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Abstract

In this paper we prove that there cannot be a biplane admitting a primitive, flag-
transitive automorphism group of almost simple type, with alternating or sporadic
socle.

1 Introduction

A biplane is a (v, k, 2)-symmetric design, that is, an incidence structure of v
points and v blocks such that every point is incident with exactly k blocks, and
every pair of blocks is incident with exactly two points. Points and blocks are
interchangeable in the previous definition, due to their dual role. A nontrivial
biplane is one in which 1 < k < v − 1. A flag of a biplane D is an ordered
pair (p, B) where p is a point of D, B is a block of D, and they are incident.
An automorphism group G of D is flag-transitive if it acts transitively on the
flags of D.

The only values of k for which examples of biplanes are known are k = 3, 4,
5, 6, 9, 11, and 13. Due to arithmetical restrictions on the parameters, there
are no examples with k = 7, 8, 10, or 12.

For k = 3, 4, and 5 the biplanes are unique up to isomorphism [4], for k =
6 there are exactly three non-isomorphic biplanes [11], for k = 9 there are
exactly four non-isomorphic biplanes [19], for k = 11 there are five known
biplanes [2,8,10], and for k = 13 there are two known biplanes [1], namely a
biplane and its dual.
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In [18] it is shown that if a biplane admits an imprimitive, flag-transitive
automorphism group, then it has parameters (16,6,2). Among the three non-
isomorphic biplanes with these parameters [11], one does not admit a flag-
transitive automorphism group, and the other two admit flag-transitive auto-
morphism groups which are imprimitive on points, (namely 24S4, a subgroup
of the full automorphism group 24S6, acting primitively, and (Z2×Z8)S4 [18]).
Therefore, if any other biplane admits a flag-transitive automorphism group
G, then G must be primitive. The O’Nan-Scott Theorem classifies primitive
groups into five types [15]. It is shown in [18] that if a biplane admits a
flag-transitive, primitive, automorphism group, its type can only be affine or
almost simple. The affine case was analysed in [18]. Here we begin to analyse
the almost simple case, namely when the socle of G is an alternating or a
sporadic group, and prove that this is not possible.

We now state the main result of this paper:

Theorem 1 (Main Theorem) If D is a biplane with a primitive, flag-transitive
automorphism group G of almost simple type, then the socle of G cannot be
alternating or sporadic.

This, together with [18, Theorem 3], yields the following:

Corollary 1 If D is a non-trivial biplane with a flag-transitive automorphism
group G, then one of the following holds:

(1) D has parameters (16,6,2),
(2) G ≤ AΓL1(q), for some odd prime power q, or
(3) G is almost simple, and the socle X of G is either a classical or an

exceptional group of Lie type.

For the purpose of proving our Main Theorem, we will consider non-trivial
biplanes that admit a primitive, flag-transitive automorphism group G of al-
most simple type, with alternating or sporadic socle. That is, if X is the socle
of G (the product of all its minimal normal subgroups), then X is a simple
(alternating or sporadic) group, and X E G ≤ AutX. We will also assume
that (v, k, λ) 6= (16, 6, 2).

2 Preliminary Results

In this section we state some preliminary results we will use in the proof of
our Main Theorem.

Lemma 2 If D is a (v, k, 2)-biplane, then 8v − 7 is a square.
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PROOF. The result follows from [18, Lemma 4].

Corollary 3 If D is a flag-transitive (v, k, 2)-biplane, then 2v < k2, and hence
2|G| < |Gx|

3.

PROOF. The equality k(k−1) = 2(v−1), implies k2 = 2v−2+k, so clearly
2v < k2. Since v = |G : Gx|, and k ≤ |Gx|, the result follows.

From [6] we get the following:

Lemma 4 If D is a biplane with a flag-transitive automorphism group G,
then k divides 2di for every subdegree di of G.

Lemma 5 If G is a flag-transitive automorphism group of a biplane D, then
k divides 2 · gcd (v − 1, |Gx|).

3 The Case in which X is an Alternating Group

In this section we suppose there is a non-trivial biplane D that has a primitive,
flag-transitive almost simple automorphism group G with socle X, where X
is an alternating group, and arrive at a contradiction. We follow the same
procedure as in [7] for linear spaces.

Lemma 6 The group X is not Ac.

PROOF. We need only consider c ≥ 5. Except for three cases (namely c = 6
and G ∼= M10, PGL2(9), or PΓL2(9)), G is an alternating or a symmetric
group. The three exceptions will be dealt with at the end of this section.

The point stabiliser Gx acts on the points of the biplane as well as on the set
Ωc = {1, 2, . . . , c}. The action of Gx on this set can be one of the following
three:

(1) Not transitive.
(2) Transitive but not primitive.
(3) Primitive.

We analyse each of these actions separately.
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3.1 Case (1)

Since Gx is a maximal subgroup of G, it is necessarily the full stabiliser of a
proper subset S of Ωc, of size s ≤ c

2
. The orbit of S under G consists of all

the s-subsets of Ωc, and Gx has only one fixed point in D and stabilises only
one subset of Ωc, hence we can identify the points of D with the s-subsets of
Ωc (we identify x with S).

Two points of the biplane are in the same Gx-orbit if and only if the corre-
sponding s-subsets of Ωc intersect S in the same number of points. Therefore
G acting on the biplane has rank s + 1, each orbit Oi corresponding to a
possible size i ∈ {0, 1, . . . , s} of the intersection of an s-subset with S in Ωc.

Now fix a block B in D incident with x. Since G is flag-transitive on D, B
must meet every orbit Oi. Let i < s, and yi ∈ Oi ∩ B. Since D is a biplane,
the pair {x, yi} is incident with exactly two blocks, B, and Bi. The group Gxyi

fixes the set of flags {(x, B), (x, Bi)}, and in its action on Ωc stabilises the sets
S and Yi, as well as their complements Sc and Y c

i . That is, Gxyi
is the full

stabiliser in G of the four sets S ∩ Yi, S ∩ Y c
i , Sc ∩ Yi, and Sc ∩ Y c

i , so it acts
as S(s−i) on Sc ∩ Yi, and at least as A(c−2s+i) on Sc ∩ Y c

i . Any element of Gxyi

either fixes the block B, or interchanges B and Bi, so the index of Gxyi
∩GxB

in Gxyi
is at most 2, and therefore GxB ∩ Gxyi

acts at least as the alternating
group on Sc ∩ Yi, and Sc ∩ Y c

i . Now GxB contains such an intersection for
each i, so GxB is transitive on the s-subsets of Sc, that is, on O0. This implies
that the block B is incident with every point in the orbit, so every other block
intersects this orbit in only one point, (since for every point y in O0 the pair
{x, y} is incident with B and only one other block).

However, any pair of distinct points in O0 must be incident with exactly two
blocks, which is a contradiction.

3.2 Case (2)

Since Gx is maximal, then in its action on Ωc it is the full stabiliser in G of
some non-trivial partition P of Ωc into t classes of size s, (with s, t ≥ 2 and
st = c), and since G ∼= Ac or Sc, Gx contains all the even permutations of Ωc

that preserve P . We now claim that P is the only non-trivial partition of Ωc

preserved by Gx.

To see this, suppose that Gx preserves two partitions P1 and P2 of Ωc, with Pi

having ti classes each of size si, with ti, si ≥ 2, and siti = c. Denote by C(i,a)

the class of the element a in the partition Pi, and suppose there is an element
b ∈ C(1,a) ∩ C(2,a), with b 6= a. If C(2,a) is not contained in C(1,a), then there is
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an element d ∈ C(2,a) \ C(1,a). The even 3-cycle (a, b, d) is in G and preserves
P2, but not P1, a contradiction. So C(2,a) ⊆ C(1,a), and similarly C(1,a) ⊆ C(2,a).
Therefore either C(1,a) = C(2,a), or C(1,a) ∩ C(2,a) = {a}.

Now suppose the latter, and suppose also that s1 ≥ 3. Take b ∈ C(2,a) \C(1,a),
and d, e ∈ C(1,b). Then the 3-cycle (b, d, e) preserves P1, but since C(2,b) ∩
C(1,b) = {b}, it does not preserve C(2,b). However it is an even permutation
preserving P1, so it is in Gx and must therefore preserve P2. Since it fixes a,
it must stabilise C(2,a), but C(2,a) = C(2,b). Hence s1 = s2 = 2, and t1 = t2 = c

2
.

If ti ≥ 3, then take b ∈ C(2,a) \ C(1,a) and d /∈ C(1,a) ∪ C(2,a). That is, in P2

we have C(2,a) = C(2,b) = {a, b}, and since t1 ≥ 3, we are considering three
disjoint classes of size two in P1: C(1,a), C(1,b), and C(1,d). Now consider the
even permutation that has a transposition interchanging the two elements of
C(1,b), the two elements of C(1,d), and fixes all the remaining points of Ωc.
Since it fixes a, it must stabilise C(2,a), but this is a contradiction because b
is not fixed. We conclude that si = ti = 2, so c = 4, contradicting our initial
hypothesis.

Since G acts transitively on all the partitions of Ωc into t classes of size s,
we may identify the points of the biplane D with the partitions of Ωc into t
classes of size s.

We fix a point x of the biplane, that is, a partition X of Ωc into t classes
C0, C1, . . . , Ct−1 each of size s. We say that a partition Y of Ωc is j-cyclic
(with respect to X) if X and Y have t− j common classes, and if, numbering
the other j classes C0, . . . , Cj−1, for each Ci (i = 0, . . . , j − 1) there is a
point ci of Ci such that the j classes of Y which differ from those of X are
(Ci − {ci}) ∪ {ci+1}, with the subscripts computed modulo j. We define the
cycle of Y to be the cycle (C0, . . . , Cj−1). As X is supposed to be fixed, if s ≥ 3
then the points c0, . . . , cj−1 are uniquely determined by Y , and are called the
special points of Y . For every j = 2, . . . , t, the set of j-cyclic partitions (with
respect to X) is an orbit Oj of Gx.

Now fix a block B incident with x. Since we can identify the points of the
biplane D with the partitions of Ωc into t classes of size s, for simplicity
we will refer to the partitions whose corresponding points of the biplane are
incident with B simply as the partitions incident with B.

For every j = 2, . . . , t, the block B is incident with at least one j-cyclic
partition Yj, (since G is flag-transitive), and there is an even permutation of
the elements of Ωc that preserves X and Yj, stabilising each of their t − j
common classes and acting as Zj on the remaining j classes of X. Therefore
GxB acts as St on the t classes of X. As a consequence, for any two classes C0

and C1 of X, the block B is incident with at least one 2-cyclic partition with
cycle (C0, C1).
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Now we claim that s ≥ 3. Suppose to the contrary that the classes of X have
size 2. Then there are only two 2-cyclic partitions with cycle (C0, C1), so B
is incident with at least half of the points of the biplane corresponding to the
2-cyclic partitions, which implies that there are at most two blocks incident
with x, a contradiction. Therefore s ≥ 3.

Now we claim that any two 2-cyclic partitions incident with B have a common
special point. Suppose to the contrary that for two points y and z incident
with the block B, the corresponding 2-cyclic partitions Y and Z have cycle
(C0, C1), the special points c0 and c1 of Y being both distinct from the special
points of Z. There is an even permutation of Ωc that stabilises the partitions X
and Z, and maps {c0, c1} onto any other disjoint pair {c′0, c

′
1} (where c′i ∈ Ci).

Therefore, the number m of 2-cyclic partitions with cycle (C0, C1) incident
with B satisfies m ≥ s2 − 2s + 1. However, the flag-transitivity of G and the
fact that GxB acts as St on the t classes of X imply that m divides the total
number s2 of 2-cyclic partitions with cycle (C0, C1), so m = s2 since s ≥ 3.
Therefore the block B is incident with the whole orbit O2 of Gx consisting of
all 2-cyclic partitions, which implies that B is the only block incident with x,
and this is a contradiction. Therefore any two 2-cyclic partitions incident with
B have a common special point.

If t ≥ 3, then since GxB acts as St on the t classes of X, and since any two
2-cyclic partitions incident with B have a common special point, t = 3 and
only one point ci in each class Ci is a special point of some 2-cyclic partition
incident with B. However there is an even permutation of Ωc that preserves
each of the classes C0, C1, C2, fixing c0 and c1 but mapping c2 onto any other
point of C2, preserving x and B but not {c0, c1, c2}, a contradiction. Therefore
t = 2.

It follows that B is incident with only one partition, say Y , with special points
{c0, c1}. If the size of C0 and C1 is greater than 3, then B is incident with some
partition Z different from Y and X, and there is an even permutation of Ωc

which leaves X and Z invariant, but does not preserve {c0, c1}, a contradiction.
Therefore s = 3.

Hence c = 6, and since the points of D can be identified with the partitions
of Ω6 into 2 classes of size 3, v = 10. However, there is no biplane with 10
points, a contradiction.

3.3 Case (3)

Here first of all we mention that if G ∼= Sc then Gx � Ac, since [G : Gx] =
v > 2. If the number k of blocks incident with a point is a power of 2, then
v = [G : Gx] and (v, k) ≤ 2 imply that the group Gx contains a subgroup
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acting transitively on 2 or 4 points of Ωc, and fixing all other points, so by a
theorem of Marggraf [21, Th.13.5], c ≤ 8. Now v divides |G|, so v must be a
divisor of |Sc| for 5 ≤ c ≤ 8. The only possibilities such that v > 2 and 8v − 7
is a square are v = 4, 16, and 56. Since we had assumed the biplane to be
non-trivial and to have parameters different to (16,6,2), we immediately rule
out v = 4 or 16, and v = 56 forces k = 11, a contradiction.

If k is not a power of 2, then let p be an odd prime divisor of k, so p divides
|Gx|. Since v = [G : Gx] and (k, v) ≤ 2, Gx contains a Sylow p-subgroup of G,
and so Gx acting on Ωc contains an even permutation with exactly one cycle
of length p and c − p fixed points. By a result of Jordan [21, Th. 13.9], the
primitivity of Gx on Ωc yields c−p ≤ 2, that is c−2 ≤ p ≤ c. This implies that
p2 does not divide |G|, so p2 does not divide k. Therefore either k is a prime,
namely c− 2, c− 1, or c, or the product of two twin primes, namely c(c− 2).
On the other hand, k2 > v, and a result of Bochert [21, Th. 14.2], implies that

v ≥
b c+2

2
c!

2
. From this and the previous conditions on k, the possibilities are

c = 13(k = 11 · 13), 8, 7, 6, or 5.

If c = 13, then k = 143, so k(k − 1) = 2(v − 1) forces v = 10154. But if v is
even, then k−2 = 141 must be a square (by a theorem of Schützenberger [20]),
however 141 is not a square, which is a contradiction.

As we have seen earlier in this proof, for 5 ≤ c ≤ 8 the only possibility is the
(56,11,2) biplane, which cannot happen given the above conditions on k.

We now consider the case c = 6, and G ∼= M10, PGL2(9), or PΓL2(9). Check-
ing the divisors of 22|A6|, the only possibilities for v such that 8v − 7 is a
square are v = 4 and 16, which have been already ruled out.

This completes the proof of Lemma 6, and hence X is not an alternating
group.

4 The Case in which X is a Sporadic Group

Here we consider X to be a sporadic group.

Lemma 7 If D is a non-trivial biplane with a flag-transitive, primitive, al-
most simple automorphism group G, then Soc(G) = X is not a sporadic group.

PROOF. The way we proceed is as follows: We assume that the automor-
phism group G of D is almost simple, such that X E G ≤ AutX with X a

7



sporadic group. Then G = X, or G = AutX, since for all sporadic groups X
either AutX = X or AutX = 2.X. We know that v = [G : Gx], and Gx is
a maximal subgroup of G. The lists of maximal subgroups of X and AutX
appear in [5,13,14,16]. (They are complete except for the 2-local subgroups of
the Monster group). For each sporadic group (and its automorphism group),
we rule out the maximal subgroups the order of which is too small to satisfy
2|G| < |Gx|

3. In the remaining cases, for those v > 2 , we check if 8v − 7 is a
square, or if 2 (|Gx|)

2
v′ > v (by |Gx|v′ we mean the part of |Gx| coprime to v).

If this does happen, we check the remaining arithmetic conditions (k − 2 is a
square if v is even, k(k − 1) = 2(v − 1)).

To illustrate this procedure, suppose X = J1. Then G = J1, since |OutJ1| = 1.
The maximal subgroups H of J1, with their orders and indices are as follows:

L2(11), of order 660, v = 266,
23.7.3, of order 168, v = 1045,
2 × A5, of order 120, v = 1463,
19 : 6, of order 114, v = 1540,
11 : 10, of order 110, v = 1596,
D6 × D10, of order 60, v = 2926, and
7 : 6, of order 42.

In the last case, the order of the group is too small to satisfy |Gx|
3 > 2|G|,

and in all the remaining cases 8v − 7 is not a square.

Proceeding in the same manner with the other sporadic groups, the only cases
in which these arithmetic conditions are met are the following:

(1) G = M23, Gx = 24 : (A5 × 3) : 2, (v, k) = (1771, 60).
(2) G = M24, Gx = 26 : (3 · S6), (v, k) = (1771, 60).

In the first case the subdegrees of M23 on 24 : (A5 × 3) : 2 are 1, 60, 480, 160,
90, and 20 (calculated with GAP [9], my sincere thanks to A.A. Ivanov and
D. Pasechnik), but 30 does not divide 20, contradicting the fact that k must
divide twice every subdegree.

In the second case, the subdegrees are 1,90, 240, and 1440 [12, pp.126], however
M24 has only one conjugacy class of subgroups of index 1771 [5], so if x is a
point and B is a block Gx is conjugate to GB, so Gx fixes a block, say, B0. But
x cannot be incident with B0 since the flag-transitivity of G implies that Gx

is transitive on the k blocks incident with x. Hence x and B0 are not incident,
and so some of the points incident B0 form a Gx-orbit, which is a contradiction
since the smallest non-trivial Gx-orbit has size 90, and B0 is incident with 60
points.
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This completes the proof of Lemma 7, and hence X is not a sporadic group.

The proof of our Main Theorem is now complete.
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