7) acting on the (7,4,2) biplane with point stabiliser S4, or

(2) PSL2(11) acting on a (11,5,2) biplane with point stabiliser A5.

Proof. Suppose X ∼= PSL2(q), (q = pm) is the socle of a flag-transitive
automorphism group of a biplane D, so G ≤ PΓL2(q). As G is primitive,
Gx is a maximal subgroup of G, and hence Xx is isomorphic to one of the
following [12]: (Note that |Gx| divides (2, q − 1)m|Xx|):

(1) A solvable group of index q + 1.

(2) D(2,q)(q−1).

(3) D(2,q)(q+1).

(4) L2(q0) if (r > 2), or PGL2(q0) if (r = 2), where q = qr
0, r prime.

(5) S4 if q = p ≡ ±1 (mod 8).

(6) A4 if q = p ≡ 3,5,13,27,37 (mod 40).

(7) A5 if q ≡ ±1 (mod 10).

(1) Here v = q+1, so k(k−1) = 2(v−1) = 2q, hence q = 3, but PSL2(3)
is not simple.

(2), and (3) The degrees in these cases are a triangular number, but the
number of points on a biplane is always one more than a triangular number.

(4) First assume r > 2. Clearly, q0 divides v = qr−1
0

(
q2r
0 −1

q2
0−1

)
, so k

divides 2
(
v − 1,mq0(q2

0 − 1)
)
, hence k =

2m(q2
0−1)

n for some n. Say q0 = pb,
so m = br and (except for p = 2 and 2 ≤ b ≤ 4), we have b <

√
q0, (since

b2 < pb = q0).
Now, k2 > 2v implies

4m2
(
q2
0 − 1

)2
n2

> 2qr−1
0

(
q2r
0 − 1
q2
0 − 1

)
,

so

n2 <
2m2

(
q2
0 − 1

)3(
q2r
0 − 1

)
qr−1
0

.
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First consider r > 3, so (r ≥ 5). Here qr
0 > b2r2 = m2. On the other

hand, 2m2 >
qr−1
0 (q2r

0 −1)

(q2
0−1)3

, therefore

2qr
0 <

qr−1
0 (q2r

0 − 1)
(q2

0 − 1)3
,

which is a contradiction.
Next consider r = 3. From k2 > 2v, we obtain 18b2(q2

0−1)3 > n2q2
0(q

6
0−

1), this together with b2 < q0, imply n2(q6
0 − 1) < 18q5

0, therefore q0 ≤ 17.
We check for all possible values of q0 that 8v−7 is not a square, contradicting
Lemma 2.

Now assume r = 2. Then v =
q0(q2

0+1)
(2,q−1) . As q = q2

0 6= 2, we have m2 < q,
so 4b2 < q2

0, which implies q0 6= 2.
First consider q even. From 2(v−1) = k(k−1), we have 2(q3

0 +q0−1) =
2m(q2

0−1)
n

(
2m(q2

0−1)
n − 1

)
, however gcd

(
q3
0 + q0 − 1, q2

0 − 1
)

divides 3, which

implies k = 6m
t , with t = 1, 3.

If t = 3 then q3
0 + q0 − 1 = 2m2 −m = m(2m − 1) < 2m2, but m < q0,

so this is a contradiction.
If t = 1 then q3

0 + q0 − 1 = 18m2 − 6m, which implies q0 < 18, that is
q0 = 4, 8, or 16. However m = 2b implies k = 12b, so v − 1 is divisible by 6,
but this is not the case for any of these values of q0.

Now consider q odd. The equality 2(v−1) = k(k−1) yields q3
0 +q0−2 =

4m2

n2 (q2
0−1)2− 2m

n (q2
0−1), and the inequality k2 > 2v implies 4m2

n2 (q2
0−1)2 >

q0(q2
0 + 1). In this case m = 2b, so k = 4b(p2b−1)

n , and v = p3b+pb

2 > b6+b2

2 ,
hence we have the following inequalities:

b6 + b2 < p3b + pb <
4b(p2b − 1)

n
>

4b · p2b

n
.

This implies n(p3b+pb)
p2b < 4b, so n(pb+p

b
2 ) < 4b < 4p

b
2 , therefore n(p

b
2 +1) < 4

which implies n = 1 = b, and p = 3, 5, or 7, but in all these cases k > v,
which is a contradiction.

(5) In this case q = p ≡ ±1 (mod 8), and m = 1, so G0
∼= S4. We have

q odd, v = q(q2−1)
48 , and k divides 2

(
q(q2−1)−48

48 , 24
)
, so k | 48. Now k2 > 2v

implies q ≤ 37, hence q = 7, 17, 23, or 31. The only one of these values for
which 8v − 7 is a square (Lemma 2) is q = 7, so v = 7 and k = 4, that is,
we have the (7,4,2) biplane and G = X ∼= PSL2(7).

(6) Here q = p ≡ 3, 5, 13, 27, or 37 (mod 40), so m = 1 and Gx
∼= A4.

Here v = q(q2−1)
24 , and so k divides 2

(
q(q2−1)−24

24 , 12
)
, so k | 24. As 2v < k2,
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we have q = 3, 5, or 13. For q = 3 we have v = 1, which is a contradiction.
For q = 5 we have v = 5, but there is no such biplane. Finally, q = 13
implies v = 91, but then 8v − 7 is not a square, contradicting Lemma 2.

(7) Here q = p or p2 ≡ ±1 (mod 10), and v = q(q2−1)
120 , so k divides 120m,

with m = 1 or 2. The inequality 2v < k2 implies q3−q < 60k2 < 60(120)2m2,
so q = 9, 11, 19, 29, 31, 41, 49, 59, 61, 71, 79, 81, 89, or 121. Of these, the
only value for which 8v − 7 is a square is q = 11. In this case, v = 11 and
k = 5, that is, we have a (11,5,2) biplane, with G = X ∼= PSL2(11), and
Gx

∼= A5.

This completes the proof of Lemma 11.

Lemma 12. The group X is not PSLn(q), with n > 2, and (n, q) 6= (3, 2).

Proof. Suppose X ∼= PSLn(q), with n > 2 and (n, q) 6= (3, 2) (since
PSL3(2) ∼= PSL2(7)). We have q = pm, and take {v1, . . . , vn} to be a
basis for the natural n-dimensional vector space V for X. Since Gx is max-
imal in G, then by Aschbacher’s Theorem [2], the stabiliser Gx lies in one
of the families Ci of subgroups of ΓLn(q), or in the set S of almost simple
subgroups not contained in any of these families. We will analyse each of
these cases separately. In describing the Aschbacher subgroups, we denote
by Ĥ the pre-image of the group H in the corresponding linear group.

C1) Here Gx is reducible. That is, Gx
∼= Pi stabilises a subspace of V of

dimension i.
Suppose Gx

∼= P1. Then G is 2-transitive, and this case has already been
done by Kantor [14].

Now suppose Gx
∼= Pi (1 < i < n) fixes W , an i-subspace of V . We

will assume i ≤ n
2 since our arguments are arithmetic, and for i and n − i

we have the same calculations. Considering the Gx-orbits of the i-spaces
intersecting W in i− 1-dimensional spaces, we see k divides

2q
(
qi − 1

) (
qn−i − 1

)
(q − 1)2

.

Also,

v =
(qn − 1) . . .

(
qn−i+1 − 1

)
(qi − 1) . . . (q − 1)

> qi(n−i),

but k2 > 2v, so either i = 3 and n < 10, or i = 2.
First assume i = 3 and q = 2.
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If n = 9 then k = 22 · 32 · 72, but the equation k(k − 1) = 2(v − 1) does
not hold.

If n = 8 then k = 4 · 7 · 31 but again the equation k(k − 1) = 2(v − 1)
does not hold.

For n = 7 k = 420 or 210, but again, k does not divide 2(v − 1).
Finally, if n = 6 then k = 196 or 98, but neither is a divisor of 2(v − 1).
Now assume i = 3 and q > 2. Then n = 6 or 7.
If n = 7 then k divides

2

(
q
(
q3 − 1

) (
q4 − 1

)
(q − 1)2

,

(
q7 − 1

) (
q6 − 1

) (
q5 − 1

)
(q3 − 1) (q2 − 1) (q − 1)

− 1

)
,

but then k2 < v, which is a contradiction.
If n = 6 then k divides

2

(
q
(
q3 − 1

)2
(q − 1)2

,

(
q6 − 1

) (
q5 − 1

) (
q4 − 1

)
(q3 − 1) (q2 − 1) (q − 1)

− 1

)
,

But again k2 < 2v.

Hence i = 2. Here v =
(qn−1)(qn−1−1)

(q2−1)(q−1)
, and G has suborbits with sizes:

|{2-subspaces H : dim(H ∩W ) = 1}| = q(q+1)(qn−2−1)
q−1 and

|{2-subspaces H : H ∩W = 0}| = q4(qn−2−1)(qn−3−1)
(q2−1)(q−1)

.

If n is even then k divides
q(qn−2−1)

(q2−1)
, since q + 1 is prime to (qn−3−1)

q−1 ,
this implies k2 < v, which is a contradiction.

Hence n is odd, and k divides
2q(qn−2−1)

q−1

(
q + 1, n−3

2

)
.

First assume n = 5. Then v =
(
q2 + 1

) (
q4 + q3 + q2 + q + 1

)
, and k

divides 2q
(
q2 + q + 1

)
. The fact that k2 > 2v forces k = 2q

(
q2 + q + 1

)
.

The condition k(k − 1) = 2(v − 1) implies

4q2
(
q2 + q + 1

)2 − 2q
(
q2 + q + 1

)
= 2

(
q6 + q5 + 2q4 + 2q3 + 2q2 + q

)
,

so (
q2 + q + 1

) (
2q
(
q2 + q + 1

)
− 1
)

=
(
q5 + q4 + 2q3 + 2q2 + 2q + 1

)
.

If we expand we get the following equality:

q5 + 3q4 + 4q3 + q2 − q − 2 = 0,
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which is a contradiction. Therefore n ≥ 7. Here

v =
(
qn−1 + qn−2 + . . . + q + 1

) (
qn−3 + qn−5 + . . . + q2 + 1

)
,

and k divides 2dc, where d = q
(
qn−3 + qn−4 + . . . + q + 1

)
and c =

(
q + 1, n−3

2

)
.

Say k = 2dc
e , then v < k2 forces e ≤ 2q. We have the following equality:

v − 1
d

= qn−2 + qn−4 + . . . + q3 + q + 1,

and also, since k(k − 1) = 2(v − 1), we have

k =
2(v − 1)

k
+ 1 =

2e(v − 1)
2dc

=
eqn−2 + eqn−4 + . . . + eq3 + eq + e + c

c
.

Now, (kc, d) divides d, and also(
kc, q

(
eqn−3 + eqn−5 + . . . + eq2 + e

))
=(

eqn−2 + eqn−4 + . . . + eq + e + c, q
(
eqn−3 + eqn−5 + . . . + eq2 + e

))
=(

eqn−2 + . . . + eq + e + c, e + c
)
, and(

kc, ed
q

)
=(

eqn−2 + . . . + eq + e + c, eqn−3 + eqn−4 + . . . + eq + e
)

=(
eqn−2 + . . . + eq + e + c, (2e + c)q + e + c

)
.

Therefore k divides c(e + c) ((2e + c)q + e + c), and since e ≤ 2q and
c =

(
q + 1, n−3

2

)
, the only possibilities for n and q are n = 7 and q ≤ 3, or

n = 9 and q = 2. However in none of these possibilities is 8v − 7 a square,
again contradicting Lemma 2.

C′1) Here G contains a graph automorphism and Gx stabilises a pair
{U,W} of subspaces of dimension i and n − i, with i < n

2 . Write G0 for
G ∩ PΓLn(q) of index 2 in G.

First assume U ⊂ W . By Lemma 10, there is a subdegree which is a
power of p. On the other hand, if p is odd then the highest power of p
dividing v − 1 is q, it is 2q if q > 2 is even, and is at most 2n−1 if q = 2.
Hence k2 < v, which is a contradiction.

Now suppose V = U ⊕W . Here p divides v, so (k, p) ≤ 2. First assume
i = 1. If x = {〈v1〉, 〈v2 . . . vn〉}, then consider y = {〈v1, . . . , vn−1〉, 〈vn〉},
so [Gx : Gxy] =

qn−2(qn−1−1)
q−1 and k divides

2(qn−1−1)
q−1 . However v =

qn−1(qn−1)
q−1 > q2(n−1), which implies k2 < v, a contradiction.
Now assume i > 1. Consider x = {〈v1, . . . , vi〉, 〈vi+1, . . . , vn〉} and

y = {〈v1, . . . , vi−1, vi + vn〉, 〈vi+1, . . . , vn〉}. Then [G0
x : G0

xy]p′ divides
2
(
qi − 1

) (
qn−i − 1

)
, which implies k < 2qn, but v > q2i(n−i), so again

k2 < v, a contradiction.
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C2) Here Gx preserves a partition V = V1 ⊕ . . .⊕ Va, with each Vi of the
same dimension, say, b, and n = ab.

First consider the case b = 1 and n = a, and let x = {〈v1〉, . . . , 〈vn〉} and
y = {〈v1+v2〉, 〈v2〉, . . . , 〈vn〉}. Since n > 2, we see k divides 4n(n−1)(q−1) =
2[Gx : Gxy]. Now v > qn(n−1)

n! and k2 > v, so n = 3 and q ≤ 4, that is

v = q3(q3−1)(q+1)
(3,q−1)6! . As k | 2(v − 1), only for q = 2 can k > 2, so consider

q = 2. Then k | 6 and v = 28, but there is no such value of k satisfying
k(k − 1) = 2(v − 1).

Now let b > 1, and consider x = {〈v1, . . . , vb〉, 〈vb+1, . . . , v2b〉, . . .} and
y = {〈v1, . . . , vb−1, vb+1〉, 〈vb, vb+2, . . . , v2b〉, . . . , 〈vn−b+1, . . . , vn〉}. Then k

divides
2a(a−1)(qb−1)2

q−1 , so v > qn(n−b)

a! , forcing n = 4, q ≥ 5, and a = 2 = b.
In none of these cases can we obtain k > 2.

C3) In this case Gx is an extension field subgroup. Since 2|Gx||Gx|2p′ > |G|
by Corollary 8, either:

(1) n = 3 and X ∩Gx = (̂q2 + q + 1) · 3 < PSL3(q) = X, or

(2) n is even and Gx = NG(̂PSLn
2
(q2)).

First consider case (1). Here v =
q3(q2−1)(q−1)

3 , so k divides
6
(
q2 + q + 1

)
(logp q), and k2 > v implies q = 3, 4, 5, 8, 9, 11, 13, or 16. In

none of these cases is 8v − 7 a square.
Now consider case (2) and write n = 2m. As p divides v, we have

(k, p) ≤ 2. First suppose n ≥ 8, and let W be a 2-subspace of V considered
as a vector space over the field of q2 elements, so that W is a 4-subspace
over a field of q elements. If we consider the stabiliser of W in Gx and
in G then in GW \ GxW there is an element g such that Gx ∩ Gg

x contains
the pointwise stabiliser of W in Gx as a subgroup. Therefore k divides
2 (qn − 1)

(
qn−2 − 1

)
, contrary to 2v < k2, which is a contradiction.

Now let n = 6. Then since (k, p) ≤ 2, Lemma 9 implies k is divisible by
the index of a parabolic subgroup of Gx, so it is divisible by the primitive
prime divisor q3 of q3 − 1, but this divides the index of Gx in G, which is v,
a contradiction.

Hence n = 4. Then v =
q4(q3−1)(q−1)

2 , and so k is odd and prime to q−1.
The fact that (v − 1, q + 1) = 1 implies k is also prime to q + 1, and hence
k | (q2 + 1) logp q, contrary to k2 > 2v, another contradiction.

C4) Here Gx stabilises a tensor product of spaces of different dimensions,
and n ≥ 6. In all these cases v > k2.

C5) In this case Gx is the stabiliser in G of a subfield space. So Gx =
NG (PSLn(q0)), with q = qm

0 and m prime.
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If m > 2 then 2|Gx||Gx|2p′ > |G| forces n = 2, a contradiction.

Hence m = 2. If n = 3 then v = (q3
0+1)(q2

0+1)q3
0

(q0+1,3) .
Since p divides v, we have (k, p) ≤ 2, so Lemma 9 implies GxB (where

B is a block incident with x) is contained in a parabolic subgroup of Gx.
Therefore q2

0+q0+1 divides k, and
(
v − 1, q2

0 + q0 + 1
)

divides 2q0+(q0+1, 3),
forcing q0 = 2 and v = 120, but then 8v − 7 is not a square.

If n = 4, then by Lemma 9 we see q2
0 +1 divides k, but q2

0 +1 also divides
v, which is a contradiction.

Hence n ≥ 5. Considering the stabilisers of a 2-dimensional subspace of
V , we see k divides 2 (qn

0 − 1)
(
qn−1
0 − 1

)
, but then k2 < v, which is also a

contradiction.
C6) Here Gx is an extraspecial normaliser. Since 2|Gx||Gx|2p′ > |G|, we

have n ≤ 4. Now, n > 2 implies that Gx ∩ X is either 24A6 or 32Q8, with
X either PSL4(5) or PSL3(7) respectively. Since k divides 2(v − 1, |Gx|),
we check that k ≤ 6, contrary to k2 > 2v.

If n = 2 then Gx ∩ X = A4.a < L2(p) = X, with a = 2 precisely when
p ≡ ±1 (mod 8), and a = 1 otherwise, (and there are a conjugacy classes
in X). From |G| < |Gx|3 we obtain p ≤ 13. If p = 7 then the action is
2-transitive. The remaining cases are ruled out by the fact that k divides
2(v − 1, |Gx|), and k(k − 1) = 2(v − 1).

C7) Here Gx stabilises the tensor product of a spaces of the same di-
mension, say b, and n = ba. Since |Gx|3 > |G|, we have n = 4 and
Gx ∩ X = (PSL2(q)× PSL2(q)) 2d < X = PSL4(q), with d = (2, q − 1).

Then v =
q4(q2+1)(q3−1)

x > q9

x , with x = 2 unless q ≡ 1 (mod 4), in which
case x = 4. Hence 4 - k, and so k divides 2

(
q2 − 1

)
logp q, and if q is odd

then k divides (q2−1) logp q

32 .
If q is odd, then k2 < q9

32 < q9

x = v, a contradiction. Hence q is even, and
so

k =
2
(
q2 − 1

)2 logp q

r
,

and since k2 > 2v we have r2 <
4(q+1)4 logp q

q5 , therefore q ≤ 32.
However, the five cases are dismissed by the fact that k divides 2(v− 1).
C8) Now consider Gx to be a classical group.

(1) First assume Gx is a symplectic group, so n is even. By Lemma 6 k is
divisible by a parabolic index in Gx. If n = 4 then v = q2(q3−1)

(2,q−1) , and
q4−1
q−1 divides k, however (v−1, q2+1) divides 2, which is a contradiction.
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If n = 6 then v = q6(q5−1)(q3−1)
(3,q−1) and q3 +1 divides k, but q3 +1 divides

2(v − 1) only if q = 2, so k = 9, too small.

Now suppose n ≥ 8. If we consider the stabilisers of a 4-dimensional
subspace of Gx and G, we see that k divides twice the odd part of
(qn − 1)(qn−2 − 1). Also, (k, q − 1) ≤ 2, so k divides 2 (qn−1)(qn−2−1)

(q−1)2
,

and therefore k ≤ 8q2n−4. The inequality k2 > 2v forces n = 8. In
this case v = q12(q7−1)(q5−1)(q3−1)

(q−1,4) which implies q ≤ 3, and in neither
of these two cases is 8v − 7 a square.

(2) Now let Gx be orthogonal. Then q is odd, since that is the case with
odd dimension, and with even dimension it is a consequence of the
maximality of Gx in G. The case in which n = 4 and Gx is of type
O+

4 will be investigated later, in all other cases Lemma 6 implies that
k is divisible by a parabolic index in Gx and is therefore even, but it
is not divisible by 4 since v is also even and (k, v) ≤ 2. This and the
fact that q does not divide k implies k<v, a contradiction.

(3) Finally let Gx be a unitary group over the field of q0 elements, where
q = q2

0. If n ≥ 4 then considering the stabilisers of a nonsingular 2-
subspace of V in G and Gx, we see k divides 2(qn

0 − (−1)n)(qn−1
0 −

(−1)n−1). The inequality k2 > 2v forces n = 4, and in this case
v = q6

0(q4
0+1)(q3

0+1)(q2
0+1)

(q0−1,4) . Since k divides 2(q4
0 − 1)(q3

0 + 1) and (k, (q2
0 +

1)(q0 − 1) ≤ 2, we see k divides 2(q3
0 + 1)(q0 + 1), so k2 ≤ 2v, a

contradiction. Therefore n = 3, and by Lemma6 q2
0 − q0 + 1 divides

k, and k divides 2(v − 1) with v = q3
0(q3

0−1)(q2
0+1)

x with x either 1 or 3.
This implies q0 = 2, but then v = 280, and 8v − 7 is not a square.

S) We finally consider the case where Gx is an almost simple group,
(modulo the scalars), not contained in the Aschbacher subgroups of G.
From [18, Theorem 4.2] we have the possibilities |Gx| < q2n+4, G′x = An−1

or An−2, or Gx ∩X and X are as in [18, Table 4].
Also, |G| < |Gx|3 by Corollary 3 and |G| ≤ qn2−n−1, so n ≤ 7, and by the

bound 2|Gx||Gx|2p′ > |G| we need only consider the following possibilities [15,
Chapter 5]:

n = 2, and Gx ∩X = A5, with q = 11, 19, 29, 31, 41, 59, 61, or 121.
n = 3, and Gx ∩X = A6 < PSL3(4) = X.
n = 4, and Gx ∩X = U4(2) < PSL4(7) = X.
In the first case, with A5 < L2(11) the action is 2-transitive. In the

remaining cases, the fact that k divides 2|Gx| and 2(v − 1) forces k2 < v,
which is a contradiction.
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This completes the proof of Lemma 12.

4 X is a Symplectic Group

Here the socle of G is X = PSp2m(q), with m ≥ 2 and (m, q) 6= (2, 2). As a
standard symplectic basis for V , we have β = {e1, f1, . . . , em, fm}.

Lemma 13. The group X is not PSp2m(q) with m ≥ 2, and (m, q) 6= (2, 2).

Proof. We will consider Gx to be in each of the Aschbacher families of sub-
groups, and finally, an almost simple group not contained in any of the
Aschbacher families of G. In each case we will arrive at a contradiction.

When (p, n) = (2, 4) the group Sp4(2f ) admits a graph automorphism,
this case will be treated separately after the eight Aschbacher families of
subgroups.

C1) If Gx ∈ C1, then Gx is reducible, so either it is parabolic or it stabilises
a nonsingular subspace of V .

First assume that Gx = Pi, the stabiliser of a totally singular i-subspace
of V , with i ≤ m. Then

v =
(q2m − 1)(q2m−2 − 1) . . . (q2m−2i+2 − 1)

(qi − 1)(qi−1 − 1) . . . (q − 1)
.

From this we see v ≡ q + 1 (mod pq), so q is the highest power of p
dividing v − 1. By Lemma 10 there is a subdegree which is a power of p,
and since k divides twice every subdegree, k divides 2q, contrary to v < k2.

Now suppose that Gx = N2i, the stabiliser of a nonsingular 2i-subspace
U of V , with m > 2i. Then p divides v, so (k, p) ≤ 2.

Take U = 〈e1, f1, . . . ei, fi〉, and W = 〈e1, f1, . . . ei−1, fi−1, ei+1, fi+1〉.
The p′-part of the size of the Gx-orbit containing W is

(q2i − 1)(q2m−2i − 1)
(q2 − 1)2

.

Since v < q4i(m−i), we can only have v < k2 if q = 2 and m = i + 1, which
is a contradiction.

C2) If Gx ∈ C2 then it preserves a partition V = V1⊕. . .⊕Va of isomorphic
subspaces of V .
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First assume all the Vj ’s to be totally singular subspaces of V of maximal
dimension m. Then Gx ∩ X = ĜLm(q).2, and Gx maximal implies q is
odd [17]. Then

v =
q

m(m+1)
2 (qm + 1)(qm−1 + 1) . . . (q + 1)

2
>

qm(m+1)

2
,

and (k, p) = 1.
Let

x = {〈e1, . . . , em〉, 〈f1, . . . fm〉},

and
y = {〈e1, . . . , em−1, fm〉, 〈f1, . . . , fm−1, em〉}.

Then the p′-part of the Gx-orbit of y divides 2(qm − 1), and so k divides
4(qm − 1), contrary to v < k2.

Now assume that each of the Vj ’s is nonsingular of dimension 2i, so
Gx ∩X = Ŝp2i(q)wrSt, with it = m. Let

x = {〈e1, f1, . . . , ei, fi〉, 〈ei+1, fi+1, . . . , e2i, f2i〉, . . .},

and take

y = {〈e1, f1, . . . , e1, fi + ei+1〉, 〈ei+1, fi+1 − ei, ei+2, . . . , e2i, f2i, . . .〉}.

Considering the size of the Gx-orbit containing y, we see k divides

t(t− 1)(q2i − 1)2

q − 1
.

Now,
q2i2t(t−1)

t!
< v,

so v < k2 implies t!t4 > q2i2t(t−1)+2−8i, hence q2t(t−1)−6 < tt+4 and therefore
t < 4.

First assume t = 3. Then by the above inequalities i = 1 and q = 2, but
then Gx is not maximal [8, p.46], a contradiction.

Now let t = 2. Then k < 2q4i−1, so q4i2−8i+2 < 8 and therefore i ≤ 2.
If i = 2 then q = 2 and v = 45696 = 27 · 3 · 7 · 17, but then 8v − 7 is not

a square, which is a contradiction.
If i = 1 then X = PSp4(q),

v =
q2(q2 + 1)

2
,
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and k divides 2(q + 1)2(q − 1). Since k divides 2(v − 1), we have k divides(
q2(q2 + 1)− 2, 2(q + 1)2(q − 1)

)
, that is, k divides(

(q2 + 2)(q2 − 1), 2(q + 1)2(q − 1)
)

= (q2 − 1)
(
q2 + 2, 2(q + 1)

)
≤ 6(q2 − 1).

Therefore

k =
6(q2 − 1)

r
,

with 1 ≤ r ≤ 6. Now 2(v−1) = (q2+2)(q2−1), and also 2(v−1) = k(k−1),
but we check that for all possible values of r this equality is not satisfied.

C3) If Gx ∈ C3, then it is an extension field subgroup, and there are two
possibilities.

Assume first that Gx ∩ X = PSp2i(qt).t, with m = it and t a prime
number. From |G| < |Gx|3, we obtain t = 2 or 3.

If t = 3, then v < k2 implies i = 1, and so

Gx ∩X = PSp2(q3) < PSp6(q) = X,

and

v =
q6(q4 − 1)(q2 − 1)

3
.

This implies that k is coprime to q + 1, but applying Lemma 9 to PSp2(q3)
yields q3 + 1 divides k, which is a contradiction.

If t = 2, then

v =
q2i2(q4i−2 − 1)(q4i−6 − 1) . . . (q6 − 1)(q2 − 1)

2
.

Consider the subgroup Sp2(q2) ◦ Sp2i−2(q2) of Gx ∩X. This is contained in
Sp4(q) ◦ Sp4i−4(q) in X. Taking g ∈ Sp4(q) \ Sp2(q2), we see Sp2i−2(q2) is
contained in Gx ∩ Gg

x, so k divides 2(q4i − 1) logp q. The inequality v < k2

forces i ≤ 2.
First assume i = 2. Then

v =
q8(q6 − 1)(q2 − 1)

2

and k divides 2(q8−1) logp q, but since (k, v) ≤ 2 and q2−1 divides v, we see k
divides 2(q4+1)(q2+1) logp q, forcing q = 2. In this case v = 27·33·7 = 24192,
and k = 2·5·17 = 170 (otherwise k2 < v), but then k does not divide 2(v−1),
which is a contradiction.
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Hence i = 1, so

v =
q2(q2 − 1)

2
,

and Gx ∩X = PSp2(q2).2 < PSp4(q) = X, Therefore k divides 4q2(q4 − 1),
but since (k, v) ≤ 2, then k divides 4(q2 + 1), so k = 4(q2+1)

r for some r ≤ 8
(since v < k2). Now 2(v−1) = k(k−1), and also 2(v−1) = (q2−2)(q2 +1),
so we have

r2(q2 − 2) = 16(q2 + 1)− 4r,

that is,
(r + 4)(r − 4)q2 = 2(8 + r(r − 2)).

This implies 4 < r ≤ 8, but solving the above equation for each of these
possible values of r gives non-integer values of q, a contradiction.

Now assume Gx∩X = ĜUm(q).2, with q odd. Since v is even, 4 does not
divide k. Also, k is prime to p, so by the Lemma 9, the stabiliser in Gx ∩X
of a block is contained in a parabolic subgroup. But then q + 1 divides the
indices of the parabolic subgroups in the unitary group, so q + 1 divides k,
but q + 1 also divides v, which is a contradiction.

C4) If Gx ∈ C4, then Gx stabilises a decomposition of V as a tensor
product of two spaces of different dimensions, and Gx is too small to satisfy

|G| < 2|Gx||Gx|2p′ .

C5) If Gx ∈ C5, then Gx ∩X = PSp2m(q0).a, with q = qb
0 for some prime

b and a ≤ 2, (with a = 2 if and only if b = 2 and q is odd). The inequality
|G| < 2|Gx||Gx|2p′ forces b = 2. Then

v =
q

m2

2 (qm + 1) . . . (q + 1)
(2, q − 1)

>
q

m(2m+1)
2

2
.

Now Gx stabilises a GF (q0)-subspace W of V . Considering a nonsingular
2-dimensional subspace of W we see

Sp2(q0) ◦ Sp2m−2(q0) < Sp2(q) ◦ Sp2m−2(q) < X.

If we take g ∈ Sp2(q)\Sp2(q0) then Sp2m−2(q0) < Gx∩Gg
x. This implies

that there is a subdegree of X with the p′-part dividing q2m
0 −1, so k divides

2(qm − 1) logp q, contrary to v < k2.
C6) If Gx ∈ C6 then Gx ∩X = 22s

Ω−2s(2).a, q is an odd prime, 2m = 2s,
and a ≤ 2. The inequality |G| < |Gx|3 implies s ≤ 3, and if s = 3 then
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q = 3, but then k is too small. If s = 2 then q ≤ 11, but again k is too small
in each of these cases.

C7) If Gx ∈ C7 then Gx = NG

(
PSp2a(q)2r2r−1Ar

)
and 2m = (2a)r ≥ 8,

but this is a contradiction since |G| < |Gx|3.
C8) If Gx ∈ C8 then Gx ∩X = Oε

2m(q), with q even and 2m ≥ 4. We can
assume q > 2 as when q = 2 the action is 2-transitive and that has been
done in [14]. Here

v =
qm(qm + ε)

2
,

and from the proof of [21, Prop.1] the subdegrees of X are (qm−ε)(qm+1+ε)
and (q−2)

2 qm−1(qm − ε). This implies by Lemma 4 that k divides 2(qm −
ε)
(
q − 2, qm−1 + ε

)
. However, Lemma 9 implies k is divisible by the index

of a parabolic subgroup in Oε
2m(q), which is not the case.

p = m = 2 Here 2m = 4 and q is even, we have the following possibilities:
Gx normalises a Borel subgroup of X in G. Then v = (q+1)(q3+q2+q+1)

so 2q is the highest power of 2 dividing v − 1. But k is also a power of 2,
conrtary to v < k2.

Gx ∩X = D2(q±1)wrS2. So k divides 2(q± 1)2 log2 q, too small to satisfy
v < k2.

Gx ∩X = (q2 + 1).4, which is too small.
S) Finally consider the case in which Gx ∈ S is an almost simple group

(modulo scalars) not contained in any of the Aschbacher subgroups of G.
These subgroups are listed in [15] for 2m ≤ 10.

First assume 2m = 4, so we have one of the following possibilities:

(1) Gx ∩X = Sz(q) with q even,

(2) Gx ∩X = PSL2(q) with q ≥ 5, or

(3) Gx ∩X = A6.a with a ≤ 2 and q = p ≥ 5.

In case (1) v = q2(q2 − 1)(q + 1). Applying Lemma 9 to Sz(q), we see
q2 + 1 divides k. Now (v − 1, q2 + 1) = (q − 2, 5), so q = 2, contrary to our
initial assumptions.

In case (2), since (k, v) ≤ 2, we have k ≤ 2 logp q, contrary to v < k2.
In case (3), 4 does not divide k, so k must divide 90, contrary to v < k2.
Now let 2m = 6. As |G| < 2|Gx||Gx|2p′ , from [15] either Gx ∩ X =

J2 < PSp6(5) = X, or Gx ∩ X = G2(q) with q even. In the first case k
divides 2 · 33 · 7, which is too small. In the second case v = q3(q4 − 1)4, so
(k, q + 1) = 1. Applying Lemma 9 to G2(q) we see that q6−1

q−1 divides k, a
contradiction.
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If 2m = 8 or 10, then by [15] either Gx = S10 < Sp8(2) = G or Gx =
S14 < Sp12(2) = G. In the first case k divides 2(v − 1, |Gx|) = 70, which si
too small. In the second case (k, v) ≤ 2 implies that k divides 2 · 72 · 11 · 13,
also too small.

If 2m ≥ 12, then by [18] we have |Gx| ≤ q4(m+1), G′x = An+1 or An+2,
or X or Gx ∩ X are E7(q) ≤ PSp56(q). The latter is not possible as here
k2 < v, and the bound |Gx| < q4(m+1) forces m < 6.

The only possibilities for the alternating groups are q = 2, and m = 7,
8, or 9, however in all these cases k is too small.

This completes the proof of Lemma 13.

5 X is an Orthogonal Group of Odd Dimension

Here we consider X = PΩ2m+1(q), with q odd and n = 2m + 1 ≥ 7, (since
Ω3(q) ∼= L2(q), and Ω5(q) ∼= PSp4(q)).

Lemma 14. The group X is not PΩ2m+1(q), with n ≥ 7.

Proof. Here, as in the symplectic case, we will consider Gx to be in each of
the Aschbacher families of subgroups, and then to be a subgroup of G not
contained in any of these families, and arrive at a contradiction in each case.

C1) If Gx ∈ C1, then Gx is either parabolic or it stabilises a nonsingular
subspace of V .

First assume Gx = Pi, the stabiliser of a totally singular i-subspace of
V . Then, as in the symplectic case, v ≡ q + 1 (mod pq), so q is the highest
power of p dividing v − 1. By Lemma 10 there is a subdegree which is a
power of p, therefore k divides 2q, contradicting v < k2.

Now assume that Gx = N ε
i , the stabiliser of a nonsingular i-dimensional

subspace W of V of sign ε (if i is odd ε is the sign of W⊥).
First let i = 1. Then

v =
qm(qm + ε)

2
,

and the X-subdegrees are (qm − ε) (qm + ε), qm−1(qm−ε)
2 , and qm−1(qm−ε)(q−3)

2 .
This implies that k divides qm − ε, contrary to v < k2.

Hence i ≥ 2. Let W be the i-space stabilised by Gx and choose w ∈ W
with Q(w) = 1, and u ∈ W⊥ with Q(u) = −c for some non-square c ∈
GF (q). Then 〈v, w〉 is of type N−

2 , and if g ∈ G stabilises W⊥ pointwise but
does not fix neither u nor w, then Gx∩Gg

x contains SOi−1(q)×SOn−i−1(q).
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This implies k ≤ 4qm logp q, but v > q
i(n−i)

4 implies q is odd and m ≥ 3, this
is contrary to v < k2.

C2) If Gx ∈ C2 then Gx is the stabiliser of a subspace decomposition
into isometric nonsingular spaces. From the inequality |G| < 2|Gx||Gx|2p′ it
follows that the only possibilities are either:

Gx ∩X = 26A7 < Ω7(q) with q either 3 or 5, or

Gx ∩X = 2n−1An < Ωn(3) with n = 7, 9, or 11.

In each case the fact that k divides 2(v−1) forces v > k2, a contradiction.
C3) If Gx ∈ C3 then Gx ∩ X = Ωa(qt).t with n = at. Since a and t are

odd, a = 2r + 1 < n
2 , so

|Gx|p′ = t
r∏

i=1

(
q2it − 1

)
,

and since k divides 2
(
|Gx|p′ , v − 1

)
, it is too small to satisfy k2 > v.

C4) If Gx ∈ C4 then it stabilises a tensor product of nonsingular sub-
spaces, but these have to be of odd dimension and so Gx is too small.

C5) If Gx ∈ C5 then Gx ∩ X = Ωn(q0).a, with q = qb
0 for some prime

b, and a ≤ 2 with a = 2 if and only b = 2. The inequality |G| <
|Gx||Gx|2p′ forces b = 2. If n = 2m + 1 then k divides 2|Gx ∩ X| =
qm2

0

(
q2m
0 − 1

)
. . .
(
q2
0 − 1

)
, but v = qm2 (

q2m
0 + 1

)
. . .
(
q2
0 + 1

)
, so k is prime

to q and therefore
(
v − 1,

(
q2m − 1

)
. . .
(
q2
0 − 1

))
is too small.

C6), C7), and C8) In the cases C6 and C8, the classes are empty, and for C7

we see Gx ∩X stabilises the tensor product power of a non-singular space,
but it is too small to satisfy |G| < |Gx|3.

S) Now consider the case in which Gx is a simple group not contained
in any of the Aschbacher collection of subgroups of G. As in the symplectic
section, we only need to consider the following possibilities:

(1) Gx ∩X = G2(q) < Ω7(q) = X with q odd,

(2) Gx ∩X = Sp6(2) < Ω7(p) with p either 3 or 5, or

(3) Gx ∩X = S9 < Ω7(3).

In all three cases as k divides 2 (v − 1, |Gx|) it is too small.

This completes the proof of Lemma 14.
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6 X is an Orthogonal Group of Even Dimension

In this section X = PΩε
2m(q), with m ≥ 4. We write β+ = {e1, f1, . . . , em, fm}

for a standard basis for V in the O+
2m-case, and β− = {e1, f1, . . . , em−1, fm−1, d, d′}

in the O−2m-case.

Lemma 15. The group X is not PΩε
2m(q), with m ≥ 4.

Proof. As before, we take Gx to be in one of the Aschbacher families of
subgroups of G, or a simple group not contained in any of these families,
and analyse each case separately. We postpone until the end of the proof
the case where (m, ε) = (4,+) and G contains a triality automorphism.

C1) If Gx ∈ C1 then we have two possibilities.
First assume Gx stabilises a totally singular i-space, and suppose that

i < m. If i = m− 1 and ε = +, then Gx = Pm,m−1, otherwise Gx = Pi. In
any case there is a unique subdegree of X that is a power of p (except in the
case where ε = +, m is odd, and Gx = Pm or Pm−1). On the other hand,
the highest power of p dividing v − 1 divides q2 or 8, so k is too small.

Now consider Gx = Pm in the case X = PΩ+
2m(q), and note that in this

case Pm−1 and Pm are the stabilisers of totally singular m-spaces from the
two different X-orbits. If m is even then

x = 〈e1, . . . , em〉, y = 〈f1, . . . , fm〉

are in the same X-orbit, and the size of the Gx-orbit of y is a power of p.
However the highest power of p dividing v − 1 is q, so k is too small.

If m is odd, m ≥ 5, then v =
(
qm−1 + 1

) (
qm−2 + 1

)
. . . (q+1) > q

m(m−1)
2 .

Let
x = 〈e1, . . . , em〉, y = 〈e1, f2, . . . , fm〉.

Then x and y are in the same X-orbit, and the index of Gxy in Gx has
p′-part dividing qm − 1. The highest power of p dividing v − 1 is q so k
divides 2q (qm − 1), and the inequality v < k2 implies m = 5. In this case
the action is of rank three, with nontrivial subdegrees

q
(
q2 + 1

) (
q5 − 1

)
q − 1

and
q6
(
q5 − 1

)
q − 1

.

Therefore k divides
2q
(
q5 − 1

)
q − 1

,

and v < k2 implies k is either 2q
(
q4 + q3 + q2 + q + 1

)
or q

(
q4 + q3 + q2 + q + 1

)
,

but neither of these satisfies the equality k(k − 1) = 2(v − 1).
Now suppose Gx = Ni. First let i = 1. The subdegrees of X are (see [5]):
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q2m−2− 1,
qm−1(qm−1+ε)

2 ,
qm−1(qm−1−ε)(q−1)

4 , and
qm−1(qm−1+ε)(q−3)

4 if q ≡ 1
mod 4,

q2m−2− 1,
qm−1(qm−1−ε)

2 ,
qm−1(qm−1−ε)(q−3)

4 , and
qm−1(qm−1+ε)(q−3)

4 if q ≡ 3
mod 4, and

q2m−2 − 1,
qm(qm−1−ε)

2 , and
qm−1(qm−1+ε)(q−2)

2 if q is even.

Here k divides twice the highest common factor of the subdegrees, and
in every case this is too small for k to satisfy v < k2.

Now let Gx = N ε1
i , with 1 < i ≤ m, and ε1 = ± present only if i is even.

If q is odd, as in the odd-dimensional case SOi−1(q)×SOn−i−1(q) ≤ Gx∩Gg
x

for some g ∈ G \Gx. Since k and p are coprime k < 8qm logp q, contrary to
v < k2. Now assume q is even. Then i is also even.

If i = 2 then we can find g1, g2 ∈ G \Gx ∩X such that (Gx ∩X)∩ (Gx ∩
X)g1 ≥ SO+

n−4(q) and (Gx ∩ X) ∩ (Gx ∩ X)g2 ≥ SO−n−4(q). Therefore k
divides 2(q − ε1)

(
qm−1 − εε1

)
(log2 q)2′ , so k2 < v.

If 2 < i ≤ m then we can find g ∈ G\Gx∩X such that (Gx∩X)∩ (Gx∩
X)g ≥ SOε1

i−2(q)× SOε2
n−i−2(q), with ε2 = εε1. It follows that k divides(

q
i
2 − ε1

)(
q

i−2
2 + ε1

)(
q

n−i
2 + ε2

)(
q

n−i−2
2 + ε2

)
(log2 q)2′ ,

forcing k2 < v, a contradiction.
C2) If Gx ∈ C2 then Gx stabilises a decomposition V = V1 ⊕ . . . ⊕ Va

of subspaces of equal dimension, say b, so n = ab. Here we have three
possibilities.

First assume all the Vi are nonsingular and isometric. (Also, if b is
odd then so is q). If b = 1 then the inequality |G| < 2|Gx||Gx|2p′ implies
Gx ∩ X = 2n−2An, with n being either 8 or 10 and X either PΩ+

8 (3) or
PΩ−10(3) respectively. (Note that if X = PΩ+

8 (5) then the maximality of Gx

in G forces G ≤ X.2 ([16]), so Gx is too small). In the first case, k divides
112, and in the second it is a power of 2. Both contradict the inequality
v < k2.

Now let b = 2. If q > 2 then we can find g ∈ G \ Gx so that Gx ∩ Gg
x

contains the stabiliser of V3 ⊕ . . .⊕ Va. From this it follows that k ≤ 2a(a−
1). (2(q + 1))2 |OutX|, and from v < k2 we obtain n = 8 and q = 3. If
q = 2 then we can find g ∈ G \Gx so that Gx ∩Gg

x contains the stabiliser of
V4⊕. . .⊕Va, and in this case k is at most 2a(a−1)(a−2) (2(q + 1))3 |OutX|,
and so n = 8 or 10. Using the condition that k divides 2(v − 1) we rule out
these three cases.
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Finally let b > 2. The inequality |G| < 2|Gx||Gx|2p′ forces b = m, (and so
ε = +). Let δ be the type of the Vi if m is even. Assume first that m = 4.
Then

v =
q8
(
q2 + 1

)2 (
q4 + q2 + 1

)
4

if δ = +, and

v =
q8
(
q6 − 1

) (
q2 − 1

)
4

if δ = −. In the first case,
(
q2 − 1, v − 1

)
≤ 2 and 4 does not divide v − 1,

so k divides 6(logp q)2′ , contrary to v < k2. In the latter case, v is even and
divisible by

(
q2 − 1

)
, and k divides the odd part of 3

(
q2 + 1

)2 logp q, again
contrary to v < k2. Hence m ≥ 5, and we argue as in C1.

In the case where m and q are odd, a = 2, and V1, V2 are similar but
not isometric, we also argue as in C1.

Now consider the case ε = +, a = 2, and V1 and V2 totally singular. If
m = 4, then we can apply a triality automorphism of X to get to the case
Gx = N+

2 , which we have ruled out in C1. Assume then that m ≥ 5. Then

v =
q

m(m−1)
2

(
qm−1 + 1

) (
qm−2 + 1

)
. . . (q + 1)

2e
,

where e is either 0 or 1 ([17, 4.2.7]), so

v >
qm(m−1)

2
.

However, there exists g ∈ G\Gx such that GLm−2(q) ≤ Gx∩Gg
x, and so

k divides 2 (qm − 1)
(
qm−1 − 1

)
logp q, and in fact (k, v) ≤ 2 implies k divides

twice the odd part of
(qm−1)(qm−1−1) logp q

q+1 , which is contrary to k2 < v.
C3) If Gx ∈ C3, then Gx is an extension field subgroup, and there are two

possibilities ([17]).
First assume Gx = NG(Ωδ

n
s
(qs)), with s a prime and δ = ± if n

s is even

(and empty otherwise). The inequality |G| < |Gx|3 forces s = 2. If q is odd,
then by Lemma 9 we see that a parabolic degree of Gx divides k, and so it
follows that k is even, but since v is even then 4 does not divide k, which is
a contradiction.

If q is even then m is also even, and

v =
q

m2

2

(
q2m−2 − 1

) (
q2m−2 − 1

)
. . .
(
q2 − 1

)
2e

,
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with e ≤ 2 ([17, 4.3.14,4.3.16]). As k divides 2(v − 1) it is prime to q2 − 1,
and it follows that k2 < v, another contradiction.

Now let Gx = NG (̂GUm(q)), with ε = (−1)m. If q is odd, then as in the
symplectic case q + 1 divides v and k, which is a contradiction.

So let q be even. If m = 4 then applying a triality automorphism of X
the action of G becomes that of N−

2 , which has been ruled out in the case
C1. So let m ≥ 5. Now, Gx is the stabiliser of a hermitian form [, ] on V over
GF (q2) such that the quadratic form Q preserved by X satisfies Q(v) = [v, v]
for v ∈ V . Let W be a nonsingular 2-dimensional hermitian subspace over
GF (q2). Then W over GF (q) is of type O+

4 . The pointwise stabiliser of W⊥

in Gx ∩X is GU2(q), which is properly contained in the pointwise stabiliser
of W⊥ in X. Thus we can find g ∈ G \ Gx so that GUm−2(q) ≤ Gx ∩ Gg

x.
Then k divides 2 (qm − (−1)m)

(
qm−1 − (−1)m−1

)
logp q, contrary to v < k2.

C4) If Gx ∈ C4 then Gx stabilises an asymmetric tensor product, so either
Gx = NG (PSpa(q)× PSpb(q)) with a and b distinct even numbers, or Gx =
NG

(
PΩε1

a (q)× PΩε2
b (q)

)
with a, b ≥ 3 and n = ab. The inequality |G| <

2|Gx||Gx|2p′ implies n = 8 and Gx = NG (PSp2(q)× PSp4(q)). Applying a
triality automorphism of X, the action becomes that of N3, a case that has
been ruled out in C1.

C5) If Gx ∈ C5 then it is a subfield subgroup. The inequality |G| <
2|Gx||Gx|2p′ implies Gx ∩ X = PΩδ

2m(q0).2e < PΩ+
2m(q) = X, with q = q2

0

and e ≤ 2 ( [17, 4.5.10]), so

v >
q2m2−m
0

4
.

Now, Gx stabilises a GF (q0)-subspace V0 of V . Let U0 be a 2-subspace of
V0 of type O+

2 (q0), and U a subspace of V of type O+
2 (q) containing U0.

There exists an element g ∈ G \Gx that stabilises U⊥ pointwise, from this
it follows that Gx ∩ Gg

x involves PΩδ
2m−2(q0). This implies that k divides

2 (qm
0 − δ)

(
qm−1
0 + δ

)
|OutX|, which contradicts the inequality v < k2.

C6) If Gx ∈ C6, it is an extraspecial normaliser. From |G| < |Gx|3 we
have Gx ∩X = 26A8 < PΩ+

8 (3) = X. Applying a triality automorphism of
X, we have one of the cases already ruled out in C2.

C7) If Gx ∈ C7, then it stabilises a symmetric tensor product of a spaces
of dimension b, with n = ba. Here Gx is too small.

C8) In this case this class is empty.
S) Now consider the case in which Gx is an almost simple group (modulo

scalars) not contained in any of the Aschbacher subgroups of G. For n ≤ 10,
the subgroups Gx are listed in [15] and [16]. Since |G| < 2|Gx||Gx|2p′ , we
have one of the following:
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(1) Ω7(q) < PΩ+
8 (q),

(2) Ω+
8 (q) < PΩ+

8 (q) with q = 3, 5, or 7, or

(3) A9 < Ω+
8 (q), A12 < Ω−10(2), A12 < PΩ+

10(3).

In the first case applying a triality automorphism gives an action on
N1, which was excluded in C1. In the second case the fact that k divides
2 (|Gx|, v − 1) implies k divides 20, 6, and 2 · 35 · 52, and so is too small. In
the third case since 6 divides v, again k is too small.

So n ≥ 12. If n > 14, then by [18, Theorem 4.2] we need only consider
the cases in which G′x is alternating on the deleted permutation module, and
in fact A17 < Ω+

16(2) is the only group which is big enough. Again, since v is
divisible by 2 ·3 ·17 we conclude k is too small. Now let n = 12, respectively
14. If X is alternating, we only have to consider A13 < Ω−12(2), respectively
A16 < Ω+

14(2), however k divides 2(v − 1, |Gx|), so k2 < v, a contradiction.
If X is not alternating, then again since |Gx| < q2n+4 by [18, Theorem 4.2]
it follows that |Gx| < q28, respectively |Gx| < q32. On the other hand, from
|G| < 2|Gx||Gx|2p′ we obtain |Gx|p′ > q19

√
2
, respectively |Gx|p′ > q29. We can

now see (cf. [19, Seccions 2,3, and 5]) that no sporadic or Lie type group
will do for Gx.

Finally assume that X = PΩ+
8 (q), and G contains a triality automor-

phism. The maximal groups are determined in [16]. If Gx∩X is a parabolic
subgroup of X, then it is either P2 or P134. The first was ruled out in C1, so
consider the latter. In this case

v =

(
q6 − 1

) (
q4 − 1

)
(q − 1)3

> q11,

and (3, q)q is the highest power of p dividing v − 1. Since X has a unique
suborbit of size a power of p (by Lemma 10), we have k < 2q(3, q), which
contradicts v < k2.

Now, by [16] and |G| < |Gx||Gx|2p′ , the only cases we have to consider
are G2(q) for any q and

(
29
)
L3(2) for q = 3. In the first case,

v =
q6
(
q4 − 1

)2
(q − 1, 2)2

,

and Lemma 9 applied to G2(q) implies GxB is contained a parabolic sub-

group, so (q6−1)
q−1 divides k. However k is prime to q + 1, which is a contra-

diction. In the second case, k divides 28, which is too small.
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This completes the proof of Lemma 15.

7 X is a Unitary Group

Here X = Un(q) with n ≥ 3, and (n, q) 6= (3, 2), (4, 2), since these are
isomorphic to 32.Q8 and PSp4(3) respectively. We write β = {u1, . . . , un}
for an orthonormal basis of V .

Lemma 16. The group X is not Un(q), with n ≥ 3 and (n, q) 6= (3, 2), (4, 2).

Proof. As we have done throughout, we will consider Gx to be in one of the
Aschbacher families of subgroups of G, or a nonabelian simple group not
contained in any of these families, and analyse each of these cases separately.

C1) If Gx is reducible, then it is either a parabolic subgroup Pi, or the
stabiliser Ni of a nonsingular subspace.

First assume Gx = Pi for some i ≤ n
2 . Then

v =
(qn − (−1)n)

(
qn−1 − (−1)n−1

)
. . .
(
qn−2i+1 − (−1)n−2i+1

)
(q2i − 1) (q2i−2 − 1) . . . (q2 − 1)

.

There is a unique subdegree which is a power of p. The highest power
of p dividing v − 1 is q2, unless n is even and i = n

2 , in which case it is q,
or n is odd and i = n−1

2 , in which case it is q3. If n = 3 then the action is
2-transitive, so consider n > 3. Then v > qi(2n−3i), and so v < k2, which is
a contradiction.

Now suppose that Gx = Ni, with i < n
2 , and take x = 〈u1, . . . , ui〉. If we

consider y = 〈u1, . . . , ui−1, ui+1〉, then k divides
2
(
qi − (−1)i

) (
qn−i − (−1)n−i

)
. However in this case

v =
qi(n−1) (qn − (−1)n) . . .

(
qn−i+1 − (−1)n−i+1

)
(qi − (−1)i) . . . (q + 1)

,

and v < k2 implies i = 1. Therefore k divides 2(q + 1)
(
qn−1 − (−1)n−1

)
.

Applying Lemma 9 to Un−1(q), we see k is divisible by the degree of a
parabolic action of Un−1(q). We check the subdegrees, and by the fact that
k divides |Gx|2 as well as k2 > v we conclude n ≤ 5.

If n = 5 then k divides 2(q +1)
(
q4 − 1

)
and is divisible by q3 +1, which

can only happen if q = 2, but in this case none of the possibilities for k
satisfy the equality 2(v − 1) = k(k − 1).

If n = 4 then q3 + 1 divides k, but
(
2(v − 1), q3 + 1

)
≤ 2

(
q2 − q + 1

)
,

which is a contradiction.
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Finally, if n = 3 then q + 1 divides k, but q + 1 is prime to v − 1, which
is another contradiction.

C2) If Gx ∈ C2, then it preserves a partition V = V1⊕. . .⊕Va of subspaces
of the same dimension, say b, so n = ab and either the vi are nonsingular
and the partition is orthogonal, or a = 2 and the Vi are totally singular.

First assume that the Vi are nonsingular. If b > 1, then taking

x = {〈u1, . . . ub〉, 〈ub+1, . . . u2b〉, . . .}

and
y = {〈u1, . . . ub−1, ub+1〉, 〈ub, ub+2, . . . u2b〉, . . .},

we see k divides 2a(a − 1)
(
qb − (−1)b

)2. From the inequality v < k2 we
have n = 4 and b = 2. Therefore

v =
q4
(
q4 − 1

) (
q3 + 1

)
2 (q2 − 1) (q + 1)

,

and k divides 4
(
q2 − 1

)2. However, (v − 1, q + 1) = (2, q + 1), so k divides
16(q − 1)2, which is contrary to v < k2.

If b = 1 then Gx ∩X = (̂q + 1)n−1Sn. First let n = 3, with q > 2. Then

v =
q3
(
q3 + 1

) (
q2 − 1

)
6(q + 1)2

,

and k divides 12(q + 1)2 logp q. The inequality v < k2 forces q ≤ 17, but
by the fact that k divides 2(v − 1) we rule out all these values. Now let
n > 3, and let x = {〈u1〉, 〈u2〉, . . . , 〈un〉}. If q > 3 let W = 〈u1, u2〉. If we
take g ∈ G \ Gx acting trivially on W⊥ we see k divides n(n − 1)(q + 1)2,
contrary to v < k2. If q ≤ 3 then let W = 〈u1, u2, u3〉. Taking g ∈ G \ Gx

acting trivially on W⊥ we see that now k divides n(n−1)(n−2)(q+1)3

3 , so n ≤ 6
if q = 2, or n ≤ 4 if q = 2. By the fact that k divides 2(v − 1) we rule these
cases out.

Now assume that a = 2 and both the Vi’s are totally singular. Let
{e1, f1, . . . , eb, fb} be a standard unitary basis. Take

x = {〈e1, . . . , eb〉, 〈f1, . . . , fb〉}, and y = {〈e1, . . . , eb−1, fb〉, 〈f1, . . . , fb−1, eb〉}.

Then k divides 4 (qn − 1). The inequality v < k2 forces n = 4, but then

v =
q4
(
q3 + 1

)
(q + 1)

2
,
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so in fact k divides 2
(
q2 + 1

)
(q − 1), contrary to v < k2.

C3) If Gx ∈ C3 then it is a field extension group for some field extension
of GF (q) of odd degree b. From the inequality |G| < 2|Gx||Gx|2p′ we have
b = 3 and n = 3. Then

v =
q3
(
q2 − 1

)
(q + 1)

3
.

Therefore 4 does not divide k, and so k < 6q2(logp q)2′ . Since v < k2, we
have q ≤ 9. With the condition that k divides 2(v − 1) we rule out these
cases.

C4) If Gx ∈ C4 then it is the stabiliser of a tensor product of two
nonsingular subspaces of dimensions a > b > 1, but then the inequality
|G| < 2|Gx||Gx|2p′ is not satisfied.

C5) If Gx ∈ C5 then it is a subfield subgroup. We have three possibilities:
If Gx is a unitary group of dimension n over GF (q0), where q = qb

0 with
b an odd prime, then |G| < |Gx|3 implies b = 3. However |G| < 2|Gx||Gx|2p′
forces q = 8 and n ≤ 4, but in these cases since k divides 2(v − 1) it is too
small.

If Gx ∩X = PSOε
n(q).2, with n even and q odd, then by Lemma 6 k is

divisible by the degree of a parabolic action of Gx. Here q +1 divides k, and
q+1

(4,q+1) divides v. The fact that k divides 2(v− 1) forces q = 3, so v = 2835,
but then 8v − 7 is not a square, which is a contradiction.

Finally, if Gx = N (PSpn(q)), with n even, then by Lemma 9 GxB is
contained on some parabolic subgroup, so k is divisible by the degree of
some parabolic action of Gx, and so is divisible by q + 1. However v is
divisible by q+1

(q+1,2) , contradicting the fact that k divides 2(v − 1)
C6) If Gx ∈ C6, then it is an extraspecial normaliser, and since |G| <

|Gx|3, we only have to consider the cases Gx ∩ X = 32Q8, 24A6, or 24S6,
and X = U3(5), U4(3), and U4(7) respectively. In all cases the fact that k
divides 2 (|Gx|, v − 1) forces k2 < v, a contradiction.

C7) If Gx ∈ C7, then it stabilises a tensor product decomposition of Vn(q)
into t subspaces Vi of dimension m each, so n = mt. Since m ≥ 3 and t ≥ 3,
we see |Gx| is too small to satisfy |G| < |Gx|3.

C8) This class is empty.
S) Finally consider the case in which Gx is an almost simple group

(modulo the scalars) not contained in any of the Aschbacher families of
subgroups. For n ≤ 10 the subgroups Gx are listed in [15, Chapter 5]. Since
|G| < |Gx|3, we only need to consider the following possibilities:

L2(7) in U3(3),
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A6.2, L2(7), and A7 in U3(5),

A6 in U3(11),

L2(7), A7, and L2(4) in U4(3),

U4(2) in U4(5),

L2(11) in U5(2), and

U4(3) and M22 in U6(2).

Since k divides 2 (|Gx|, v − 1), we have k2 < v in all cases except in the
case L2(7) < U3(3). In this last case v = 36, but then there is no k such
that k(k − 1) = 2(v − 1), which is a contradiction.

If n ≥ 14, then by [18] we have |G| > |Gx|3, a contradiction. Hence
n = 11, 12, or 13. By [18], |Gx| is bounded above by q4n+8, and |G| <
2|Gx||Gx|2p′ implies |Gx|p′ is bounded below by q33, q43, or q53 respectively.
Using the methods in [18, 19] we rule out all the almost simple groups Gx.

This completes the proof of Lemma 16, and hence if X is a simple clas-
sical group, then it is either PSL2(7) or PSL2(11).
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