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Abstract

We present some results on flag-transitive symmetric designs. First we see what con-
ditions are necessary for a symmetric design to admit an imprimitive, flag-transitive
automorphism group. Then we move on to study the possibilities for a primitive,
flag-transitive automorphism group, and prove that for λ ≤ 3, the group must be
affine or almost simple, and finally we analyse the case in which a biplane admits a
primitive, flag-transitive automorphism group of affine type.

1 Introduction

If D is a (v, k, λ)-symmetric design, then D′, the complement of D is a (v, v−
k, v − 2k + λ)-symmetric design whose set of points is the same as the set of
points of D, and whose blocks are the complements of the blocks of D, that
is, incidence is replaced by non-incidence and vice-versa. The order of D (and
of its complement) is n = k − λ. A flag of D is an ordered pair (p, B) where
p is a point of D, B is a block of D, and they are incident. Hence if G is an
automorphism group of D, then G is flag-transitive if it acts transitively on
the flags of D.

Flag-transitivity is just one of many conditions that can be imposed on the
automorphism group G of a symmetric design D. In the case λ = 1, in which
symmetric designs are projective planes, Kantor [23] proved that either D is
Desarguesian and G B PSL(3, n), or G is a sharply flag-transitive Frobenius
group of odd order (n2 + n + 1)(n + 1), and n2 + n + 1 is a prime.

Here we will consider non-trivial symmetric designs with λ > 1. There is a
considerable difference between these two cases in that for λ = 1 there are
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infinitely many symmetric designs, whereas for any given λ > 1 there are
finitely many known examples, and indeed it is conjectured that for any given
λ > 1 only finitely many exist. In the case λ = 2, the designs are known as
biplanes.

The only values of k for which examples of non-trivial biplanes are known are
k = 4, 5, 6, 9, 11, and 13 [6, p. 76]. Due to arithmetical restrictions on the
parameters, there are no examples with k = 7, 8, 10, or 12. We will give a
brief summary of these examples at the end of this section.

In [6, p. 76] we find that the values of k for which (v, k, 3)-symmetric designs
are known with 4n − 1 < v < n2 + n + 1 (where n = k − λ) are k = 6, 9, 10,
12, and 15. By the above inequality, this list does not include, for example,
the parameters (15,7,3) for which five non-isomorphic designs exist [6, p. 11].

In the case of flag-transitivity, in [13] it is shown that there are no projective
planes admitting a flag-transitive imprimitive automorphism group. Davies [7]
proved that for any given λ, there are finitely many (v, k, λ)-designs (not nec-
essarily symmetric) admitting an imprimitive, flag-transitive automorphism
group, by showing that if the automorphism group is imprimitive, then k
is bounded, thus allowing only a finite number of possibilities, (in the case
λ = 1, the group must be primitive [7,8,21]). Although it is shown in [7]
that k is bounded, an explicit bound is not given. Here we calculate for sym-
metric designs a bound for k in terms of λ and give some conditions that
the parameters must satisfy. Similar results appear in [8, p. 79], and [21],
where conditions are given for a design to admit a flag-transitive, imprimi-
tive automorphism group. We analyse the case of biplanes, showing that the
only admissible parameters for a biplane with a flag-transitive, imprimitive
automorphism group are (16,6,2), and indeed, there are two such examples.
The reduction to primitive groups allows us to use the O’Nan-Scott Theorem,
which classifies primitive groups into five types, and so we may analyse each
case separately. We prove a reduction theorem (Theorem 2) for small values
of λ.

1.1 Results

Here we state the results that we will prove in this paper. Firstly, we give
some necessary conditions for a symmetric design to have a flag-transitive,
imprimitive, automorphism group:

Theorem 1 If D is a (v, k, λ)-symmetric design admitting a flag-transitive,
imprimitive automorphism group G, then either:

(1) (v, k, λ) = (λ2(λ + 2), λ(λ + 1), λ), or
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(2) k ≤ λ(λ − 2).

Corollary 1 If G is a flag-transitive automorphism group of a
(v, k, λ)-symmetric design D with λ ≤ 4, then either G is primitive, or D has
parameters (16,6,2), (45,12,3), (15,8,4), or (96,20,4).

Thus for λ ≤ 3, if k 6= 6 or 12, flag-transitivity implies primitivity. We have
the following reduction theorem for primitive groups:

Theorem 2 If D is a (v, k, λ)-symmetric design admitting a flag-transitive,
primitive autopmorphism group G with λ ≤ 3, then G is of affine, or almost
simple type.

Focusing on biplanes, we analyse the case in which the automorphism group
is flag-transitive, primitive, of affine type, and together with Theorem 2, we
get the following:

Theorem 3 If D is a non-trivial biplane with a primitive, flag-transitive au-
tomorphism group G, then one of the following holds:

(1) D has parameters (16,6,2).
(2) G ≤ AΓL1(q), for some odd prime power q.
(3) G is of almost simple type.

The known flag-transitive (37,9,2) biplane (constructed from a difference set on
the non-zero squares of Z37 with automorphism group Z37.Z9), is an example of
the one-dimensional affine case. The one-dimensionanl affine case for projective
planes has been treated extensively by Ho (see for example [14–17].

The almost simple case is treated in [31–33]. It is shown that the only biplanes
admitting a flag-transitive, primitive automorphism group of almost simple
type have parameters (7,4,2) (this is the complement of the Fano plane), or
(11,5,2) (this is the unique Hadamard design of order 3). Here it is worth
mentioning that as a consequence if a non-trivial biplane has a flag-transitive
automorphism group and v is even, then v = 16.

We now list the parameters of the five known non-trivial flag-transitive bi-
planes, with their full automorphism groups and point stabilisers:

(1) (7,4,2), PSL2(7), S4.
(2) (11,5,2), PSL2(11), A5.
(3) (16,6,2), 24S6, S6.
(4) (16,6,2), (Z2 × Z8) (S4.2), (S4.2).
(5) (37,9,2), Z37 · Z9, Z9.
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1.2 Examples

Here we give a brief summary of the known examples of biplanes, as well
as some symmetric designs which admit imprimitive, flag-transitive automor-
phism groups.

1.2.1 Biplanes

For a more detailed description of these examples, see [18, Section 3.6].

For k = 4 we have the unique (7,4,2) biplane, on the set of points P = Z7.
Take B0 = {3, 5, 6, 7} a difference set, so the set of block is B = {B0 + i, i =
1, . . . , 7}. This is the complement of the Fano Plane, and the full automor-
phism group is PSL2(7), which is flag-transitive (in fact it is 2-transitive).
The point stabiliser is S4.

For k = 5 we have the unique (11,5,2) biplane, the set of points is P = Z11,
and B0 = {1, 3, 4, 5, 9} (the set of squares modulo 11) is a Paley Difference
Set. The set of blocks is B = {B0 + i, i = 1, . . . , 11}. This is a Hadamard
design, and the full automorphism group is PSL2(11), also flag-transitive (and
2-transitive). The point stabiliser is A5.

For k = 6 there are exactly three non-isomorphic biplanes [19]. The first one
arises from a difference set in Z4

2: Take the set of points P = Z4
2, and the set

of blocks B = {B0 + p : p ∈ P}, where B0 = {0, e1, e2, e3, e4,
∑4

i=1 ei}, and ei

is the vector with 1 in the i-th place, and 0 elsewhere, so {e1, . . . , e4} is the
canonical basis for Z4

2. The automorphism group is 24S6 < 24GL4(2). Since
the stabiliser G0 = S6 is transitive on the six blocks incident with 0, and the
group of translations 24 acts regularly on the points of P , G is flag-transitive.

Next we have a biplane arising from a difference set in Z2 × Z8, and the
stabiliser of order 48 acts as the full group of symmetries of the cube, hence is
a central extension of the symmetric group S4 by a group of order 2. The group
Z2 × Z8 acts regularly, and so the full automorphism group is flag-transitive.

The last (16,6,2) biplane can be seen as a difference set in Q×Z2, where Q is
the quaternion group. The stabiliser of a block has two orbits on the points of
the block, of size 2 and 4, therefore the full automorphism group is not flag-
transitive. The order of the stabiliser is 24, and it acts as the inverse image of
A4 in the central extension of S4 by a cyclic group of order 2 described in the
previous case. The order of the automorphism group is 16 · 24.

For k = 9 there are exactly four non-isomorphic biplanes [35], only one of
which has a flag-transitive automorphism group.
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The first one was first found by Hussain [20], the (Hussain) graphs are given
by the elements of order 3 in PSL2(8), and the full automorphism group is
PΓL2(8). The second is the dual of the first, and so has the same automor-
phism group.

The third biplane can be constructed from the difference set of nine quar-
tic residues modulo 37. The automorphism group is Z37 · Z9, and it is flag-
transitive, with the stabiliser of a point Gx

∼= Z9.

The last of these has an automorphism group of order 54, which fixes a unique
point.

For k = 11 there are five known biplanes [12,3,9], (see also [24]), none of which
has a flag-transitive automorphism group. The first was found by Hall, Lane,
and Wales [12] in terms of a rank-3 permutation group, and its associated
strongly regular graph. The group of automorphisms is a subgroup of index
3 of Aut (PSL3(4)), represented on the 56 cosets of A6, which is the full
stabiliser of a block. However if the automorphism group G is flag-transitive,
then k divides twice the order of Gx, but in this case Gx

∼= A6, and 11 does
not divide 720. Hence the group is not flag-transitive.

The next was found by a computer search by Assmus, Mezzaroba and Salwach [3].
The automorphism group has order 288.

The next two were found by Denniston [9]. His constructions are based on
GF (9), and two other symbols A and B. As the points he takes the 55 un-
ordered pairs of these symbols, and a further point (which he denotes - -), and
assumes that addition and multiplication in GF (9) (taking as its elements
a + bi, a, b ∈ GF (3)) carry over to a biplane. Multiplication can be done by
two methods, either fixing or interchanging A and B. Their automorphism
groups have orders 144 and 64 respectively.

The last one of these was constructed by Janko, assuming that a group of
order 6 acts on the biplane. The full automorphism group is of order 24.

Finally for k = 13 there are two known examples. One was constructed by
Aschbacher [2] in 1970, and the other is its dual. If we consider the elements
of GF (11) and two further elements A and B, we can take the unordered
pairs of these elements to be the points of the biplane, plus one other point
X. Addition and multiplication in GF (11) fix A and B, but multiplication by
a primitive root exchanges X and AB. The full group of automorphisms is
G = 〈x, y, z; x2 = y5 = z11, xy = x4, xz = x−1, yz = zy〉 which is of order 110,
and is the only possible group of automorphisms for a biplane with k = 13
that has at least v = 79 points. Here k does not divide twice the order of the
group so the group cannot be flag-transitive.
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1.2.2 Imprimitive Designs

We give some examples of symmetric designs with flag-transitive, imprimitive
automorphism groups, whose parameters are according to Corollary 1.

There are exactly three non-isomorphic (16,6,2) biplanes [19], of which exactly
two admit flag-transitive automorphism groups, and these are 24S6, and
(Z2 × Z8) (S4.2). Now, both of these are affine groups contained in AGL4(2),
where S6 and S4.2 are the point stabilisers in GL4(2). The group S4 is con-
tained in both of these stabilisers, and is transitive on the six cosets of V4,
so it is transitive on the six blocks containing the fixed point. Therefore the
subgroups 24S4 and (Z2 × Z8) (S4) are still flag-transitive on the respective
biplanes. However S4 fixes a subspace of dimension 2 in 24, so it is not irre-
ducible, and therefore these subgroups are imprimitive.

There are at least 3752 non-isomorphic (45,12,3) symmetric designs [6, p.
16], [29], and at least 1136 have a trivial automorphism group, which is not
flag-transitive. It seems unlikely that there is a flag-transitive example, how-
ever conducting a thorough search is beyond the scope of this paper.

There is an example of a (15,8,4) symmetric design with a flag-transitive
imprimitive group:

Take P = {1, ..., 15} to be the set of points, and B1 = {1, 2, 3, 4, 8, 11, 12, 14}
to be a block. Now take the set of blocks to be B = {B1 + i, i ∈ Z15}. This
construction gives a (15,8,4) symmetric design (the complement of a (15,7,3)
symmetric design, which arises from the difference set {1, 2, 3, 5, 6, 9, 11} [1, p.
68]).

The permutations α = (2, 5)(4, 14)(6, 11)(7, 15)(8, 13)(10, 12),
β = (2, 8)(3, 7)(5, 10)(6, 11)(9, 14)(12, 13), and
γ = (2, 5)(3, 9)(4, 13)(7, 10)(8, 14)(12, 15) all fix the point 1. The group H
generated by α, β, and γ is transitive on the eight blocks incident with 1,
and preserves the partition of P into the sets {1, 6, 11}, {2, 7, 12}, {3, 8, 13},
{4, 9, 14}, and {5, 10, 15}. This group has order 24 and is isomorphic to S4

(calculated with GAP [11]).

The group Z15 of translations acts regularly on the points, (and the blocks) and
note it preserves the same partition of the points. Hence the group G = Z15H
which is isomorphic to 3S5 (again, with GAP [11]), acts imprimitively, and
flag-transitively on the design.

There is also an example of a flag-transitive, imprimitive (96,20,4) design.

A finite generalised quadrangle with parameters (s, t), (s, t ≥ 1), [6, p. 357] is
an incidence structure (P, L, I) with set of points P and set of lines L such that
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every point is incident with t + 1 lines (and two distinct points are incident
with at most one line), every line is incident with 1+s points (and two distinct
lines are incident with at most one point), and if x is a point and j is a line
not incident with x, then there is a unique pair (y, m) ∈ P × L such that
xImIyIj.

Take the generalised quadrangle with parameters (5,3), and construct the
design as follows: The points are the same as in the quadrangle, and the
blocks are the points different from x that are collinear with x for every point
x. There are 96 points (and blocks), and it is a (96,20,4) symmetric design. The
automorphism group is 243S6 which is imprimitive, and the point stabiliser
is A6 which has a transitive action on 20 points [11], and so is transitive on
the 20 blocks through the fixed point. Therefore the automorphism group is
flag-transitive.

2 Primitivity

In this section we will prove Theorem 1. We begin by stating some arithmetic
conditions on the parameters of the design.

Lemma 1 [4, Chapter II, Proposition 3.11] If D is a (v, k, λ)-symmetric
design with n = k − λ, then 4n − 1 ≤ v ≤ n2 + n + 1.

The upper bound for v is achieved if and only if D or D′ is a projective
plane, and the lower bound is achieved if and only if D or D′ has parameters
v = 4n − 1, k = 2n − 1, and λ = n − 1. (This is a Hadamard design).

We also have that if D is a (v, k, λ)-symmetric design with a flag-transitive
automorphism group G, then k divides λdi, for every subdegree di of G, [7].
Combining this with the well known result that k(k − 1) = λ(v − 1), we get
the following:

Corollary 2 If G is a flag-transitive automorphism group of a (v, k, λ)-symmetric
design D, then k divides λ · gcd(v − 1, |Gx|), for every point stabiliser Gx.

Finally, we have the following:

Lemma 3 If D is a (v, k, λ)-symmetric design, then 4λ(v−1)+1 is a square.

PROOF. Solving the quadratic equation k(k−1) = λ(v−1) for k, the result
follows from the the fact that k must be an integer.
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Now we proceed to prove Theorem 1:

PROOF. Suppose a (v, k, λ)-symmetric design D admits a flag-transitive au-
tomorphism group G which is imprimitive. Then the set of points is partitioned
into n non-trivial blocks of imprimitivity ∆j , j = 1, . . . , n, each of size c. So
v = cn, with c, n > 1.

Now, since G is flag-transitive, each block of D and each block of imprimitivity
that intersect non trivially, do so in a constant number of points, say d, since
G permutes these intersections transitively. Hence d divides k, and so k = ds,
where s is the number of blocks of imprimitivity which intersect each block of
D, and d, s > 1.

Now fix a point x, and count all the flags (p, Bi) such that both p and x
are in the same block of imprimitivity, (say ∆), and also both p and x are
incident with Bi. Since each block of imprimitivity has constant size c, there
are c − 1 such points p, and each of them is, together with x, incident with
exactly λ blocks. On the other hand, there are exactly k blocks through x,
and each of them intersects ∆ in d points, of which d− 1 are not x. Therefore
λ(c − 1) = k(d − 1).

Hence, we have the following equations:

v = cn (1)

k = ds (2)

λ(v − 1) = k(k − 1) (3)

λ(c − 1) = k(d − 1) (4)

with c, n, d, s > 1. From Equation 4, we get c = k(d−1)+λ

λ
and λn(c − 1) =

kn(d − 1), and from Equations 1 and 3 we obtain

v = cn =
k(k − 1) + λ

λ
.

Subtracting the previous two equations we get λ(n−1) = k(k−1−n(d−1)). 1

Let x = k − 1 − n(d − 1). Then x is a positive integer, and λ(n − 1) = kx,
hence n = kx+λ

λ
.

1 We should mention here that up to now our proof is similar to the proofs in [7], [8,
p. 80], and [22, Theorems 4.7 and 4.8]. Our variables (c, n, d) correspond to the vari-
ables (t, s, µ) in [7], (w ,p, k∗) in [8], and (c, n, t) in [21]. Additionally, our equation
(4) corresponds to equation (1) in [21], and equation (2) in [21] also appears in this
proof. Some of these equations appear too in [7], however they are not numbered.
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Combining this with the previous two equations we get that

cn =
k(k − 1) + λ

λ
=

(k(d − 1) + λ)(kx + λ)

λ2
,

and solving for k we get that

k =
λ(x + d)

λ − x(d − 1)
.

Therefore λ > x(d − 1), which is a positive integer, so we have the following
possibilities:

• x(d − 1) < x + d < λ,
• x(d − 1) < λ ≤ x + d, or
• x + d ≤ x(d − 1) < λ.

Suppose x(d − 1) < x + d. Then x = 1, or x = 2 and d ≤ 3, or d = 2.

First consider x + d < λ, so λ ≥ 4. Also, k < λ2

2
, so since λ ≥ 4 we have

k ≤ λ(λ−2), satisfying condition (2) of the theorem. Now consider x(d−1) <
λ ≤ x + d.

First assume x = 1. Then either λ = d, or λ = d + 1. If λ = d + 1 then

k = (d+1)2

2
, but then d does not divide k, which is a contradiction. If λ = d

then k = λ(λ + 1), and since k(k − 1) = λ(v − 1), then v = λ2(λ + 2), which
corresponds to conclusion (1) of the theorem.

Now assume x = 2. If d = 2 then 2 < λ ≤ 4, and k = 4λ
λ−2

. If λ = 4 then k = 8,
and v = 15, which satisfies conclusion (2) of the theorem. These parameters
correspond to the complement of the (15, 7, 3) Hadamard design. If λ = 3 then
k = 12, and v = 45, satisfying again (1).

If d = 3 then λ = 5, so k = 25, but then d does not divide k, which is a
contradiction.

Finally, assume x ≥ 3 and d = 2. Then either λ = x + 1, or λ = x + 2. If
λ = x + 2 then k = λ2

2
, and v = λ3

4
− λ2 + 1, satisfying (2). If λ = x + 1, then

again k = λ(λ + 1) and v = λ2(λ + 2), once more, (1).

Next suppose x+d = x(d−1). Then d 6= 2, and x 6= 1. From x+d = xd−x, we
obtain 2x = d(x−1) and d = x(d−2), so either x = 2 and d = 4, or x = 3 = d.

In either case, k = λ(x+d)
λ−x(d−1)

forces k = 6λ
λ−6

. If λ ≥ 12, then v ≤ k ≤ λ, which is

a contradiction. If λ = 11, then k = 66
5

/∈ Z, another contradiction. If λ = 10,
then we get the parameters (22,15,10), but here v = 22 is even, and k−λ = 5 is
not a square, contradicting Schutzenberger’s Theorem [37]. For 7 ≤ λ ≤ 9, we
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have the following parameters for D: (247,42,7), (70,24,8), and (35,18,9). The
two latter correspond to conclusion (2) of the theorem. Now suppose there is a
(247,42,7)-symmetric design with a flag-transitive, imprimitive automorphism
group. Then v = cn = 13 · 19. Also, we know d = 3 or 4, but k = 2 · 3 · 7
so d = 3 = x and so each block intersects 14 “blocks” (of imprimitivity) in
three points each. Now recall x = k− 1− n(d− 1), so n = 19. There are eight
transitive groups on 19 points [11]. Five of these have order less than 247 = v,
and are therefore ruled out. Of the remaining three, one has order 342 which
is not divisible by 247, so it is also ruled out. The remaining two are A19 and
S19. These groups produce at least one block per 14 “blocks”, and this forces
more than v blocks altogether.

Finally, suppose x + d < x(d− 1) < λ, then k ≤ λ(λ− 2), and this completes
the proof of Theorem 1.

Now we prove Corollary 1:

PROOF. By Theorem 1, if λ = 2 or 3, then we have conclusion (1), which
forces v = 16 and k = 6 in the first case, and v = 45 and k = 12 in the second.

If λ = 4 then either conclusion (1) holds, forcing v = 96 and k = 20, or
conclusion (2) holds, forcing k ≤ 8. For the design to be non-trivial, k > 5.
The equation k(k − 1) = λ(v − 1) forces k(k − 1) to be divisible by 4, so k
cannot be 6 nor 7. If k = 8 then v = 15.

3 Reduction

In this section we will prove Theorem 2. Here we will investigate the case in
which D admits a flag-transitive primitive group. The O’Nan-Scott Theorem
classifies primitive groups into the following five types [27]:

(1) Affine.
(2) Almost simple.
(3) Simple diagonal.
(4) Product.
(5) Twisted wreath.

First suppose G has a product action on the set of points P . Then there is a
group H acting primitively on Γ (with |Γ| ≥ 5) of almost simple or diagonal
type, where:

P = Γl, and G ≤ H l o Sl = H wr Sl,

and l ≥ 2. We have the following lemmas:
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Lemma 4 If G is a primitive group acting flag-transitively on a (v, k, λ)-
symmetric design D, with a product action on P , (the set of points of D), as
defined above, then v = |Γ|l ≤ λl2(|Γ| − 1)2, and l = 2 forces λ > 4.

PROOF. Take x ∈ P . If x = (γ1, . . . , γl), define for 1 ≤ j ≤ l the cartesian
line of the jth parallel class through x to be the set:

Gx,j = {(γ1, . . . , γj−1, γ, γj+1, . . . , γl) | γ ∈ Γ},

that is,
Gx,j = {γ1} × . . . × {γj−1} × Γ × {γj+1} × . . . × {γl}.

(So there are l cartesian lines through x).

Denote |Γ| = m.

Since G is primitive, Gx is transitive on the l cartesian lines through x. Denote
by ∆ the union of those lines (excluding x). Then ∆ is a union of orbits of
Gx, and so every block through x intersects it in the same number of points.
Hence k divides λl(m − 1). Also, k2 > λ(ml − 1), so (ml − 1) < λl2(m − 1)2.

Hence v = ml ≤ λl2(m − 1)2.

Suppose l = 2. Then the fact that k divides 2λ(m−1), implies that k = 2λ(m−1)
r

,
with 1 ≤ r < 2λ.

First assume r = 1. Then since k(k − 1) = λ(m2 − 1), we have

4λ2(m − 1)2 − 2λ(m − 1) = λm2 − λ.

Solving the quadratic equation for m, we get that

m =
4λ + 1 ± 4

4λ − 1
≥ 5.

This implies that 2λ ≤ 1, which is a contradiction.

Now assume r = 2. Then k = λ(m − 1). By the same procedure,

(λ − 1)m2 − (2λ + 1)m + (λ + 2) = 0,

and solving for m forces either m = 1, or m = λ+2
λ−1

. In both cases m < 5,
which is a contradiction.

Hence r ≥ 3, and so k ≤ 2λ(m−1)
3

. Then, in the same manner as above, we have
the following:
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9λ(m2 − 1) ≤ 4λ2(m − 1)2 − 6λ(m − 1),

so
0 ≥ (9 − 4λ)m2 + 2(4λ + 3)m − (4λ − 3),

and since m ≥ 5 then λ > 4.

Lemma 5 If D is a (v, k, λ)-symmetric design with λ ≤ 3 admitting a flag-
transitive, primitive automorphism group G, then G does not have a non-trivial
product action or twisted wreath action on the points of D.

PROOF. The case λ = 1 was done in [5], so assume first that λ = 2, and
suppose G has a non-trivial product action. Since ml ≤ 2l2(m−1)2, and m ≥ 5,
by the previous lemma l = 3. Then m < 18, and k divides 2(3(m−1), m3−1),
so k divides

2(m − 1)(3, 1 + m + m2).

Now (3, 1+m+m2) = 3 only when m ≡ 1 (mod 3), that is, when m = 7, 10, 13,
or 16. In the first three of these cases 8v − 7 is not a square, contradicting
Lemma 3. If m = 16 then v is even, but k−λ = 89 is not a square, contradicting
a theorem by Schutzenberger [37]. Therefore k = 2(m − 1), and so

2m − 3 = m + 1,

which implies that m = 4, a contradiction.

Now assume that λ = 3. Then ml ≤ 3l2(m − 1)2, implies l < 5. If l = 4 then
m = 5 or 6, but then in both cases 12v − 11 is not a square, contradicting
Lemma 3. Therefore l = 3. Now k divides (9(m − 1), 3(m3 − 1)). If m ≡ 1
(mod 3) then k divides 9(m − 1), and k2 > 3(m3 − 1), so m = 7, 10, 13, 16,
19, 22, or 25. We check that the only value of m for which 12m3 − 11 is a
square is m = 25. So v = 56, which forces k = 217, but then k does not divide
9(m − 1) = 216, which is a contradiction. If m ≡ 0 or 2 (mod 3) then k
divides 3(m − 1), so m3 ≤ 3(m − 1)2, which is a contradiction.

Groups with a twisted wreath action are contained in twisted wreath groups
H wr Sl with a product action and H of diagonal type. Here we have also
considered subgroups of G, thereby also ruling out groups with a twisted
wreath action.

Now suppose G is of simple diagonal type. Then

Soc (G) = N = Tm, m ≥ 2

for some non-abelian simple group T , where T ∼= Nα C Gα ≤ Aut T × Sm.
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Here v = |T |m−1 = |Nα|
m−1.

We have the following lemma:

Lemma 6 If D is a (v, k, λ)-symmetric design with λ ≤ 3 which admits a flag-
transitive, primitive automorphism group G, then G is not of simple diagonal
type.

PROOF. The fact that G is flag-transitive implies that Gx is transitive on
the k blocks through x, so Nx C Gx implies that the orbits of Nx on the set
of k blocks through x all have the same size, say, l. Therefore l divides k, so it
divides λ(v−1), and also divides |T |, that is, l divides (|T |, λ(|T |m−1−1) ≤ λ.
If λ < 4 then l = 1 as T ∼= Nα is simple, and so Nx fixes all the k blocks
through x.

We assume λ > 1, since λ = 1 was dealt with in [5].

Choose t ∈ Nx of odd order. Then o(t) ≥ 3. There is a point y which is not
fixed by t. The pair {x, y} is incident with exactly λ blocks. Since y is in each
of these blocks, the t-orbit of y (which is of size at least three) must also be
incident with each of these blocks (together with x) as these blocks are fixed
by Nx. This contradicts the fact that every pair of blocks is incident with
exactly λ points.

So now we proceed to prove Theorem 2:

PROOF. By Lemmas 5 and 6, G does not have a product or twisted wreath
action on the points of D, and is not of simple diagonal type. Hence G must
be of affine or almost simple type.

4 Affine Case

Finally, in this section we will prove Theorem 3. For this purpose we consider
biplanes which have a flag-transitive automorphism group G of affine type,
that is, the points of the biplane can be identified with the vectors in a vector
space V = Vd(p) of dimension d over the field Fp, (with p prime), so that
G = TGx ≤ AGLd(p) = AGL(V ), where T ∼= (Zp)

d is the translation group,
and Gx (the stabiliser of the point x) is an irreducible subgroup of GLd(p), by
Corollary 1, unless the parameters are (16,6,2).
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Now, for each divisor n of d, there is a natural irreducible action of the group
ΓLn

(

p
d

n

)

on V . Choose n to be the minimal divisor of d such that Gx ≤

ΓLn(p
d

n ) in this action, and write q = p
d

n . Hence Gx ≤ ΓLn(q), and v = pd =
qn.

The following result restricts the possibilities for biplanes where v is a power
of 2:

Theorem 7 If D is a non-trivial (2b, k, 2)-biplane, then b=4.

PROOF. This follows from a result in [28].

We also have the following proposition, provided by Cameron (private com-
munication):

Proposition 8 Let G be an affine automorphism group of a biplane. Suppose
that G = TH, where T is the translation group of V (d, p) (acting regularly on
the points of the biplane) and H ≤ GL(d, p), and p is odd. Then |G| is odd.

PROOF. We have v = pd, so

pd = 1 +
k(k − 1)

2
.

Suppose that |G| is even. Then H contains an involution t. The fixed points
of t form an e-dimensional subspace of V for some e, so t fixes pe points. Also,
Gx = H permutes the k blocks incident with x. Suppose t has m transpositions
and k − 2m fixed blocks. Then, since the points different from x correspond
bijectively to pairs of blocks incident with x, we see that t has 1 + m +
(k−2m)(k−2m−1)

2
fixed points. Thus

pe = 1 + m +
(k − 2m)(k − 2m − 1)

2
.

Subtracting the two displayed equations gives

pd − pe = 2m(k − m − 1).

Note that since m ≤ k
2
, the number of fixed points is at least k+1

2
, with equality

only if k − 2m = 1. So pe ≥ k+1
2

.

It cannot happen that p | m and p | k − m − 1, for then p | k − 1 and

pd = 1+ k(k−1)
2

≡ 1 (mod p). Hence either pe | m or pe | k−m−1. The former
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is impossible since m ≤ k
2

and pe ≥ k+1
2

. We conclude that pe | k − m − 1, so
that indeed

pe = k − m − 1.

Now k − m − 1 = pd − 2m(k − m − 1), so

(2m + 1)(k − m − 1) = pd,

so 2m + 1 = pd−e.

If m = 0, then p divides k−1 and pd = 1+ k(k−1)
2

≡ 1 (mod p), a contradiction.
If m ≥ 1, then p divides 2(k − m − 1) + (2m + 1) = 2k − 1, so p2 divides
(2k − 1)2 = 8pd − 7, also a contradiction. This completes the proof.

For the proof of Theorem 3, by Theorem 7 we need only consider p > 2. Since
the case G ≤ AΓL1(q) is a conclusion of Theorem 3, we may also assume
G � AΓL1(q).

We will assume G ≤ AGLd(p) to be a flag-transitive automorphism group of
odd order of a biplane D. Note that the odd order of G implies k is odd. Also,
k ≡ 1 mod 4, since k(k − 1) = 2(v − 1) ≡ 0 mod 4.

We now proceed with the proof of Theorem 3:

PROOF. Since |G| is odd, the Feit-Thomson Theorem [10] implies that G is
solvable, so all the complements of the regular normal subgroup of G (which we
can identify with Vd(p)) are conjugate. This implies that every point stabiliser
also stabilises a block, that is, Gx = GB.

The point x and the block B cannot be incident, since the flag-transitivity
of G implies that Gx is transitive on the k blocks incident with x, and GB is
transitive on the k points incident with B. So Gx = GB has at least one orbit
of size k.

Take a non-trivial element t ∈ Gx, of order s (of course s is odd), and count
the number of blocks incident with x which are fixed by t, and those incident
with x which are moved by t. Say t moves m blocks incident with x, and fixes
k − m of these blocks.

There is a one-to-one correspondence between the points different from x, and
the unordered pairs of blocks incident with x, since for any point p 6= x the
pair {x, p} is incident with exactly two blocks. Therefore t fixes at least

(

k−m

2

)

points different from x. If in addition to these points t fixed another point
different from x, it would correspond to an unordered pair of blocks incident
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with x, however this is not possible, t has odd order so it can only fix pairs of
blocks that are fixed individually.

So t fixes 1+ (k−m)(k−m−1)
2

points, and hence it moves v−1− (k−m)(k−m−1)
2

points.

Now v = k(k−1)
2

+ 1, so a small calculation shows that t moves 2mk−(m)2−m

2

points, and this is
(

m

2

)

= m(m−1)
2

. This forces m(2k−m−1)
2

= m(m−1)
2

, that is,
k = m.

This means that any non-trivial element of Gx fixes only x and only B, that
is, only the identity fixes two points. So Gxy = 1, and since k = [Gx : Gxy], we
conclude that |Gx| = k, and Gx fixes x and has k−1

2
orbits each of size k.

Now since Gxy = 1, Gx is a Frobenius group, so by [34, 18.2], Gx = 〈a, b〉,
with certain conditions including al = bm = 1, a−1ba = br, and (r − 1, m) =
(l, m) = 1. Also Gx is metacyclic, with 〈b〉 a maximal abelian subgroup, that
is, CGx

(b) = 〈b〉.

Now Gx is irreducible in Vd(p), (Gx < GLd(p)), so by Schur’s Lemma [38, p.

159], CGLd(p)(b) = GLn(p
d

n ) for some divisor n of d.

Since any non-identity power of a does not centralise b, a has to be a field au-
tomorphism of GLn(p

d

n ). We also have that b ∈ Z(GLn(p
d

n )), so b ∈ GL1(p
d).

That is, Gx = 〈a, b〉 < ΓL1(p
d), which is a contradiction.

This completes the proof of Theorem 3
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