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ABSTRACT

In this paper we give a new proof that that there are no chiral polyhedra whose automor-
phism group is isomorphic to PSL(2, q) or PGL(2, q). Our proof uses the sharp 3-transitive
action of PGL(2, q) on the projective line PG(1, q).
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1 Introduction

Abstract polytopes, which generalise convex polytopes, were introduced in the 1970’s as ‘inci-
dence polytopes’. In (McMullen-Schulte, 2002) McMullen and Schulte developed in great detail
the theory of abstract regular polytopes. Regular polytopes have been much more studied, but
in recent years there have been strong developments on chiral polytopes. In particular, people
got interested in studying whether regularity or chirality is more prevalent. For some of them,
the approach has been to determine whether a given group G is the full automorphism group
of chiral and/or regular polytopes. Another relevant question is to determine the maximal rank
such a polytope can have.
In this paper we focus on projective linear groups and chiral polytopes of rank 3, also called
chiral polyhedra. We assume G is either PGL(2, q) or PSL(2, q). We prove, using the sharp
3-transitive action of PGL(2, q) on a projective line PG(1, q), that G is not the full automor-
phism group of a chiral polyhedron. Polyhedra are regular maps. Regular maps are a special



class of hypermaps, namely those with a linear Coxeter diagram. In this context, Sah enu-
merated in (Sah, 1969) orientably regular hypermaps with automorphism groups isomorphic
to PSL(2, q) and PGL(2, q). Singerman used a result of Macbeath (Macbeath, 1969) to prove
in (Singerman, 1974, Theorem 3) that every regular map for PSL(2, q) is reflexible. Later, Con-
der, Potočnik and Širáň in (Conder et al., 2008) extended this result to reflexible hypermaps in
both orientable and non-orientable surfaces. In (Conder et al., 2008, Section 6), they obtained
that every regular map for PGL(2, q) is also reflexible. Their methods are algebraic involving
matrix groups acting on hypermaps, whereas we give a more geometric proof in the context
of abstract polytopes (finite abstract polytopes of rank 3 are hypermaps, but not necessarily
vice-versa). The methods in our proof allow us to consider the more general case in which G
is an almost simple group with socle PSL(2, q), and they are used in ongoing work involving
such groups and chiral polytopes of higher rank, thus extending the main theorem in this paper
in terms both of the groups involved and of the ranks of the polytopes, towards solving two
conjectures stated below.
In Section 2 we give general definitions and background on abstract polytopes. In Section 3 we
give some known experimental results and state conjectures based on this information, and in
Section 4 we give our proof for the non-existence of chiral polyhedra with full automorphism
group isomorphic to PGL(2, q) or PSL(2, q).

2 Abstract polytopes

For detailed definitions and results on abstract polytopes (regular and chiral), we refer the
reader to (McMullen-Schulte, 2002) and (Schulte-Weiss, 1994). Here we only consider poly-
topes of rank 3, hence we give our definitions in the rank three case.
An abstract polyhedron (P,≤) (or polyhedron for short) is a partially ordered set whose ele-
ments are called faces. It has a strictly monotone rank function rank : P → {−1, 0, 1, 2, 3}, a
unique face F−1 corresponding to the empty set and a unique face F3 corresponding to P. A
flag of (P,≤) is a maximal chain (which always has 5 faces, one of each rank). Two flags F and
F ′ of (P,≤) are adjacent provided they have 4 common faces. A polyhedron (P,≤) is strongly
connected, meaning that given any two flags F and F ′ of (P,≤), there exists a sequence of
flags F =: F0, F1, . . . Fn := F ′ such that Fi and Fi+1 are adjacent (i = 0, . . . , n− 1). A polyhe-
dron (P,≤) satisfies the diamond condition, meaning that for any two faces F ≤ G of (P,≤)

with rank(F ) = rank(G) − 2, there are exactly two elements H and H ′ of rank rank(F ) + 1

such that F ≤ H,H ′ ≤ G. We will usually write P instead of (P,≤). Since we require P to
be strongly flag connected and satisfy the diamond condition, any automorphism of P is deter-
mined by its action on a given flag. If P is regular (that is, its automorphism group is transitive
on the set of flags), then fixing a base flag Φ yields a set {ρ0, ρ1, ρ2} of involutions which gener-
ate Γ(P) := Aut(P), where for each i = 0, 1, 2, the involution ρi maps Φ to its unique i-adjacent
flag, that is the unique flag distinct from Φ whose j-elements with j 6= i are the same as those
of Φ. The rotation subgroup Γ+(P) of Γ(P) is the subgroup consisting of words of even length
of ρ0, ρ1, ρ2, namely Γ+(P) = 〈ρ0ρ1, ρ1ρ2〉. Obviously, Γ+(P) has index at most 2 in Γ(P). Let
σi := ρi−1ρi (i = 1, 2). We have (σ1σ2)2 = 1Γ(P). If Γ+(P) has index 2 in Γ(P) then we say that



G Rank 3 Rank 4 G Rank 3 Rank 4
PSL2(4) 0 0 PGL2(4) 0 0
PSL2(5) 0 0 PGL2(5) 0 6
PSL2(7) 0 0 PGL2(7) 0 10
PSL2(8) 0 2 PGL2(8) 0 2
PSL2(9) 0 0 PGL2(9) 0 2
PSL2(11) 0 0 PGL2(11) 0 24
PSL2(13) 0 6 PGL2(13) 0 14
PSL2(16) 0 2 PGL2(16) 0 2
PSL2(17) 0 10 PGL2(17) 0 8
PSL2(19) 0 4 PGL2(19) 0 28
PSL2(23) 0 0 PGL2(23) 0 10
PSL2(25) 0 2 PGL2(25) 0 2
PSL2(27) 0 0 PGL2(27) 0 4
PSL2(29) 0 10 PGL2(29) 0 26
PSL2(31) 0 6 PGL2(31) 0 46
PSL2(32) 0 6 PGL2(32) 0 6

Table 1: Number of abstract chiral polytopes for PSL(2, q) and PGL(2, q)

P is directly regular. In this case there is an involution in Aut(P) inverting σ1 and σ2.
A polyhedron P is chiral if its automorphism group has two orbits on the set of flags and
adjacent flags lie in different orbits. In this case there is a generating set {σ1, σ2} of Γ(P)

satisfying the same conditions as those of the rotation subgroup of a directly regular polytope,
but there is no involution in Aut(Γ(P)) inverting σ1 and σ2.

3 Experimental results and conjectures

Table 1 is extracted from (Hartley et al., 2012). It lists the number of abstract chiral polytopes
associated to the groups PSL(2, q) and PGL(2, q) for 4 ≤ q ≤ 32. It suggests the following
conjectures:

Conjecture 3.1. No abstract chiral polyhedron has PSL(2, q) or PGL(2, q) as its automorphism
group.

Conjecture 3.2. The maximal rank of an abstract chiral polytope whose automorphism group
is either PSL(2, q) or PGL(2, q) is 4.

Conjecture 3.3. For each q ≥ 5, there exists at least one abstract chiral polytope of rank four
having PGL(2, q) as automorphism group.

Conjecture 3.1 is known to be true already as we mentioned in the introduction (see (Conder
et al., 2008)). However, the proof given by Conder et al. uses matrix groups and linear algebra.
Hence, it is hard to use their techniques to study groups PSL(2, q) ≤ G ≤ Aut(PSL(2, q)). We
give in Section 4 a proof based on the sharply 3-transitive action of PGL(2, q) on a projective
line PG(1, q).



4 The rank three case

Given a group G and two generators σ1 and σ2 of G, the group G is the full automorphism
group of an abstract chiral polyhedron of type {o(σ1), o(σ2)} provided that the following four
conditions hold.

(C1) 〈σ1, σ2〉 = G

(C2) (σ1σ2)2 = 1G

(C3) 〈σ1〉 ∩ 〈σ2〉 = 1G

(C4) There does not exist α ∈ Aut(G) : α((σ1, σ2)) = (σ−1
1 , σ−1

2 )

All chiral polyhedra having G as full automorphism group are obtained by looking at pairs of
elements {σ1, σ2} that satisfy these four conditions. The main theorem of this article is as
follows.

Theorem 4.1. No abstract chiral polyhedron has full automorphism group isomorphic to either
a PSL(2, q) or PGL(2, q) group.

We first recall some basic results related to the projective linear groups PGL(2, q) and PSL(2, q),
that will be used to prove Theorem 4.1. The proof of these results is left to the interested reader.

Lemma 4.2. LetG ∼= PGL(2, q) be a permutation group acting on the q+1 points of a projective
line PG(1, q), with q = pn, p a prime and n a positive integer.

1. If g ∈ G is such that o(g) | q, then o(g) = p. Moreover, all elements of order p in PGL(2, q)

are conjugate and inside the unique subgroup of G isomorphic to PSL(2, q).

2. For g ∈ G with g2 6= 1G,

(a) o(g) | q if and only if |fix(g)| = 1;

(b) o(g) | q − 1 if and only if |fix(g)| = 2;

(c) o(g) | q + 1 if and only if |fix(g)| = 0;

3. If α ∈ PGL(2, q) swaps two distinct points of PG(1, q) then α is an involution.

For the case where σi fixes exactly one point, we can go further by counting the number of
distinct involutions which invert σi. These involutions act as candidates for counter examples
to chirality condition (C4).

Lemma 4.3. If σ1 ∈ PGL(2, q) with o(σ1) = p, then there are exactly q involutions of PGL(2, q)

which invert σ1 by conjugation.

Proof. Let σ1 ∈ PGL(2, q), such that o(σ1) | q. Then by Lemma 4.2 (2)(a), σ1 fixes one
point, say P1. By Lemma 4.2 (1), σ1 has order p and all elements of order p are conjugate in
PGL(2, q). So we can fix σ1 to be the mapping σ1 : PG(1, q) → PG(1, q) : x 7→ x + 1. It has
inverse σ−1

1 : x 7→ x − 1. We now define I := {α ∈ PGL(2, q) | σα1 = σ−1
1 , o(α) = 2}. Any

α which inverts σ1 must also fix P1, so α ∈ PGL(2, q)P1
∼= AGL(1, q). The form of α is then



α : x 7→ ax+b, and since we want α to be an involution, α2(x) = a(ax+b)+b = a2x+ab+b = x.
Equating coefficients, we see that a = ±1, and ab + b = 0. If a = 1 then b = 0, so α is the
identity, and thus not an involution. However, if a = −1 then any b ∈ GF(q) gives an involution
α : x 7→ −x+b. We require α to invert σ1 by conjugation, so σα1 = −(−x+b+1)+b = σ−1

1 = x−1,
which holds for any b ∈ GF(q). Since there are q choices for b, |I| = q. i.e. there are q distinct
α ∈ PGL(2, q) which invert σ1 by conjugation.

We will show that for any σ1 and σ2 in G that satisfy the chirality conditions (C1), (C2) and (C3)
above, we can always find an α ∈ PGL(2, q) which makes condition (C4) fail. Each of σ1 and
σ2 can fix between 0 and 2 points. Hence, in terms of fixed points, there are 9 possible ordered
pairs [σ1, σ2]. We also know that the order in which we choose σ1 and σ2 is irrelevant. One can
easily see that 〈σ1, σ2〉 = 〈σ2, σ1〉, 〈σ1〉 ∩ 〈σ2〉 = 〈σ2〉 ∩ 〈σ1〉 and α([σ1, σ2]) = [σ−1

1 , σ−1
2 ] if and

only if α([σ2, σ1]) = [σ−1
2 , σ−1

1 ]. So it remains to show that condition (C2) is symmetric. Indeed,
assuming (σ1σ2)2 = 1G and letting (σ2σ1)2 = x, then by expansion and left multiplication
we can see that σ1(σ2σ1σ2σ1) = σ1x, but since (σ1σ2)2 = 1G, it follows that σ1 = σ1x, and
hence x = 1G. This leaves 6 cases. However we shall prove the cases where o(σi) | q ± 1

simultaneously. So it suffices to consider the following 3 main cases.

1. o(σ1) | q ± 1 and o(σ2) | q ± 1

2. o(σ1) | q ± 1 and o(σ2) | q

3. o(σ1) | q and o(σ2) | q

We will first consider the case where both σ1 and σ2 fix either 0 or 2 points, that is o(σ1) | q ± 1

and o(σ2) | q ± 1.

Lemma 4.4. Let G be isomorphic to either PSL(2, q) or PGL(2, q), with q ≥ 4. Let σ1, σ2 ∈ G
be elements that satisfy conditions (C1), (C2) and (C3). If o(σ1) | q ± 1 and o(σ2) | q ± 1, then
there exists α ∈ PGL(2, q) such that σα1 = σ−1

1 and σα2 = σ−1
2 and hence condition (C4) fails.

Proof. Note that (q2 − 1) = (q + 1)(q − 1), so necessarily o(σ1) and o(σ2) both divide (q2 − 1).
Thus, we may view σ1, σ2 as elements of PGL(2, q2) acting on PG(1, q2) and G as the stabiliser
of a subline PG(1, q) of PG(1, q2). Both σ1 and σ2 then fix 2 points of PG(1, q2) by Lemma 4.2
(2)(b). Since G is not a subgroup of the stabiliser of a point in PGL(2, q2), we can assume that
fix(σ1) ∩ fix(σ2) = ∅.
Define A := NPGL(2,q2)(〈σ1〉) and B := NPGL(2,q2)(〈σ2〉). Then A ∼= B ∼= D2(q2−1). As dihedral
groups, A and B have cyclic subgroups of index 2, say A′ and B′, each of which fixes the same
2 points as σ1 and σ2 respectively. The intersection A′∩B′ therefore fixes 4 points, which forces
it to be the identity as PGL(2, q2) is sharply 3-transitive on PG(1, q2). IfH := A∩B, thenH must
consist solely of involutions since A′ ∩B′ = {1G}. Let fix(σ1) := {s, t} and fix(σ2) := {u, v}. By
the 3-transitivity of PGL(2, q2), we can choose an α ∈ PGL(2, q2) such that α(s) = t, α(t) = s

and α(u) = v. By Lemma 4.2 (3), α must then be an involution, and so α(v) = u. Moreover,
α 6= 1G must be in H as it interchanges s and t and it also interchanges u and v. Therefore
H ≥ C2. Also, α ∈ PGL(2, q2) must then invert both σ1, σ2 as it is a non-central involution of



both A and B, so it remains to show that α is in the unique subgroup PGL(2, q) containing G
in PGL(2, q2).
We know α ∈ PGL(2, q2) is such that σα1 = σ−1

1 and σα2 = σ−1
2 , so α ∈ NPGL(2,q2)(〈σ1, σ2〉α).

However, since 〈σ1, σ2〉α = 〈σα1 , σα2 〉 = 〈σ−1
1 , σ−1

2 〉 = 〈σ1, σ2〉, we have that α ∈ NPGL(2,q2)(〈σ1, σ2〉) =:

N . By looking at the subgroup structure of PGL(2, q2) (see (Cameron et al., 2006) for instance),
one readily sees that N must be isomorphic to PGL(2, q). Since α ∈ N , it is clear that α is in
the unique PGL(2, q) that contains 〈σ1, σ2〉. Hence α contradicts condition (C4).

We now prove the case where σ1 and σ2 both fix exactly 1 point of PG(1, q).

Lemma 4.5. Let G be either PSL(2, q) or PGL(2, q), with q ≥ 4. Let σ1, σ2 ∈ G be elements that
satisfy conditions (C1), (C2) and (C3). If o(σ1) | q and o(σ2) | q, then there exists α ∈ PGL(2, q)

such that σα1 = σ−1
1 and σα2 = σ−1

2 and hence condition (C4) fails.

Proof. By Lemma 4.2 (1), we know that σi has order p, and thus it fixes exactly one point Pi
(i = 1, 2). Also P1 6= P2 in order to have (C1). By Lemma 4.3, there are q distinct involutions
α ∈ PGL(2, q) with σα1 = σ−1

1 .
We can assume that q is odd, for if it were even then o(σ1) = 2. Then G = 〈σ1, σ2〉 = 〈σ1, σ1σ2〉,
the latter being a group generated by two involutions. Hence G is a dihedral group, not an
almost simple group of type PSL(2, q), and q ≤ 3, a contradiction.
Define J := {σ2 ∈ PGL(2, q) | o(σ2) = p, o(σ1σ2) = 2}. As P1 6= P2, there are then q+ 1−1 = q

choices for the point P2. Since σ1 only fixes P1, there exist a, b ∈ PG(1, q) with σ1(b) = P2

and σ1(P2) = a. There are q − 1 elements of order p in GP2 , but by the sharp 3-transitivity of
PGL(2, q), only one of them sends a to b, a necessary condition for σ1σ2 to be an involution.
There is then a unique σ2 ∈ J for each of the q choices of P2, so we can conclude that |J | = q.
By Lemma 4.3, there are exactly q involutions which invert σ1 in PGL(2, q). Take α that fixes
P1 and inverts σ1 by conjugation, so as in the proof of Lemma 4.3,

σ1 : PG(1, q)→ PG(1, q) : x 7→ x+ 1

and
α : PG(1, q)→ PG(1, q) : x 7→ −x+ b.

Now, α fixes another point as α(x) = −x+ b = x if and only if x = 2−1b. Note that the assump-
tion that the characteristic is odd implies this point is unique. Hence, given σ1 ∈ PGL(2, q)

and P2 ∈ PG(1, q), there is a unique α ∈ PGL(2, q) which fixes both P1, P2 and inverts
σ1, and a unique σ2 ∈ PGL(2, q) fixing P2 in PG(1, q) with (σ1σ2)2 = 1G. We know that
σα2 (P2) = σ−1

2 (P2) = P2 and σα2 (b) = σ−1
2 (b) = a, and that σα2 is of order p. Hence we can con-

clude that σα2 is equal to σ−1
2 . Therefore, if σ1, σ2 satisfy chirality conditions (C1), (C2) and (C3),

then there exists α ∈ Aut(G) that inverts them both and condition (C4) is not satisfied.

We now combine the techniques used in the first two cases to prove the final case where σ1

fixes exactly 1 point, and σ2 fixes either 0 or 2 points.

Lemma 4.6. Let G be either PSL(2, q) or PGL(2, q), with q ≥ 4. Let σ1, σ2 ∈ G be elements
that satisfy conditions (C1), (C2) and (C3). If o(σ1) | q and o(σ2) | q ± 1, then there exists
α ∈ PGL(2, q) such that σα1 = σ−1

1 and σα2 = σ−1
2 and hence condition (C4) fails.



Proof. Let G be either PSL(2, q) or PGL(2, q), with q ≥ 4, σ1 ∈ G be an element with order
dividing q. By Lemma 4.2 (1), σ1 has order p, so σ1 fixes one point, say P3. Let σ2 ∈ G be
an element with order dividing q ± 1, then as with Lemma 4.4, o(σ2) | q2 − 1, so we consider
σ1, σ2 as elements of PGL(2, q2), acting on the projective line PG(1, q2). In this case, σ2 fixes
two points, P1 and P2 ∈ PG(1, q2), both distinct from P3. Using the sharp 3-transitivity of
PGL(2, q2) on PG(1, q2), we can choose α ∈ PGL(2, q2) such that α(P3) = P3, α(P1) = P2 and
α(P2) = P1. Note that since P1 and P2 are swapped by α, it must be an involution by Lemma 4.2
(3). Additionally, σ1 is in the stabiliser of the point P3, so it is in PGL(2, q2)P3

∼= AGL(1, q2).
By the same argument used in the proof of Lemma 4.5, α necessarily inverts σ1. Now, σ1

only fixes P3, so there exist a, b ∈ PG(1, q2) with σ1(a) = P2 and σ1(P2) = b. We require
(σ1σ2)2 = 1G, so σ2 must map b to a. Since α is an inner automorphism it preserves the
order of elements, specifically (σ1σ2)α is an involution, hence (σ1σ2)α(a) = P2. We know
that σα1 (b) = P2 and σα1 (P2) = a as α inverts σ1. Moreover, σα2 (P2) = P2. Hence σα2 (a) =

σ1(σα2 )−1σ1(a) = σ1(σα2 )−1(P2) = σ1(P2) = b. By definition of α, we also have σα2 (P1) = P1

and σα2 (P2) = P2. So by the sharp 3-transitivity of PGL(2, q2), σα2 = σ−1
2 . There is then an

α ∈ PGL(2, q2) which inverts σ1, σ2, but by the same reasoning as in the proof of Lemma 4.4,
α is also in the unique subgroup PGL(2, q) containing G. Therefore, if σ1, σ2 satisfy chirality
conditions (C1), (C2) and (C3), condition (C4) is not satisfied.

Proof of Theorem 4.1. Combining the 3 lemmas above, we get the proof for q ≥ 4. The cases
PSL(2, 2) ∼= S3, PSL(2, 3) ∼= A4, and PGL(2, 3) ∼= S4 are straightforward to check by hand.

5 Future work

The techniques developed in this article have been pushed further by Leemans and Moeren-
hout in order to study almost simple groups with socle PSL(2, q) (Leemans-Moerenhout, In
preparation). Conjectures 3.2 and 3.3 will be addressed in a joint paper of Leemans, Moeren-
hout and O’Reilly-Regueiro (Leemans et al., In preparation).
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Conder, M. and Potočnik, P. and Širáň, J. 2008. Regular hypermaps over projective linear
groups. J. Aust. Math. Soc. 85(2): 155–175.



Hartley, M. I. and Hubard, I. and Leemans, D. 2012. Two atlases of abstract chiral polytopes
for small groups. Ars Math. Contemp., 5(2):371–382.

Leemans, D. and Moerenhout, J. In preparation. Chiral polyhedra arising from almost simple
groups with socle PSL(2, q).

Leemans, D. and Moerenhout, J and O’Reilly-Regueiro, E. In preparation. Chiral polytopes
and almost simple groups with PSL(2, q) socle.

Macbeath, A. M. 1969. Generators of the linear fractional groups. Number Theory (Proc. Sym-
pos. Pure Math., Vol. XII, Houston, Tex., 1967) pp. 14–32 Amer. Math. Soc., Providence,
R.I.

McMullen, P. and Schulte, E. 2002. Abstract Regular Polytopes. Encyclopedia Math. Appl., vol.
92, Cambridge University Press, Cambridge.

Sah, C. 1969. Groups related to compact Riemann surfaces, Acta Math. 123:13–42.

Singerman, D. 1974. Symmetries of Riemann surfaces with large automorphism group, Math.
Ann. 210:17–32.

Schulte, E. and Weiss, A. I. 1994. Chirality and Projective linear groups. Discrete Math.
131:221–261.


