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ABSTRACT

This thesis is a contribution to the theory of symmetric designs. A (v, k, λ)-

symmetric design is an incidence structure consisting of a set P of v points, a

set of B of v blocks, and an incidence relation between them, in which every

block is incident with exactly k points, and every pair of points is incident

with exactly λ blocks.

A flag in a design is a pair (p, B0) such that the point p is incident with

the block B0. In this thesis we will focus on symmetric designs that have

flag-transitive automorphism groups, that is, automorphism groups that act

transitively on the flags of the design.

Our results focus on (v, k, λ)-symmetric designs with λ small. When

λ = 1, these are projective planes, on which much work has been done. It is

conjectured that for a given λ > 1, there are only a finite number of (v, k, λ)-

symmetric designs. When λ = 2 they are called biplanes, and it is this case

that the present work is mainly concerned with.

Let G be a flag-transitive automorphism group of a (v, k, λ)-symmetric

design D. Here we show that if λ ≤ 7, then either G is primitive, or (v, k, λ)

is one of the following: (16,6,2), (45,12,3), (15,8,4), (96,20,4), (175,30,5),

(16,10,6), (36,15,6), (288,42,6), (27,14,7), (247,42,7), or (441,56,7). We also

show that if D is a biplane and G is primitive on the set of points, then G

is of affine or almost simple type, and we then have classification results for

flag-transitive biplanes for the affine and almost simple cases.
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1. INTRODUCTION

We begin this chapter by giving definitions and some of the background

results on symmetric designs, flag-transitivity, and biplanes. In the next

section we state the O’Nan-Scott Theorem, which is used in the proof of one

of our results, and in the final section we state the results that will be proved

throughout this work.

1.1 Symmetric Designs

Incidence structures appear in many branches of mathematics. An incidence

structure consists of a set of points P , a set of blocks B, and an incidence

relation between them. One particular class of incidence structures are the

symmetric designs, defined as follows:

Definition 1.1. D = (P, B, I) an incidence structure is a (v, k, λ)-symmetric

design if and only if:

(i) |P | = |B| = v

(ii) Every block is incident with exactly k points.

(iii) Every pair of points is incident with exactly λ blocks.

We will show later that these conditions imply that every point is incident

with exactly k blocks, and every pair of blocks is incident with exactly λ

points. To avoid trivial examples, we will assume k > λ.

We now mention a few of the many examples of symmetric designs.
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Examples 1.2. The projective plane PG(2, 2), or the Fano Plane, is a

(7,3,1)-symmetric design; where P is the set of 1-dimensional subspaces of

a 3-dimensional vector space over GF (2), B is the set of 2-dimensional sub-

spaces, and incidence is given by containment. We can verify the definition

given above. There are 7 subspaces of dimension 1 in PG(2, 2), and 7 sub-

spaces of dimension 2; so v = 7. There are three different non-zero vectors in

each 2-dimensional subspace, and every non-zero vector is in three different

subspaces of dimension 2; so k = 3. Finally, every two non-zero vectors are

linearly independent, hence a basis of one 2-dimensional subspace; and dually

every two 2-dimensional subspaces intersect in one 1-dimensional subspace.

Figure 1.1: PG(2, 2)

In general, projective spaces PG(n, q) are examples of symmetric designs;

taking V = Vn+1(q) an n-dimensional vector space over the field of q elements,

the points as the 1-dimensional subspaces, and the blocks as the hyperplanes.

The parameters will then be v = qn +qn−1 + . . .+q+1, k = qn−1 + . . .+q+1,

and λ = qn−2 + . . . + q + 1.

Another kind of symmetric designs are those constructed from difference

sets. Let (G, +) be an abelian group, and S a proper non-empty subset of

G. Then we say S is a λ-difference set if and only if the list of all non-zero

differences s− s′ (s, s′ ∈ S) contains every non-zero element of G exactly λ
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times. From a λ-difference set, we can construct a (v, k, λ)-symmetric design

as follows: Let P = G, and B = {S + g : g ∈ G}. Then v = |P | = |B|, and

k = |S|.
One particular type of difference sets are the Paley Difference Sets:

Let q ≡ 3 (mod 4) be a prime power, G = (GF (q), +), and S the set of

non-zero squares of G. Then P = G, B = {S + g : g ∈ G}, and we have

|P | = |B| = v = q, k = q−1
2

, and λ = q−3
4

. In particular, when q = 7, with

this construction we get the Fano Plane, mentioned above.

Definition 1.3. The complement D′ of D a (v, k, λ)-symmetric design is a

(v, v− k, v− 2k +λ)-symmetric design whose set of points is the same as the

set of points of D, and whose blocks are the complements of the blocks of D.

That is, take the same set of points, and replace incidence by non-incidence

and vice-versa.

Definition 1.4. If D is a (v, k, λ)-symmetric design (or its complement), we

call n = k− λ the order of D. (Note that the order of D is the same as that

of D′).

Before stating some results giving arithmetical conditions on the param-

eters of a symmetric design, we give the following:

Definition 1.5. A flag in a symmmetric design is a pair (p, B0), where p is

a point, B0 is a block, and they are incident.

Lemma 1.6. [38, 1.1] Let D be a (v, k, λ)-symmetric design. Then every

point is incident with exactly k blocks, and every pair of blocks is incident

with exactly λ points.

We now state three conditions on the parameters of a symmetric design

that are necessary (but not sufficient!) for its existence.

Lemma 1.7. If D is a (v, k, λ)-symmetric design, then the following equation

holds: λ(v − 1) = k(k − 1).
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Proof. Fix a point x of D. Now we count the number of flags (p, Bi) of D

such that p is different from x, and x is incident with the block Bi, in two

different ways.

Each block incident with x is also incident with k − 1 other points, and

since there are exactly k blocks incident with x (by previous lemma), we have

k(k − 1) such flags.

On the other hand, for each point p of D different from x, the pair {p, x}
is incident with exactly λ blocks, and since there are v − 1 points different

from x in D, there are λ(v − 1) such flags. Hence λ(v − 1) = k(k − 1).

Theorem 1.8 (Schutzenberger.). [58] If D is a (v, k, λ)-symmetric design

with v even, then n = k − λ is a square.

Theorem 1.9 (Bruck-Ryser-Chowla.). [38, Theorem. 2.1] If D is a

(v, k, λ)-symmetric design with v odd, then the equation

(k − λ)x2 + (−1)
v−1
2 λy2 = z2

has a non-trivial integral solution.

Lemma 1.10. [6, Proposition 3.11] Let D be a (v, k, λ)-symmetric design,

with n = k − λ. Then 4n− 1 ≤ v ≤ n2 + n + 1.

Proof. Since λ(v − 1) = k(k − 1), we have that

v − 1 =
k(k − 1)

λ
= λ + 2n +

n(n− 1)

λ
,

so

λ =
1

2

(

v − 2n±
√

(v − 2n)2 − 4n(n− 1)
)

.

The two solutions correspond to D and D′. As λ and λ′ ≥ 1, we need

v − 2n− 2 ≥
√

(v − 2n)2 − 4n(n− 1), which yields the upper bound for v.

Also, (v − 2n)2 ≥
√

4n(n− 1), so v − 2n ≥ 2n − 1. (Note v ≥ 2n,
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and (2n − 1)2 is the least square integer which is greater than or equal to

4n(n− 1)).

The upper bound for v is achieved if and only if D or D′ is a projective

plane, and the lower bound is achieved if and only if D or D′ has parameters

v = 4n− 1, k = 2n− 1, and λ = n− 1. (This is a Hadamard design).

An automorphism of a design D is a permutation on the set of points

that also permutes the blocks, preserving the incidence relation; that is, a

permutation of the points that leaves the set of blocks invariant. The set of

automorphisms of a design, with the composition of functions form a group.

Note that since automorphisms of symmetric designs preserve the inci-

dence relation, an automorphism of a symmetric design is also an automor-

phism of the complement, therefore it suffices to consider designs in which

2k ≤ v.

One way to approach the problem of classifying symmetric designs is

by imposing conditions on the automorphism group. One such condition is

2-transitivity on points. This classification was completed by Kantor (1985):

Theorem 1.11 (Kantor.). [28] If D is a (v, k, λ)-symmetric design with

v > 2k and a 2-transitive automorphism group, then D is one of the following:

(i) PG(n, q).

(ii) A unique (11,5,2)-symmetric design.

(iii) A unique (176,50,14)-symmetric design, or

(iv) A (22m, 2m−1 (2m − 1) , 2m−1 (2m−1 − 1))-symmetric design, of which there

is one for each m ≥ 2.

Another condition that can be imposed on the automorphism group is

flag-transitivity:

Definition 1.12. An automorphism group G of a symmetric design D is

flag-transitive if for any two flags (p1, B1), (p2, B2) of D, there is a g ∈ G
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such that (p1)
g = p2 and (B1)

g = B2; or equivalently, (p1, B1)
g = (p2, B2).

That is, there is an element in the automorphism group of the design that

takes any point and any block it is incident with, to any other point and any

of the blocks with which it is incident.

There are of course, other conditions that can be imposed on the automor-

phism group of a design; (for example point-transitivity, block-transitivity,

point-primitivity, block-primitivity), and indeed work has been done with

these conditions, particularly for (v, k, 1)-designs, that is, linear spaces. In

the case of point-transitivity, if no other condition is imposed the admissi-

ble designs and groups appear to be too many to be classified. As stated

previously, Kantor completed the classification of symmetric designs with

automorphism groups that are transitive on pairs of points. For further dis-

cussion on these conditions see [7].

Symmetric designs with λ = 1 are projective planes. When k = 3, the only

flag-transitive linear spaces besides the affine spaces and projective spaces are

the Netto systems [16, p.98]. In the case of flag-transitivity much work has

been done for projective planes, and Kantor proved the following:

Theorem 1.13. [29] If D is a projective plane of order n admitting a flag-

transitive automorphism group G, then either:

(i) D is Desarguesian and G . PSL(3, n), or

(ii) G is a sharply flag-transitive Frobenius group of odd order (n2 + n +

1)(n + 1) and n2 + n + 1 is a prime.

In the latter case, only two examples are known, namely PG(2, 2) and

PG(2, 8); and any other would necessarily be non-Desarguesian due to a

result by Higman and McLaughlin [20], and also by Dembowski [17], which

states that the only Desarguesian planes admitting a sharply flag-transitive

automorphism group are PG(2, 2) and PG(2, 8).
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But we now consider λ > 1. There is a considerable difference between

these two cases in that for λ = 1 there are infinitely many symmetric designs,

whereas for any given λ > 1 there are only finitely many known examples,

and indeed, it is conjectured that for any given λ > 1 only finitely many

exist.

1.2 Biplanes

Definition 1.14. A biplane is a symmetric design with λ = 2, that is, a

(v, k, 2)-symmetric design.

Regarding the conjecture that for a given λ > 1 only finitely many sym-

metric designs exist, biplanes are a natural case to consider, not only because

2 is the first value of λ in this category, but also because among symmetric

designs with λ > 1 biplanes behave in a special way [10]. For example, in

any symmetric design if we define the line through two points to be the set

of points incident with every block through those two points, then if λ > 2,

the lines carry information about the design. However, for λ ≤ 2 the lines

are automatically determined, in projective planes they are the blocks, and

in biplanes they are the set of those two points, and hence they carry no

information.

Also, the class of symmetric designs such that the number of blocks inci-

dent with three points takes only two values has only finitely many designs

for a given λ > 2 [10], however all projective planes and biplanes are in this

class. Projecive planes and biplanes are unique among symmetric designs in

that any three points are incident with at most one block.

As we will see in the next chapter, the only known examples of biplanes

so far are for k = 3, 4, 5, 6, 9, 11, and 13. It can be seen from the parame-

ter restrictions (Lemma 1.7, and Theorems 1.8, and 1.9) that there are no

examples for k = 7, 8, 10 or 12.
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For k = 3, 4, and 5 the biplanes are unique up to isomorphism, for k = 6

there are exactly three non-isomorphic biplanes, for k = 9 there are exactly

four non-isomorphic biplanes, and for k = 11 and 13 there are in each case,

two known biplanes. In the latter case, it is a biplane and its dual.

We conclude this section with the following result, which is a consequence

of the parameter restrictions on symmetric designs given earlier in this chap-

ter.

Lemma 1.15. If D is a (v, k, 2)-biplane, then 8v − 7 is a square.

Proof. We know from Lemma 1.7 that for any (v, k, λ)-symmetric design,

λ(v−1) = k(k−1). So, in the case of a biplane, we have 2(v−1) = k(k−1).

If we solve this equation for k, we have that

k =
1 +

√
8v − 7

2
,

and since this must be an integer, 8v − 7 must be a square.

1.3 Results

In this section we state the main results that will be proved in this the-

sis. First, we give a summary of the known examples of biplanes with flag-

transitive automorphism groups. We focus on the biplanes with parameters

(16,6,2), they play a special role in our study (see below), and only a biplane

with these parameters can (and does) admit a flag-transitive, imprimitive,

automorphism group. Thus, we have the following:

Theorem 1. There are exactly three non-isomorphic (16,6,2) biplanes D1,

D2, and D3. Exactly two, say D1 and D2 admit flag-transitive automorphism

groups. Moreover:

(i) Both D1 and D2 admit imprimitive, flag-transitive automorphism groups,

which are G1 = 24S4 and G2 = (Z2 × Z8)S4 respectively.
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(ii) Only D1 has a primitive flag-transitive automorphism group of affine

type, namely, G ≤ 24S6 < AGL4(2).

We then see that flag-transitive automorphism groups of symmetric de-

signs with small λ are almost always necessarily primitive:

Theorem 2. If G is a flag-transitive automorphism group of a (v, k, λ)-

symmetric design D, with λ ≤ 7, then either G is primitive, or D has

parameters (16,6,2), (45,12,3), (15,8,4), (96,20,4), (175,30,5), (16,10,6),

(36,15,6), (288,42,6), (27,14,7), (247,42,7), or (441, 56, 7).

It is important to note that although the above result refers to admissible

parameters, it by no means asserts the existence of such designs. Symmetric

designs with parameters (288,42,6) and (247,42,7) are not known to exist, the

rest of the admissible parameters correspond to designs whose existence is

known, mainly as difference sets. It is natural to ask here whether these de-

signs admit flag-transitive automorphism groups, but that is something that

has not been investigated in this thesis, except for the case of biplanes. We

include in this case symmetric designs with v < 2k because although a design

and its complement have the same automorphism group, flag-transitivity in

one design does not imply flag-transitivity in the complement.

We then apply the O’Nan-Scott Theorem (see Chapter 3), which classifies

primitive groups, to obtain the following result:

Theorem 3. If G is a primitive, flag-transitive automorphism group of a

biplane D, then either G is affine, or almost simple.

We analyse each of the two cases separately.

Theorem 4 (Affine case). If D is a biplane with a primitive, flag-transitive

automorphism group G of affine type, then one of the following holds:

(i) D has parameters (4,3,2).

(ii) D has parameters (16,6,2).
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(iii) G ≤ AΓL1(q), for some prime power q.

Theorem 5 (Almost simple case). If D is a biplane with a primitive, flag-

transitive automorphism group of almost simple type, then D has parameters

either (7,4,2), or (11,5,2), and is unique up to isomorphism.

And now combining all these results, we state the main result of this

work:

Theorem 6 (Main Theorem). If D is a biplane with a flag-transitive

automorphism group G, then one of the following holds:

(i) D has parameters (16,6,2), and either G ≤ 24S6 ≤ AGL4(2), or

G ≤ (Z2 × Z8) (S4.2) ≤ AGL4(2).

(ii) G ≤ AΓL(1, q) for some prime power q.

(iii) D is the unique (4,3,2) biplane, and G ≤ S4.

(iv) D is the unique (7,4,2) biplane, and G = PSL2(7).

(v) D is the unique (11,5,2) biplane, and G = PSL2(11).



2. GRAPHS AND BIPLANES

In this chapter we present a summary of the known examples of biplanes,

but before that it is convenient to mention some related results, so we begin

by defining Hussain graphs.

2.1 Hussain Graphs

There is a one-to-one correspondence between the unordered pairs of points

incident with a given block B0 of a biplane, and the blocks of the biplane

different to B0. To see this, note that every block different to B0 meets B0

in exactly two points; and, conversely, every pair of points incident with B0

is also incident with exactly one other block. Hence, we can represent the

blocks of a biplane different to a given block B0 as the set of unordered pairs

of points incident with B0. How can we represent the points not incident

with B0? Take p to be such a point, and define a graph 〈p〉 as follows:

The vertex set V of 〈p〉 is the set of k points incident with B0; and two

vertices q, r are adjacent in 〈p〉 if and only if the unique block other than B0

with which they are incident is also incident with p.

Now, if q is incident with B0, q and p are each incident with exactly two

blocks, B1 and B2; each of which meets B0 in another point, and these two

points are different. Hence, the graph 〈p〉 has exactly two edges on each

vertex.

Given two points p1 and p2 not incident with B0, they are both incident

with two blocks; so the graphs 〈p1〉 and 〈p2〉 have two edges in common; and
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these two edges do not have a common vertex, since the two blocks on p1

and p2 do not have any other common point.

So now, given a block B0 of a biplane, we have defined v − k divalent

graphs corresponding to the v− k points not incident with B0, and each two

of them have two common edges that have no common vertex.

Definition 2.1. [21, 3.6] A set of divalent graphs on a vertex set V such that

any two have exactly two common edges, and these do not have a common

vertex is called a set of Hussain Graphs.

Notice that for a biplane D, if we fix a block B0, then the set of graphs

{〈p〉 | p is not incident with B0}

defined above is a set of Hussain Graphs.

Similarly, if K is a set of k vertices, and G1, G2, . . . , G (k−1)(k−2)
2

(= Gv−k)

is a set of divalent graphs with vertex set K such that for i 6= j, Gi and Gj

have two edges in common, then the following structure D = (P, B, I) is a

biplane with block size k:

The points in P are the vertices of K and the symbols (i), for i =

1, 2, . . . , (k−1)(k−2)
2

= v − k. The blocks in B are the symbol K and the

unordered pairs [p, q] of distinct vertices p, q ∈ K. The incidence rules are:

A vertex p of K is incident with K and with every block [p, q] for every q 6= p;

a point (i) is incident with [p, q] if pq is an edge of Gi.

Notice the set of graphs Gi is a set of Hussain graphs, that is, Gi = 〈i〉.
A biplane is completely determined by a single block and its set of Hussain

graphs, hence two biplanes D1 and D2 are isomorphic if and only if for any

block B1 of D1 there is a block B2 of D2 such that the graphs in the set

of Hussain graphs of B1 are isomorphic to the graphs in the set of Hussain

graphs of B2. (That is, there is a bijection between the set of Hussain graphs

of B1 and the set of Hussain graphs of B2 which maps simultaneously all the
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Hussain graphs of B1 to those of B2, such that every graph is isomorphic to

its image). In particular, there is an automorphism of the biplane D sending

the block B1 to the block B2 if and only if the graphs in the complete set of

Hussain graphs corresponding to the block B1 are isomorphic to the graphs

in the complete set of Hussain graphs corresponding to the block B2.

Observation 2.2. In general, unless the group of automorphisms of a bi-

plane D is transitive on the blocks of D, the graphs in the sets of Hussain

graphs of two different blocks are not necessarily isomorphic.

2.2 Known Examples of Biplanes

As we mentioned earlier, from the parameter restrictions on symmetric de-

signs it can be shown that there are no biplanes with k = 7, 8, 10, or 12, and

the only examples known so far are for k = 3, 4, 5, 6, 9, 11, and 13. We give

here a brief summary[21].

2.2.1 The Three Smallest Biplanes

There is exactly one biplane for each k, (3 ≤ k ≤ 5); this can be seen because

the set of Hussain graphs for each of these values of k is unique (up to

isomorphism).

We start with k = 3. As the size of the set of Hussain graphs for a block is

v−k, for k = 3, we need 1 graph on k = 3 points, which is a unique triangle.

This is the (4,3,2) biplane, constructed on the set of points P = {1, 2, 3, 4}.
Take B0 = {1, 2, 3} a difference set in Z4, and Bi = B0 + i, i = 1, 2, 3, 4.

That is, the blocks are the 3-subsets of P . The automorphism group is S4,

which is flag-transitive.

For k = 4 we need v− k = 3 divalent graphs on 4 points, that is three 4-

gons. It is straightforward to see that the set in Figure 2.1 is unique. Here we

have the (7,4,2) biplane, on the set of points P = Z7. Take B0 = {3, 5, 6, 7}
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a difference set, so Bi = B0 + i, for i = 1, . . . , 7. This is the complement of

the Fano Plane. The automorphism group is PSL2(7), also flag-transitive.

In the case k = 5, we need six divalent graphs on 5 points, so they must be

six pentagons, and because the two common edges between any two graphs

do not have a common vertex, the set in Figure 2.2 is unique. We have the

(11,5,2) biplane, the set of points is P = Z11, and B0 = {1, 3, 4, 5, 9} is a

Paley Difference Set, (the set of squares modulo 11). The automorphism

group is PSL2(11), also flag-transitive.

4 3

1 2

4 3

1 2

4 3

1 2

Figure 2.1: k = 4.
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Figure 2.2: k = 5.
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Figure 2.3: k = 6.

2.2.2 Biplanes with k = 6

It was established by Hussain [23] that there are exactly three non-isomorphic

(16,6,2) biplanes, here we give a brief description [4, 21]. We need v−k = 10

divalent graphs on a set of six points. Hence each graph can be a hexagon,

or a pair of triangles. It is not hard to show that the three non-isomorphic

sets of Hussain graphs on six points are:

(i) Ten pairs of triangles.

(ii) Four hexagons and six pairs of triangles (Figure 2.3).

(iii) Six hexagons and four pairs of triangles (Figure 2.4).

For case (i), consider the set of ten pairs of triangles, any two of which

must meet in two edges. Since any permutation of the six vertices is also a

permutation of the pairs of triangles; the stabiliser of a block is the symm-

metric group S6. If the set of Hussain graphs of a block is a set of ten pairs
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Figure 2.4: k = 6.

of triangles, then so is the set corresponding to any other block, therefore

the automorphism group G is transitive on the blocks of the design, and

has order 16 · 6!. This biplane arises from a difference set in Z4
2: Take the

set of points P = Z4
2, and the set of blocks B = {B0 + p : p ∈ P}, where

B0 = {0, e1, e2, e3, e4,
∑4

i=1 ei}, and ei is the vector with 1 in the i-th place,

and 0 elsewhere, so {e1, . . . , e4} is the canonical basis for Z4
2. The automor-

phism group is 24S6 < 24GL4(2). Since the stabiliser G0 is transitive on all

the blocks incident with 0, and the group of translations 24 acts regularly on

the points of P , G is flag-transitive.

In case (ii) consider the set of graphs consisting of four hexagons and

six pairs of triangles, (Figure 2.3). The following are automorphisms of the

resulting biplane:

α = (123456), β = (26)(35), γ = (23)(56), δ = (36).
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The permutation α shows that the stabiliser of the block B0 = {1, 2, 3, 4, 5, 6}
is transitive on the points of B0. By looking at the triangles containing 1 we

see that the subgroup fixing 1 also fixes 4, in the same way 2 and 5 are fixed

together, as are 3 and 6.

The group 〈β, γ〉 has order 4, and is transitive on the points 2, 3, 5, and 6.

The subgroup fixing 1 and 2 also fixes 4 and 5, it is 〈(3, 6)〉, of order 2. Hence,

the stabiliser of the block B0 has order 2·4·6 = 48. Also, GB0 has three orbits

on points, namely, the points incident with B0, those corresponding to the

hexagons, and those corresponding to the pairs of triangles. It too has three

orbits on blocks, namely, B0, those corresponding to the unordered pairs

{1, 4}, {2, 5} and {3, 6}, and the other twelve. The set of Hussain graphs for

every block is isomorphic to that of B0, hence the automorphism group G is

transitive and has order 16 · 48. This biplane arises from a difference set in

Z2×Z8, and the stabiliser of order 48 acts as the full group of symmetries of

the cube, hence is a central extension of the symmetric group S4 by a group of

order 2. The group Z2 × Z8 acts regularly, and hence the full automorphism

group is flag-transitive.

Finally, we have case (iii). The biplane can be seen as a difference set

in Q × Z2, where Q is the quaternion group. The stabiliser of a block has

two orbits on the points of the block, of size 2 and 4, therefore since the

stabiliser is not transitive on the points of the block, we have that the full

automorphism group is not flag-transitive. The order of the stabiliser is 24,

and it acts as the inverse image of A4 in the central extension of S4 by a

cyclic group of order 2 described in the previous case. The order of the

automorphism group is 16 · 24, and it is not flag-transitive.

We can now proceed to state the following:

Theorem 1. There are exactly three non-isomorphic (16,6,2) biplanes D1,

D2, and D3. Exactly two, say, D1 and D2 admit flag-transitive automorphism

groups. Moreover:
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(i) Both D1 and D2 admit imprimitive, flag-transitive automorphism groups,

which are G1 = 24S4 and G2 = (Z2 × Z8)S4 respectively.

(ii) Only D1 has a primitive flag-transitive automorphism group of affine

type, namely, G ≤ 24S6 < AGL4(2).

Proof. We have seen above that there are exactly three non-isomorphic (16,6,2)

biplanes, of which exactly two (D1 and D2) admit flag-transitive automor-

phism groups, and these are 24S6, and (Z2 × Z8) (S4.2). Now, both of these

are affine groups contained in AGL4(2), where S6 and S4.2 are the point

stabilisers in GL4(2). The group S4 is contained in both of these stabilisers,

and is transitive on the six cosets of V4, so it is transitive on the six blocks

containing the fixed point. Therefore the subgroups 24S4 and (Z2 × Z8) (S4)

are still flag-transitive on the respective biplanes.

However S4 fixes a subspace of dimension 2 in 24, so it is not irreducible,

and therefore these subgroups are imprimitive.

2.2.3 Biplanes with k = 9

There are exactly four (37,9,2) biplanes, [59]. The set of Hussain graphs

corresponding to a fixed block, in general, depends on the choice of block.

The ways in which nine vertices can be a disjoint union of polygons are:

(i) One 9-gon.

(ii) One hexagon and one triangle.

(iii) Three triangles.

(iv) One pentagon and one 4-gon.

The possible sets and number of blocks to which they correspond are as

follows:
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(i) 1 block with 28 graphs of type (3,3,3).

36 blocks with 21 graphs (9) and 7 graphs (6,3).

(ii) 9 blocks with 21 graphs (6,3).

28 blocks with 27 graphs (9) and 1 (3,3,3).

(iii) 37 blocks with 19 graphs (9) and 9 (5,4).

(iv) 27 blocks with 23 graphs (9), 4 (6,3), and 1 (5,4).

9 blocks with 27 graphs (9), and 1 (6,3).

1 block with 27 graphs (9), and 1 (3,3,3).

The only case in which all the blocks have the same set of Hussain graphs

is (iii), so in all other cases the automorphism group is not transitive on

blocks, and therefore is not flag-transitive.

Case (i): This biplane was first found by Hussain [24], the graphs are

given by the elements of order 3 in PSL2(8). The full automorphism group

is PΓL2(8).

Case (ii): This is the dual of the previous biplane, and hence has the

same automorphism group.

Case (iii): This biplane can be constructed from the difference set of nine

quartic residues modulo 37. The automorphism group is Z37 · Z9, and it is

flag-transitive, with the stabiliser of a point G0
∼= Z9.

Case (iv): This biplane has an automorphism group of order 54, which

fixes a unique point.

2.2.4 Biplanes with k = 11

There are five known (56,11,2) biplanes. The possible union of disjoint poly-

gons on 11 vertices are as follows:

(i) One 11-gon.
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(ii) One octagon and one triangle.

(iii) One heptagon and one 4-gon.

(iv) One hexagon and one pentagon.

(v) One pentagon and two triangles.

(vi) Two 4-gons and one triangle.

The possible sets of Hussain graphs, as well as the number of blocks to which

they correspond in each of the five biplanes are as follows:

(i) All 56 blocks have 45 graphs of type (4,4,3).

(ii) 2 blocks with 45-(4,4,3).

18 blocks with 13-(4,4,3), 8-(5,3,3), and 24-(7,4).

36 blocks with 13-(4,4,3), 8-(7,4), 8-(8,3), and 16-(11).

(iii) 2 blocks with 36-(11) and 9-(7,4).

18 blocks with 4-(4,4,3), 8-(7,4), 17-(8,3), and 16-(11).

36 blocks with 5-(4,4,3), 8-(6,5), 12-(7,4), 8-(8,3), and 12-(11).

(iv) 32 blocks with 7-(4,4,3), 4-(5,3,3), 2-(6,5), 10-(7,4), 4-(8,3), and 18-(11).

16 blocks with 5-(4,4,3), 4-(5,3,3), 4-(6,5), 8-(7,4), 6-(8,3), and 18-(11).

4 blocks with 21-(4,4,3), and 24-(11).

4 blocks with 13-(4,4,3), 8-(5,3,3), and 24-(7,4).

(v) 8 blocks with 3-(5,3,3), 3-(6,5), 6-(7,4), 6-(8,3), and 27-(11).

6 blocks with 5-(4,4,3), 4-(5,3,3), 4-(6,5), 8-(7,4), 2-(8,3), and 22-(11).

12 blocks with 4-(5,3,3), 6-(6,5), 10-(7,4), 7-(8,3), and 18-(11).

24 blocks with 1-(4,4,3), 1-(5,3,3), 4-(6,5), 6-(7,4), 8-(8,3), and 25-(11).

6 blocks with 1-(4,4,3), 4-(5,3,3), 8-(7,4), 2-(3), and 30-(11).
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Only in case (i) all the blocks have the same set of Hussain graphs, so in

the other four cases the automorphism group is not transitive, and hence is

not flag-transitive.

Case (i) was found first by Hall, Lane, and Wales [19] in terms of a rank-3

permutation group, and its associated strongly regular graph. The group of

automorphisms is a subgroup of index 3 of Aut (PSL3(4)), represented on

the 56 cosets of A6, which is the full stabiliser of a block. As we will see

in following chapters, if the automorphism group G is flag-transitive, then

k divides twice the order of G0, but in this case G0
∼= A6, and 11 does not

divide 720. Hence the group is not flag-transitive.

Case (ii) was found by a computer search by Assmus, Mezzaroba and

Salwach [3]. The automorphism group has order 288.

Cases (iii) and (iv) were found by R. H. F. Denniston [18]. His construc-

tions are based on GF (9), and two other symbols A and B. As the points he

takes the 55 unordered pairs of these symbols, and a further point (which he

denotes - -), and assumes that addition and multiplication in GF (9) (taking

as its elements a + bi, a, b ∈ GF (3)) carry over to a biplane. Multiplication

can be done by two methods, either fixing or interchanging A and B. The

automorphism groups of (iii) and (iv) have orders 144 and 64 respectively.

Case (v) was constructed by Zvonimir Janko, assuming that a group of

order 6 acts on the biplane. The full automorphism group is of order 24.

2.2.5 Biplanes with k = 13

There are only two known (79,13,2) biplanes. One was constructed by

Michael Aschbacher [1] in 1970, and the other is its dual.

If we consider the elements of GF (11) and two further elements A and

B, we can take the unordered pairs of these elements to be the points of the

biplane, plus one other point X. Addition and multiplication in GF (11) fix

A and B, but multiplication by a primitive root exchanges X and AB. The
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full group of automorphisms is G = 〈x, y, z; x2 = y5 = z11, xy = x4, xz =

x−1, yz = zy〉 which is of order 110, and is the only possible group of au-

tomorphisms for a biplane with k = 13 that has at least v = 79 points.

Here k does not divide twice the order of the group so the group cannot be

flag-transitive.

2.3 Flag-Transitive Biplanes

We give here a summary of the six known biplanes which do admit a flag-

transitive automorphism group.

For k = 3, we have the unique (4,3,2) biplane, constructed from a differ-

ence set in Z4, with full automorphism group S4, and point stabiliser S3.

For k = 4, we have the unique (7,4,2) biplane, complement of PG(2, 2),

constructed from a difference set in Z7, with full automorphism group PSL2(7),

and point stabiliser S4.

For k = 5, we have the also unique (11,5,2) biplane, constructed from

the difference set of squares in Z11, with full automorphism group PSL2(11),

and point stabiliser A5.

For k = 6, we have two non-isomorphic (16,6,2) biplanes admitting a

flag-transitive automorphism group. The first of these is constructed from a

difference set in Z4
2, with full automorphism group Z4

2 · S6, where Z4
2 is the

group of translations, and S6 is the point stabiliser, transitive on the 6 blocks

containing 0.

The second arises from a difference set in Z2 × Z8, and the full automor-

phism group is (Z2 × Z8) (S4.2). Again, Z2 × Z8 is the group of translations

acting regularly, and the point stabiliser is S4.2.
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For k = 9, we have only one of the four (37,9,2) biplanes, namely the one

constructed from the difference set of the quartic residues in Z37. The full

automorphism group is Z37 · Z9, where Z37 is the group of translations, and

Z9 is the point stabiliser, transitive on the nine blocks containing 0.

Finally we list the parameters of the six known flag-transitive biplanes,

with their full automorphism groups and point stabilisers:

(i) (4,3,2), S4, S3.

(ii) (7,4,2), PSL2(7), S4.

(iii) (11,5,2), PSL2(11), A5.

(iv) (16,6,2), 24S6, S6.

(v) (16,6,2), (Z2 × Z8) (S4.2), (S4.2).

(vi) (37,9,2), Z37 · Z9, Z9.



3. PRIMITIVITY AND

REDUCTION

The fact that not many examples of biplanes are known, by no means rules

out the possibility of more biplanes yet to be discovered. It is in this light

that the present classification is made.

3.1 Primitivity

Firstly, we state the following:

Theorem 2. If G is a flag-transitive automorphism group of a (v, k, λ)-

symmetric design D, with λ ≤ 7, then G is primitive, or D has parame-

ters (16,6,2), (45,12,3), (15,8,4), (96,20,4), (175,30,5), (16,10,6), (36,15,6),

(288,42,6), (27,14,7), (247,42,7), or (441,56,7).

Before proving the theorem, we give the following,

Definition 3.1. If G is a permutation group and Gα is the stabiliser of a

point, then the size of each non-trivial orbit of Gα is a subdegree of G.

and state the following:

Lemma 3.2. If D is a (v, k, λ)-symmetric design with a flag-transitive au-

tomorphism group G, then k divides λdi for every subdegree di of G.

Proof. Let D be a (v, k, λ)-symmetric design with a flag-transitive automor-

phism group G. Fix a point α, and consider a non-trivial orbit of Gα, call it,
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say, ∆. Now count all flags (p, Bj) such that p ∈ ∆, and both p and α are

incident with Bj.

Let |∆| = δ. Then there are δ points in ∆, each of which, together with

α, is incident with λ blocks. Hence there are λδ such flags.

Also, there are k blocks incident with α. The fact that G is flag-transitive

implies that Gα is transitive on the k blocks through α, therefore they are

all incident with the same number of points in ∆. Hence the result.

Combining this with Lemma 1.7, we get the following:

Corollary 3.3. If G is a flag-transitive automorphism group of a (v, k, λ)-

symmetric design D, then k divides λ · hcf (v − 1, |Gα|), for every point sta-

biliser Gα.

This is a a fact which will prove very useful in the course of this thesis.

And now, we proceed to prove Theorem 2, applying the methods by Davies

in [14]:

Proof of Theorem 2. Suppose we have a (v, k, λ)-symmetric design D, with

a flag-transitive automorphism group G which is imprimitive. Then P , the

set of points is partitioned into n non-trivial blocks of imprimitivity ∆j,

j = 1, . . . , n, each of size c. Now, as G is flag-transitive, we have that each

block of D and each block of imprimitivity that intersect non trivially, do so

in a constant number of points, say d, since G permutes these intersections

transitively. Therefore, for each i = 1, . . . , v, j = 1, . . . , n we have that

|Bi ∩ ∆j| ∈ {0, d}, where B1, . . . Bv are the blocks of D. We claim the the

following equations hold,

(i) v = cn

(ii) k = ds

(iii) λ(v − 1) = k(k − 1)
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(iv) λ(c− 1) = k(d− 1)

with c, n, d, s integers greater than 1, and s the number of blocks of imprim-

itivity intersected by each block of the design. Equation (i) is a consequence

of the imprimitivity of G. Equation (ii) is a consequence of the non-empty

intersections of blocks of imprimitivity and blocks of B having a constant

number of points (d). Equation (iii) is Lemma 1.7. For Equation (iv), fix a

point α. Now count flags (p, Bi) such that p and α are in the same block of

imprimitivity, (say, ∆), and both p and α are incident with Bi. Since each

block of imprimitivity has constant size c, there are c − 1 such points, and

each of them is, together with α, incident with λ blocks, which gives us the

left hand side of the equation. On the other hand, there are k blocks through

α, and each of them intersects ∆ in d points (as they are incident with α we

already know the intersection is non-empty), of which d − 1 are not α, and

this gives us the right hand side of the equation.

From Equation (iv):

λn(c− 1) = kn(d− 1),

and from Equations (i) and (iii) we have that

v = cn =
k(k − 1) + λ

λ
,

which together with (iv) yields

c =
k(d− 1) + λ

λ
.

Subtracting the first equation from the second we get λ(n − 1) = k(k −
1− n(d− 1)). Let x = k− 1− n(d− 1). Then x is a positive integer, and we

have λ(n− 1) = kx, hence

n =
kx + λ

λ
.
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Combining the above equations we get that

cn =
k(k − 1) + λ

λ
=

(k(d− 1) + λ)(kx + λ)

λ2
,

and solving for k we get the following equation:

k =
λ(x + d)

λ− x(d− 1)
.

Therefore λ > x(d− 1), which is a positive integer. We now analyse for each

value of λ:

λ = 2: We have that 2 > x(d−1) > 0. This forces x(d−1) = 1, so x = 1 and

d = 2, so from the last equation we see that k = 6 (and so n = c = 4,

and s = 3). Therefore the only possible parameters for λ = 2 are

(16,6,2).

λ = 3: Here we have 3 > x(d− 1) > 0, which gives us the following possible

values for x and d:

(i) x = 1 and d = 2,

(ii) x = 1 and d = 3, or

(iii) x = 2 and d = 2.

The first case gives a non-integer value of k, which is impossible. The

second and third cases yield k = 12, which gives the admissible param-

eters (45,12,3).

λ = 4: We have that 4 > x(d− 1) > 0, which gives us the following possible

combinations of values for x and d:

(i) x = 1 and d = 2, 3, 4,

(ii) x = 2 and d = 2, or
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(iii) x = 3 and d = 2.

These give us the following values for k: 4,8, and 20. We immediately

rule out k = 4, as having k = λ gives us a trivial design.

For k = 8, we would have (from Lemma 1.7) 56 = 4(v − 1), which

means v = 15, and this yields the possible set of parameters (15,8,4).

For k = 20, we have 380 = 4(v − 1), so v = 96, and hence the possible

set of parameters is (96,20,4).

λ = 5: Here we have 5 > x(d− 1) > 0, with the following possible combina-

tions of values of x and d:

(i) x = 1 and d = 2, 3, 4, 5,

(ii) x = 2 and d = 2, 3,

(iii) x = 3 and d = 2, or

(iv) x = 4 and d = 2.

For x = 1, the only integer value of k is 30, when d = 5. For x = 2,

the only integer value for k is 25, when d = 3, but then d does not

divide k, so this case is ruled out. In the third case the value of k is

not an integer, and in the last case we obtain, again, k = 30; hence

5(v − 1) = 870 and so v = 175. So the admissible parameters in this

case are (175,30,5).

λ = 6: In this case 6 > x(d− 1) > 0, so we have the following possiblities:

(i) x = 1 and d = 2, 3, 4, 5, 6,

(ii) x = 2 and d = 2, 3,

(iii) x = 3 and d = 2,

(iv) x = 4 and d = 2, or

(v) x = 5 and d = 2.
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In the first case, the only integer value of k greater than λ, with d

dividing k is k = 42 (when d = 6). In the second case, we get k = 15,

which gives the possible set of parameters (36,15,6). For x = 3 we get

k = 10, and this gives us the possible set of parameters (16,10,6). For

x = 4, we obtain k = 18, which implies v = 52, but Theorem 1.8 states

that if v is even, then n = k − λ is a square, and in this case n = 12,

which is not a square. In the last case, we obtain k = 42, and hence

the possible set of parameters (288,42,6).

λ = 7: Here we have 7 > x(d− 1) > 0, so the possible values of x and d are

as follows:

(i) x = 1 and d = 2, 3, 4, 5, 6, 7,

(ii) x = 2 and d = 2, 3, 4,

(iii) x = 3 and d = 2, 3,

(iv) x = 4, 5, 6 and d = 2.

For x = 1, the only case in which k has an integer value divisible by

d is when d = 7 and k = 56. In this case we have v = 441, with the

possible set of parameters (441,56,7). When x = 2, there are no integer

values of k divisible by d. For the next case, the only integer value of

k we obtain that is divisible by d is 42, when d = 3, and this gives us

the set of parameters (247,42,7). When x = 4 and d = 2, we obtain

the set (27,14,7). For x = 5 the value of k is not an integer; and for

the last case, again, we obtain (441,56,7).

Corollary 3.4. If a biplane D has an imprimitive, flag-transitive automor-

phism group, then D has parameters (16,6,2). And by Theorem 1, there are

exactly two such biplanes.
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3.2 The O’Nan-Scott Theorem

In view of the above corollary, we know that except for the two (16,6,2)

examples, flag-transitive automorphism groups of biplanes are necessarily

primitive, hence we can apply the O’Nan-Scott Theorem [44], which classifies

primitive groups into five types. Of these, we shall prove that primitive

flag-transitive automorphism groups of biplanes can only be affine or almost

simple.

Let X be a primitive permutation group on a finite set Ω, and suppose

that N is a minimal normal subgroup of X. Then N is transitive. (Otherwise,

its orbits would be blocks of imprimitivity of X). The centraliser CX(N) is

also normal in X. If such centraliser is not trivial, then it is also transitive;

and regular, as well as N . If N is abelian, then N and CX(N) have the

same elements, if N is not abelian, then they are not equal as sets; and X

has no more minimal normal subgroups, (since they centralise each other).

Also, since N and CX(N) are right and left regular representations of the

same group, they are isomorphic. If, on the other hand, CX(N) is trivial,

then N is the unique minimal normal subgroup of X, and X is isomorphic

to a subgroup of Aut(N). Let B be the socle of X, that is, the product of

its minimal normal subgroups. Then, in either case, B is a direct product

of isomorphic simple groups. That is, B ∼= T c, with c ≥ 1 and T a simple

group.

The O’Nan-Scott Theorem states that the action of any finite primitive

permutation group is of one of the following five types:

(i) Affine.

(ii) Almost simple.

(iii) Simple diagonal.

(iv) Product.
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(v) Twisted wreath.

We will now explain briefly each of these actions. In what follows, as

above, X will be a primitive permutation group acting on a finite set Ω of

size n, α will be a point in Ω, and B will be the socle of X, isomorphic to

T k, with T a simple group and k ≥ 1.

Affine groups In this case we have T = Zp, where p is a prime; and B

is the unique minimal normal subgroup of X with a regular action on Ω of

degree n = pc. Hence, Ω can be identified with B ∼= Zc
p so that X ≤ AGLc(p),

with B the translation group and Xα = X ∩GLc(p) irreducible on B. In the

remaining four cases, T is nonabelian.

Almost simple groups Here we have c = 1, T ≤ X ≤ Aut T , and Tα 6= 1.

For the following three types, we have c ≥ 2.

Simple diagonal action Let

W = {(a1, . . . , ac) · π | ai ∈ Aut T, π ∈ Sc, ai ≡ aj mod Inn T ∀ i, j},

where π ∈ Sc permutes the components naturally. Then with the obvious

multiplication W is a group, its socle is B ∼= T c, and W = B · (Out T × Sc)

is a (not necessarily split) extension of B by Out T × Sc. Now define Ω as

the set of cosets of AutT × Sc of W , and we define an action of W on Ω as

follows:

Let Wα = {(a, . . . , a) · π | a ∈ Aut T, π ∈ Sc}. Then Wα
∼= Aut T × Sc,

Bα
∼= T , and n = |T |c−1.

Now, for 1 ≤ i ≤ c, let Ti be the subgroup of B consisting of all the

c-tuples with 1 in all except the ith component, so that Ti
∼= T , and B =

T1 × . . . × Tc. Let T = {T1, . . . , Tc}, so W acts on T . Then the subgroup

X ≤ W is of simple diagonal type if B ≤ X, and the action of X on T is



3. Primitivity and Reduction 38

primitive, or XT = 1 and c = 2.

If the action of X on T is primitive, then B is the unique minimal normal

subgroup of X; if it is trivial, then X has two minimal normal subgroups, T1

and T2, both acting regularly on Ω. In either case, Xα . Aut T × XT , and

X ≤ B · (Out T ×XT ).

Product action Take H to be a primitive permutation group, almost

simple, or with simple diagonal action on a finite set Γ. For l > 1, let

W = H wr Sl, and take W to act on Ω = Γl in its natural product action, that

is, for (γ1, . . . , γl) ∈ Ω, the base group H l acts coordinatewise, and Sl acts

by permuting the coordinates. Then for γ ∈ Γ and α ∈ Ω, Wα = Hγ wr Sl,

and n = |Γ|l. If K is the socle of H, then the socle of W is B = K l, and

Bα = (Kγ)
l 6= 1.

Now W acts naturally on the l factors in K l, and we say that the group

X ≤ W has a product action if B ≤ X and X acts transitively on these

l factors. If H is almost simple, then K ∼= T, c = l, and B is the unique

minimal normal subgroup of X, and if H has a simple diagonal action, then

K ∼= T
c
l , and both X and H have m minimal normal subgroups, with m ≤ 2;

if m = 2 then each of the two minimal normal subgroups of X acts regularly

on Ω.

Twisted wreath action Let P be a transitive permutation group acting

on {1, . . . , c} and let Q be the stabiliser P1. Suppose there is a homomorphism

φ : Q → Aut T such that Inn T ⊆ Im φ.

Now define B = {f : P → T | f(pq) = f(p)φ(q) ∀p ∈ P, q ∈ Q}. Then

B is a group under pointwise multiplication, and B ∼= T c. Let P act on B

by the following rule: f p(x) = f(px) for all p, x ∈ P .

We define X = T twr φ P to be the semidirect product of B by P with

this action, and define the action of X on Ω by setting Xα = P . Then we

have n = |T |c, and B is the unique minimal normal subgroup of X, which
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acts regularly on Ω. We say that X has a twisted wreath action if it acts

primitively on Ω.

Observation 3.5. Although the above described actions are pairwise dis-

joint (consider the structures and actions of the socles B on Ω), the group

X described with a twisted wreath action is in fact contained in the wreath

product H wr Sk, which has a product action on Ω. Here H = T × T is of

diagonal type, and the socle of H wr Sk is isomorphic to B × B.

We now state, without proof, the O’Nan-Scott Theorem:

Theorem 3.6 (O’Nan-Scott). [44] If X is a primitive permutation group

acting on a finite set Ω, then it is permutation equivalent to one of the fol-

lowing types:

(i) Affine.

(ii) Almost simple.

(iii) Simple diagonal.

(iv) Product.

(v) Twisted wreath.

3.3 Reduction

We now apply the O’Nan Scott Theorem to prove the following:

Theorem 3. If G is a flag-transitive, primitive automorphism group of a

biplane D, then G is of affine or almost simple type.

Proof. Let G be a flag-transitive, primitive automorphism group of a biplane

D. Since G is primitive, by the O’Nan-Scott Theorem it must be of one of

the following five types: product, diagonal, twisted wreath, affine, or almost
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simple. To prove the theorem, we will assume G has a simple diagonal or

product action, and arrive at a contradiction. In view of the earlier obser-

vation that twisted wreath groups are contained in wreath products with a

product action on Ω, and the fact that in our proof for groups with product

action we also rule out their subgroups, it is not necessary in this proof to

analyse the twisted wreath product case.

1) First assume G is of simple diagonal type. Then

Soc (G) = N = T m, m ≥ 2

for some non-abelian simple group T , and

T ∼= 〈t, . . . , t〉 ∼= {(t, . . . , t) : t ∈ T},

which is the stabiliser Nα C Gα ≤ Aut T × Sm.

Here we have that v = |T |m−1 = |Nα|m−1.

Now, the fact that G is flag-transitive implies that Gα is transitive on the

k blocks through α, so Nα C Gα implies that the orbits of Nα on the set of

k blocks through α all have the same size.

Let l be the size of these orbits. Then l | k, so l | k(k−1) = 2(v−1), and

l divides |Nα| = |T |. Hence l | (|T |, 2 (|T |m−1 − 1)) = 2. Therefore l = 1, or

l = 2.

Since T is a non-abelian simple group, there is an odd prime r which

divides |T |. Pick t ∈ Nα such that o(t) = r. Then t fixes every block through

α, as the orbits have length 1 or 2. Now suppose t sends a point β to a

point γ. Then the pair {α, β} lies in exactly two blocks which are fixed

by t, so γ must also be in each of those blocks; but every pair of blocks

intersects in exactly two points. So β = γ, hence t fixes every point; which

is a contradiction since o(t) = r > 2.
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Hence G is not of simple diagonal type.

2) Now assume G has a product action. Then there is a group H acting

primitively on Γ (with |Γ| ≥ 5) of almost simple or diagonal type, where:

Ω = Γl, and G ≤ H l o Sl = H wr Sl.

Take x ∈ P . If x = (γ1, . . . , γl), define for 1 ≤ j ≤ l the cartesian line of the

jth parallel class through x to be the set:

Gx,j = {(γ1, . . . , γj−1, γ, γj+1, . . . , γl) | γ ∈ Γ},

that is,

Gx,j = {γ1} × . . .× {γj−1} × Γ× {γj+1} × . . .× {γl}.

(So there are l cartesian lines through x).

Denote |Γ| = m.

By the primitivity of G, we have that Gx is transitive on the l cartesian

lines through x. Denote by ∆ the union of those lines (excluding x). Then

∆ is a union of orbits of Gx, and so every block through x intersects it in the

same number of points. Hence k divides 2l(m− 1). Also, we have k2 > 2ml,

so 2ml < 4l2(m− 1)2.

Hence ml ≤ 2l2(m− 1)2.

As we stated before that m ≥ 5, we have then that 2 ≤ l ≤ 3.

First assume l = 2. Then k divides 4(m − 1). But we also have that

k(k − 1) = 2(v − 1), and 2(v − 1) = 2(m2 − 1) = 2(m − 1)(m + 1). So,

as m < k, we have that k = 4(m−1)
r

, with 1 ≤ r ≤ 3. If r = 1, then

k(k − 1) = 4(m− 1)(4m− 5), and 2(v − 1) = 2(m− 1)(m + 1), so

8m− 10 = m + 1,
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which implies that 7m = 11, a contradiction.

If r = 2, then k(k − 1) = 2(m− 1)(2m− 3), so

2m− 3 = m + 1,

which implies that m = 4, contradicting the fact that m ≥ 5.

Finally, if r = 3 then

4(m− 1)(4m− 5) = 18(m− 1)(m + 1),

so 8m− 10 = 9m + 9, which implies that m = −19, another contradiction.

Now assume l = 3. Then m < 18, and k divides 2(3(m− 1), m3 − 1), so

k divides

2(m− 1)(3, 1 + m + m2).

Now (3, 1 + m + m2) = 3 only when m ≡ 1 (mod 3), that is, when

m = 7, 10, 13, or 16. In the first three of these cases we have that 8v−7 is not

a square, contradicting Lemma 1.15. If m = 16 then v is even, but k−λ = 89

is not a square, contradicting Theorem 1.8. Therefore k = 2(m− 1), and so

2m− 3 = m + 1,

which implies that m = 4, a contradiction.

Hence G is of affine or almost simple type.



4. BIPLANES WITH

AUTOMORPHISM GROUPS OF

AFFINE TYPE

In this chapter we will prove the following:

Theorem 4. If D is a biplane with a primitive, flag-transitive automorphism

group G of affine type, then one of the following holds:

(i) D has parameters (4,3,2).

(ii) D has parameters (16,6,2).

(iii) G ≤ AΓL1(q), for some prime power q.

For this purpose we consider biplanes which have a flag-transitive auto-

morphism group G of affine type, that is, the points of the biplane can be

identified with the vectors in a vector space V = Vd(p) of dimension d over

the field Fp, (with p prime), so that G = TGx ≤ AGLd(p) = AGL(V ), where

T ∼= (Zp)
d is the translation group, and Gx (the stabiliser of the point x) is

an irreducible subgroup of GLd(p).

Now, for each divisor n of d, there is a natural irreducible action of the

group ΓLn

(

p
d
n

)

on V . Choose n to be the minimal divisor of d such that

Gx ≤ ΓLn(p
d
n ) in this action, and write q = p

d
n . Hence we have Gx ≤ ΓLn(q),

and v = pd = qn.
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4.1 Preliminary Results

In this section we state some results (some of which have been stated pre-

viously in this work) and definitions which will be useful throughout the

following chapters.

Throughout, D will be a (v, k, 2)-biplane with a primitive automorphism

group G, and Gx the point-stabiliser, which is maximal in G, since G is

primitive.

We begin by recalling the following lemma and corollary from Chapter 1:

Lemma 4.1. If D is a (v, k, 2)-biplane, then 2(v − 1) = k(k − 1).

Solving the previous equation for k, we have that k = 1+
√

8v−7
2

, and hence

the following

Corollary 4.2. If D is a (v, k, 2)-biplane, then 8v − 7 is a square.

Also, from the previous lemma, we have the following

Corollary 4.3. If D is a flag-transitive (v, k, 2)-biplane, then v < k2, and

hence |G| < |Gx|3.

Proof. Since k(k − 1) = 2(v − 1), we have that k2 = 2v − 2 + k, so clearly

v < k2. Since v = |G : Gx|, and k ≤ |Gx|, the result follows.

From Lemma 3.2 we get the following:

Lemma 4.4. If D is a biplane with a flag-transitive automorphism group G,

then k divides 2di for every subdegree di of G.

Corollary 4.5. If G is a flag-transitive automorphism group of a biplane D,

then k divides 2 · hcf (v − 1, |Gx|).

The following result restricts the possibilities for biplanes where v is a

power of 2:
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Theorem 4.6 (Ramanujan-Nagell). [64, p.99] The only integer solutions

for the equation x2 + 7 = 2a are the following:

(±x, a) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15).

If D is a (2b, k, 2) biplane, then by Corollary 4.2 we have that 2b+3 − 7 is

necessarily a square, so by Theorem 4.6 the only pair of solutions for which

there can be a biplane with v = 2b = 2a−3 are (5,5) and (11,7), (which

correspond to the parameters (4,3,2) and (16,6,2), respectively). The first

two imply a value of v that is too small, and the last implies k = 91, but

then k − λ = 89, which is not a square, contradicting Theorem 1.8. Hence

we have the following:

Corollary 4.7. If D is a (2b, k, 2)-biplane, then b=2 or 4.

The proof of Theorem 4 will use the following result by Aschbacher [2]:

Theorem 4.8 (Aschbacher). Let G be a group such that X E G ≤ Γ,

with X = Cln(q), and Γ = ΓLn(q). Let H be a maximal subgroup of G

not containing X. Then there is a collection C of subgroups of Γ described

below such that either H is contained in a member of C, or the last term of

the derived series of H, that is, H (∞), is absolutely irreducible, not realisable

over any proper subfield of Fq, and quasisimple.

By quasisimple we mean that L = H (∞)/Z
(

H(∞)
)

is a non-abelian simple

group, and we define V = Vn(q), an n-dimensional vector space over the field

of q elements. The collection C of subgroups of Γ has eight members, we now

give a brief description [33]:

C1) Stabilizers of totally singular or non-singular subspaces of V .

C2) Stabilizers of decompositions V =
t
⊕

i=1

Vi, where all the subspaces have

the same dimension.
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C3) Stabilizers of extension fields of Fq of prime index b.

C4) Stabilizers of tensor product decompositions V = V1 ⊗ V2.

C5) Stabilizers of subfields of Fq of prime index b.

C6) Normalizers of symplectic-type r-groups (r prime) in absolutely irre-

ducible representations.

C7) Stabilizers of decompositions V =

t
⊗

i=1

Vi, with all the subspaces of equal

dimension.

C8) Classical subgroups.

For a more precise description of this collection of subgroups, see [33].

We also have the following lemma:

Lemma 4.9. [41, 2.8] Let r ≤ 11 be a prime, and let q be a prime power as

in Table 4.1. Then the order of r modulo q (i.e., the order of r in the group

of units of Zq) is as given in Table 4.1.

q= 8 16 32 64 9 27 81 5 25 125 7 49 11 13 17 19 23 29 31
r=2 6 18 54 4 20 100 3 21 10 12 8 18 11 28 5
r=3 2 4 8 16 4 20 100 6 42 5 3 16 18 11 28 30
r=5 2 4 8 16 6 18 54 6 42 5 4 16 9 11 14 30
r=7 2 2 4 8 3 9 27 4 4 20 10 12 16 3 22 14 15
r=11 2 4 8 16 6 18 54 2 10 50 3 21 12 16 3 22 28 30

Table 4.1:

4.2 Reduction to Quasisimple Groups

By Theorem 1 and the fact that there is a unique (4,3,2) biplane, we can

assume D to not have parameters (4,3,2) nor (16,6,2), and by Theorem 4.6

we have that if q is even then necessarily it is either 4 or 16, therefore we

need only consider p > 2. Since the case G ≤ AΓL1(q) is a conclusion of

Theorem 4, we may also assume G � AΓL1(q).
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Also, since Theorem 1.11 classifies all symmetric designs with 2-transitive

automorphism groups, we will assume that Gx is not transitive on V \ {x}.
So, for the proof of Theorem 4, we assume p > 2, n > 1, and Gx not

transitive on V \ {x}.
The work in the rest of this chapter will be mainly group theoretic. We

will assume G ≤ AGLd(p) to be a flag-transitive automorphism group of a

biplane D. By Theorem 4.8, there is a collection C of subgroups of ΓLn(q)

(where qn = pd) such that either Gx is contained in a member of C, or the last

term of the derived series of Gx, that is G
(∞)
x , is irreducible and quasisimple.

Denote H = G
(∞)
x , and L = H/Z(H).

We begin by stating a group-theoretic proposition, then analyse the cases

in which Gx is contained in a member of the collection C, and finally handle

the cases in which L is an alternating group, a sporadic group, a group of

Lie type in characteristic p, and finally a group of Lie type in characteristic

p′. We will use representation theory as well as arithmetic conditions, most

of which have already been stated in previous chapters.

In this section, we see that if a biplane D has a flag-transitive, prim-

itive, automorphism group of affine type, (as described above), then H is

quasisimple.

Theorem 4.10. Let G ≤ AGLd(p) (p > 2) be a flag-transitive, affine,

primitive automorphism group of a biplane D which is not 2-transitive, with

Gx ≤ ΓLn

(

p
d
n

)

, (n minimal, n > 1). (So v = pd = qn). Then H = G
(∞)
x

is quasisimple, and its action on V = Vn(q) is absolutely irreducible and not

realisable over any proper subfield of Fq.

The starting point for the proof of Theorem 4.10 is the group-theoretic

proposition [41, 3.1]:

Proposition 4.11. Under the assumptions of Theorem 4.10, one of the fol-

lowing holds:
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(i) Gx contains a unitary group SUn(q
1
2 ) or an orthogonal group Ωn(q) in

its natural action on V = Vn(q).

(ii) Gx lies in a tensor product subgroup of GLd(p), either

(a) Vd(p) = Va⊗Vc and Gx ≤ GLa(p)⊗GLc(p) in its natural action on

V , where Va, Vc are spaces over Fp of dimension a, c and d = ac,

a > c ≥ 2, or

(b) Vd(p) = Va ⊗ · · · ⊗ Va (m > 1 copies), d = am, and Gx ≤
N (GLa(p)⊗ · · · ⊗GLa(p)).

(iii) Gx lies in the normaliser of an irreducible symplectic-type s-group R,

(where s is a prime, s 6= p), and R ≤ Gx, either

(a) Gx ≤ F∗q ◦ s1+2m · Sp2m(s) · logp(q), n = sm and s | (q − 1), or

(b) Gx ≤ F∗q ◦ 21+2m
± · O±

2m(2) · logp(q) and n = 2m. Further, if s = 2

then q = p or p2.

(iv) G
(∞)
x is a quasisimple group, and its action on V = Vn(q) is absolutely

irreducible and not realisable over any proper subfield of Fq.

We must mention here that although [41] classifies linear spaces, the proof

of the above proposition is still valid when considering λ = 2, and hence it

is still relevant in this case. If X is a classical group and Gx contains X,

then (i) holds, since Gx is not transitive on V \ {x}. If Gx does not contain

X, then by Theorem 4.8, either (iv) holds, or Gx is in a member of one of

the families Ci (1 ≤ i ≤ 7) of subgroups of NΓLn(q)(X).

Members of C1 are reducible on V , so Gx does not lie in one of these.

Members of C2 permute the subspaces in a direct sum decomposition of V , so

in the language of [7] they are of affine cartesian type, contradicting Theorem

3. By definition of q, Gx is not contained in a member of C3. Members of C4,

C5, and C7 satisfy (ii), and members of C6 satisfy (iii).
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Lemma 4.12. Case 4.11 (i) does not hold.

Proof. First consider the unitary case. Here, Gx B SUn(s), s2 = q, and

v = s2n. As k(k − 1) = 2(s2n − 1) = 2(v − 1), we have that k > sn. Also,

k divides twice the size of any Gx orbit on V , and Gx is transitive on the

singular vectors of V .

First suppose n is even. Then Gx has an orbit of size (sn − 1)(sn−1 + 1);

so we have that k | 2(sn − 1)(sn−1 + 1), and k | 2(s2n − 1) = 2(v− 1). Hence

we have that k divides

2(sn − 1) · hcf(sn−1 + 1, sn + 1) = 22(sn − 1).

Therefore k = 1
r
22(sn − 1) for some r. Since k > sn, we have that 1 ≤ r ≤ 3.

Now s > 2, k(k − 1) = 2(v − 1) implies

s2n − 1 =
1

r2
(2(sn − 1)(4sn − 4− r))

with 1 ≤ r ≤ 3, so

r2(sn + 1) = 2(4sn − 4− r).

If r = 1 then sn = 11
8
, which is a contradiction. If r = 2 then sn = 4,

a contradiction since s > 2. Finally, if r = 3 then sn = −23, another

contradiction.

Now assume n is odd. Then the size of the orbit of singular vectors is

(sn + 1)(sn−1 − 1), and so k divides

2·hcf
(

(sn + 1)(sn−1 − 1), s2n − 1
)

= 2(sn+1)(sn−1−1, sn−1) = 2(sn+1)(s−1).

Since sn < k, we have that k = 1
r
2(s− 1)(sn + 1) with 1 ≤ r ≤ 2(s− 1), and

so we have

k(k − 1) =
1

r2
2(s− 1)(sn + 1) (2(s− 1)(sn + 1)− r)
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and

2(v − 1) = 2(s2n − 1),

hence

(s− 1) (2(s− 1)(sn + 1)− r) = r2(sn − 1)

and so

2(s− 1)2(sn + 1) = r (r(sn − 1) + (s− 1)) .

As r ≤ 2(s− 1), we have that

2(s− 1)2(sn + 1) = r (r(sn − 1) + (s− 1)) ≤ 2(s− 1) (r(sn − 1) + (s− 1))

so

(s− 1)(sn + 1) ≤ r(sn − 1) + (s− 1)

which implies

sn(s− 1− r) + (s− 1) ≤ s− 1− r

and hence

sn(s− 1− r) ≤ −r < 0

therefore s− 1 < r.

We know k2 > 2(v − 1), so k2r2 > r22(v − 1), hence

4(s− 1)2(sn + 1)2 > 2r2(sn + 1)2(sn − 1)2

so

2(s− 1)2 > r2(sn − 1)2 > (s− 1)2(sn − 1)2

which implies 2 > (sn − 1)2. This is only possible if n = 1 and s = 2, or

n = 0; again, a contradiction.

Now consider the orthogonal case. Here Gx B Ωε
n(q).

First assume n is odd, say, n = 2m+1. Then v = q2m+1, and the number
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of singular vectors in V is q2m − 1, so k divides 2(q2m − 1) which is twice

the size of a Gx-orbit. Also, as before, k(k − 1) = 2(v − 1), hence k divides

2(q2m+1 − 1, q2m − 1) = 2(q − 1), which is a contradiction, since q
2m+1

2 < k.

Now assume n is even, say, n = 2m with m ≥ 2. If ε = −, then the

number of singular vectors in V is (qm + 1)(qm−1 − 1), so

k | 2
(

q2m − 1, (qm + 1)(qm−1 − 1)
)

= 2(qm + 1)(q − 1)

If ε = +, then

k | 2
(

q2m − 1, (qm − 1)(qm−1 + 1)
)

= 2(qm − 1)(qm + 1, qm−1 + 1).

In both cases the same calculations as for the unitary groups lead to a con-

tradiction.

Lemma 4.13. Case 4.11 (ii)b does not hold.

Proof. Assume case 4.11 (ii)b. Then Gx ≤ N (GLa(p)⊗ . . .⊗GLa(p)),

Vd(p) = Va ⊗ . . . ⊗ Va, d = am, and v = pam

; so k divides 2(pam − 1)

and k > p
am

2 , with 2 ≤ a, and 2 ≤ m. The vectors v1⊗ . . .⊗vm form a union

of Gx-orbits that has size (pa−1)m

(p−1)m−1 , so k divides 2(pa−1)m

(p−1)m−1 . Hence,

k
∣

∣

∣
2

(

(pa − 1)m

(p− 1)m−1
, pam − 1

)

.

Therefore k ≤ 2(pa−1)m

(p−1)m−1 < 2pam ≤ pam+1, and p
am

2 < k, hence am

2
< am + 1,

which implies a = 2, and 3 ≤ m ≤ 4.

So, we have that k divides 2m (p2 − 1), but k > p2m−1
, which is a contra-

diction.

Lemma 4.14. Case 4.11 (ii)a with c ≥ 3 does not hold.

Proof. Assume 4.11 (ii)a, with c ≥ 3. Then Gx ≤ N (GLa(p)⊗GLc(p)),
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d = ac, Vd(p) = Va ⊗ Vc, and v = pac with 2 ≤ c < a. So, as above,

k
∣

∣

∣
2

(

(pa − 1)(pc − 1)

p− 1
, pac − 1

)

.

As p
ac
2 < k, we have p

ac
2 < 2(pa−1)(pc−1)

p−1
, so c ≤ 4 and we have the following

possibilities:

(i) c = 3, a = 5, 2 < p ≤ 5

(ii) c = 3, a = 4

For none of the values in (i), do we have that 8v − 7 is a square. Now

suppose c = 3, and a = 4. Then p6 < k, and k divides

2

(

(p3 − 1)(p4 − 1)

p− 1
, p12 − 1

)

= 2(p3 − 1)(p + 1)(p2 + 1).

So k = 2
r
(p3 − 1)(p2 + 1)(p + 1), with 1 ≤ r < p.

Assume r = 1. Then

2(v − 1) = 2(p12 − 1) = 2(p6 + 1)(p3 + 1)(p3 − 1),

and

k(k − 1) = 2(p3 − 1)(p2 + 1)(p + 1)
(

2(p3 − 1)(p2 + 1)(p + 1)− 1
)

so (p4−p2+1)(p2−p+1) = 2(p3−1)(p2+1)(p+1)−1 which is a contradiction,

and hence r ≥ 2.

Therefore k = 2
r
(p3 − 1)(p2 + 1)(p + 1) ≤ (p3 − 1)(p2 + 1)(p + 1), and so

2(p6 + 1)(p3 + 1)(p3 − 1) < (p3 − 1)2(p2 + 1)2(p + 1)2,

so 2p3(p2 − 1)(p − 1) < 2(p4 − p2 + 1)(p2 − p + 1) < p3(p2 + 1)(p + 1) and

hence 2(p − 1)2 < (p2 + 1), so we have that p2 − 4p + 1 < 0 which implies
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p(p− 4) < −1, so p = 3; but 8 · 312 − 7 is not a square. Hence c � 3.

Lemma 4.15. Case 4.11 (ii)a with c = 2 does not hold.

Proof. Suppose c = 2. Then we have pa < k, and k divides

2

(

(pa − 1)(p2 − 1)

p− 1
, p2a − 1

)

= 2(pa − 1)(p + 1, pa + 1).

So k = 2
r
(pa − 1)(p + 1), with 1 ≤ r < 2(p + 1). Now,

2(v − 1) = 2(pa + 1)(pa − 1),

and

k(k − 1) =
1

r2
2(pa − 1)(p + 1) (2(pa − 1)(p + 1)− r) ,

so

r2(pa + 1) = (p + 1) (2(pa − 1)(p + 1)− r) ,

which implies

r (r(pa + 1) + (p + 1)) = 2(pa − 1)(p + 1)2.

Hence r(pa +1)+(p+1) > (pa−1)(p+1), that is r(pa +1) > (pa−2)(p+1),

which implies that pa(p+1−r) < r+2(p+1) < 4(p+1). Therefore p+1 ≤ r.

First assume p + 1 = r. Then k = 2(pa − 1), so

k(k − 1) = 2(pa − 1) (2(pa − 1)− 1)

and

2(v − 1) = 2(pa − 1)(pa + 1),

therefore

2(pa − 1)(pa + 1) = 2(pa − 1) (2(pa − 1)− 1) .

Hence pa + 1 = 2pa − 3, so pa = 4, which again contradicts our initial
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assumptions, and so p + 1 < r. So we have that k divides

2

(

(pa − 1)(p2 − 1)

p− 1
, p2a − 1

)

= 2(pa − 1)(p + 1, pa + 1)

hence

k =
2(pa − 1)(p + 1)

r

with p + 1 < r. This implies a is odd, since if a is even then we would have

that hcf(p + 1, pa + 1) = 1 or 2.

Therefore, since k(k−1) = 2(p2a−1), we have that k = 1
2
(1+

√

8p2a − 7)

and hence

r =
4(pa − 1)(p + 1)

1 +
√

8p2a − 7
·
√

8p2a − 7− 1
√

8p2a − 7− 1
=

(p + 1)(
√

8p2a − 7− 1)

2(pa + 1)
.

So
√

8p2a − 7− 1 = 2r

(

pa + 1

p + 1

)

,

and
√

8p2a − 7 + 1 = 2r

(

pa + 1

p + 1

)

+ 2.

Multiplying the previous 2 equations we get

8(p2a−1) = 4r2

(

pa + 1

p + 1

)2

+4r

(

pa + 1

p + 1

)

= 4r

(

pa + 1

p + 1

)(

r(pa + 1)

p + 1
+ 1

)

,

so

2(pa − 1)(p + 1) = r

(

r(pa + 1)

p + 1
+ 1

)

= r2

(

pa + 1

p + 1

)

+ r =

r2

(

a−1
∑

i=0

pi

)

− 2r2





a−1
2
∑

j=1

p2j−1



+ r
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and hence, dividing by

a−1
∑

i=0

pi,

2(p2 − 1) = r2 −



















2r2





a−1
2
∑

j=1

p2j−1



− r

a−1
∑

i=0

pi



















,

so

2r2





a−1
2
∑

j=1

p2j−1



− r

a−1
∑

i=0

pi

is an integer.

So we have that

a−1
∑

i=0

pi

∣

∣

∣

∣

r



2r

a−1
2
∑

j=1

p2j−1 − 1





Now,

hcf





a−1
∑

i=0

pi, 2r

a−1
2
∑

j=1

p2j−1 − 1





divides

2r
a−1
∑

i=0

pi −



2rp

a−1
2
∑

j=1

p2j−1 − p



 = 2r





a−1
∑

i=0

pi −
a−1
2
∑

j−1

p2j



+ p =

2r





a−1
2
∑

i=1

p2i−1 + 1



 + p
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and hence divides



2r





a−1
2
∑

i=1

p2i−1 + 1



+ p



−



2r

a−1
2
∑

j=1

p2j−1 − 1



 = 2r + p + 1

Therefore

r(2r + p + 1) = b

(

a−1
∑

i=0

pi

)

,

with b ∈ Z. As r < 2(p + 1), we have that

b

a−1
∑

i=0

pi < 6(p + 1)2.

Therefore a = 3.

So, as p+1 < r < 2(p+1), we have that 3(p+1)2 < b(p2+p+1) < 6(p+1)2,

and hence 3 < b < 8.

First suppose that b = 7. Then 7 (p2 + p + 1) < 6p2+12p+6, so p(p−5) <

−1, which forces p = 3. Then v = 36, but then 8v− 7 is not a square. Hence

b = 4, 5, or 6, and p > 3.

Now, if p > 3 then 2r < p2, so (2r + p + 1) < (p2 + p + 1), and since

r(2r + p + 1) = b (p2 + p + 1), we have that b < r. Since p + 1 < r, we have

that

3r2 > b
(

p2 + p + 1
)

> r
(

p2 + p + 1
)

,

so 3r > p2 + p+1, and since r < 2(p+1), we have that p2 + p+1 < 6(p+1),

which forces p = 5. Hence v = 56, but then 8v − 7 is not a square.

Lemma 4.16. Case 4.11 (iii) does not occur.

Proof. Assume Gx is as in 4.11 (iii). Then either:

(i) Gx ≤ Fq ∗ ◦s1+2m.Sp2m(s) logp q, n = sm, s|q − 1 or

(ii) Gx ≤ Fq ∗ ◦2±1+2m .O+
2m(2) logp q, n = 2m, s = 2, q = p or p2.



4. Biplanes with Automorphism Groups of Affine Type 57

First assume s is odd. Then |Gx| divides

(q − 1)sm2+2m(s2m − 1) . . . (s2 − 1) logp q,

so k divides

2
(

(q − 1)sm2+2m(s2m − 1) . . . (s2 − 1) logp q, qsm − 1
)

,

that is, k divides

2(q − 1)

(

sm2+2m(s2m − 1) . . . (s2 − 1) logp q,

sm−1
∑

i=0

qi

)

.

Now,

(

sm−1
∑

i=0

qi, sm2+2m

)

divides sm, so

q
sm

2 < k ≤ 2(q − 1)sm(s2m − 1) . . . (s2 − 1) logp q.

As 1 + s ≤ q, and logp q ≤ q
1
2 , we have that (s + 1)

sm
−3
2 < 2sm(m+2), which

implies that sm ≤ 9.

If sm = 9, then q ≡ 1(mod 3), and k divides

2(q−1)

(

sm−1
∑

i=0

qi, 32(34 − 1)(32 − 1) logp q

)

= 2(q−1)

(

sm−1
∑

i=0

qi, 27 · 32 · 5 logp q

)

.

We have that
sm−1
∑

i=0

qi is odd and coprime to 5, so k divides

2(q − 1)32 logp q < q
9
2 < k,

which is a contradiction. Similarly, sm is not 7 or 5.

Proof of Theorem 4.10.
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Proof. By Proposition 4.11, and Lemmas 4.12, 4.13, 4.14, 4.15, and 4.16, H

is a quasisimple group, and its action on V = Vn(q) is absolutely irreducible,

and not realisable over any proper subfield of Fq. This completes the proof

of Theorem 4.10.

4.3 L is an Alternating Group

Now we examine the case in which L = H/Z (H) = Ac, an alternating group

of degree c ≥ 5, and prove the following:

Theorem 4.17. If D is a biplane with a flag-transitive, primitive auto-

morphism group G ≤ AΓLn(q) of affine type, with n > 1, q odd, and

L = H/Z(H) is simple, as in Theorem 4.10, (where H = G
(∞)
x ), then L

is not an alternating group.

Assume D is a biplane with an affine, primitive, flag-transitive automor-

phism group G < AΓLn(q), with n > 1, q odd, and L ∼= Ac, an alternating

group with c ≥ 5.

First consider V to be the fully deleted permutation module, defined as

follows: Let q = p, and Ac act on (Fp) by permuting the coordinates naturally.

Also, let

X = {(a1, . . . ac) ∈ (Fp)
c |
∑

ai = 0}

of dimension c− 1, and

Y = {(a, . . . , a) | a ∈ Fp}.

Then V = X/X ∩ Y is the fully deleted permutation module.

Lemma 4.18. If H = Ac, then V is not the fully deleted permutation module

for Ac.
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Proof. Suppose V is the fully deleted permutation module. If p | c, then

X ∩ Y = Y , V is of dimension c− 2, and Gx has an orbit of size c(c−1)
2

(take

(a,−a, 0, . . . , 0)).

If p - c, then X ∩ Y = {0}, V = X of dimension c − 1, and Gx has an

orbit of size c. (Take (1, 1, . . . , 1− c)).

We look first at the case p = 3:

First consider c ≡ 0 (mod 3). Then we have that 3
c−2
2 < k, and k

divides (2(3c−2 − 1), c(c − 1)) ≤ c(c − 1), which implies that c ≤ 9. Also,

k2 − k + 2(3c−2 − 1) = 0, so

k =
1

2

(

1 +
√

1 + 8(3c−2 − 1)
)

and we have that 8 · 3c−2 = r2 + 7, which has no integer solutions for c ≤
9, c ≡ 0 (mod 3).

Now consider 3 - c. We have that 3
c−1
2 < k, and k divides 2 ((3c−1 − 1), c),

so k ≤ 2c, hence c ≤ 5. So c = 5, which means k | 10, and k(k−1) = 2(34−1),

which is a contradiction.

Now we present the case p ≥ 5:

If p - c then q
c−1
2 < 2c, which is a contradiction.

If p | c then q
c−2
2 < c(c − 1), hence c ≤ 6, and we have that q = 5, so

c = 5, and k | 20, but k(k − 1) = 2(53 − 1) which is, again, a contradiction.

Therefore, if H = Ac, then V is not the fully deleted permutation module.

Lemma 4.19. We have that c ≤ 16.

Proof. Assume c ≥ 15, and H = Ac. Then by [26, Theorem 7] and the

previous lemma we have that n ≥ c(c−5)
4

, and the inequality q
c(c−5)

8 < (q −
1)(c!)p′ implies c ≤ 16.

Now assume c ≥ 9 and H = 2Ac. Then by [65] n ≥ 2
(c−s−1)

2 , where s is

the number of terms in the 2-adic expansion of c, and so (q − 1)(c!)p′ > q
n
2 ,
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which implies that c ≤ 16.

Lemma 4.20. We have that c ≤ 11

Proof. Suppose 12 ≤ c ≤ 16, and assume H = Ac. Since 12 ≤ c then by [27]

and [42, 2.5] n ≥ 43. But q
n
2 < k ≤ 2(q − 1)(c!)p′, which can only happen if

q = 3, c = 16, and 43 ≤ n ≤ 46. But in these cases 2 (3n − 1, 2.(16!)) < 3
n
2 ,

which is a contradiction.

Now assume H = 2Ac. Then by [65], 16 | n, and 32 | n if c ≥ 14.

But, as above, n ≤ 46, so c ≤ 13 and n = 16, or n = 32. In either case,

2(qn − 1, (q − 1)(c!)) < q
n
2 . Hence c ≤ 11.

Lemma 4.21. We have that c ≤ 7.

Proof. First suppose c = 8, 9. We have that q9 > 2(q − 1)(9!)p′ for q odd, so

n < 18. Hence by [27] n = 8, 13, 14. But q
13
2 > 2(q13 − 1, (q − 1)(9!)), and

2(q14 − 1, (q − 1)(9!)) < q7; so n = 8. For q ≥ 5, q4 > 2(q8 − 1, (q − 1)(9!)),

so q = 3; but 8 · 38 − 7 is not a square, contradicting Corollary 4.2.

Now assume c = 10, 11. Then 2(q13 − 1, (q − 1)(11!)) < q13, so n < 26.

Hence by [27] n = 8, 16. But q
n
2 < 2(qn− 1, (q− 1)(11!)) forces q = 3, n = 8.

Yet, as before, 8 · 38 − 7 is not a square.

Lemma 4.22. We have that c is not 7.

Proof. Assume c = 7. The fact that q
n
2 < 2(q − 1)(7!)p′ forces n < 12,

(except for the case q = 3, but for 12 ≤ n ≤ 14, 8 · 3n − 7 is not a square,

contradicting Corollary 4.2). So by the ordinary and modular characters of

A7 and its covering groups in [9, 27], n = 3, 4, 6, 8, 9, 10.

If n = 3, then q = 25, and H = 3A7 ( [27]). But 8 · 56− 7 is not a square,

contradicting Corollary 4.2.

If n = 4, then H = 2A7, and q = p or p2. First consider q = p2, then

k | 2((p8 − 1), (p2 − 1)7!), so k | 40(p2 − 1). Since p4 < k, p = 3, 5. We know

already that 8 · 38 − 7 is not a square, and 8 · 58 − 7 is not a square either.
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If n = 6, then k | 2(q6− 1, (q− 1)7!), so q3 < k | 42(q2− 1), hence q < 42.

We check that for all possible values of q, 8q6 − 7 is not a square.

If n = 8, 9, or 10, then q
n
2 < 2(qn − 1, (q − 1)(7!)), so q = 3 and n = 8;

but we know 8 · 38 − 7 is not a square.

Hence c < 7.

Lemma 4.23. We have that c is not 6.

Proof. Suppose c = 6. Then q
n
2 < (q− 1)(2 · 6!)p′, which forces n < 9. Again

we refer to [9, 27] for the ordinary and modular character tables for A6 and

its covering groups.

First assume p = 3. Then n 6= 2, 3, or 4, as each one of these would give

H = SL2(9), Ω3(9), Ω−
4 (3) respectively, and we have seen in the previous

section that these do not occur. So n = 6 and by [27] q = 9; but 8 · 96 − 7 is

not a square.

Now assume p ≥ 5, which by [9, 27] implies that n = 3, 4, 6, or 8. If n = 3,

then k | 6(q−1). So q
3
2 < 6(q−1), which implies that q

1
2 < 6. Hence q ≤ 31.

But for 5 ≤ q ≤ 31, we have that 8 · q3 − 7 is not a square. Now consider

n = 6. Then k | 6(q2 − 1), which implies that q = 5, but 8 · 56 − 7 is not a

square. Next consider n = 8, so k | 40(q2 − 1) < q4, a contradiction. Finally

consider n = 4. Here q = p so k divides 2 ((p− 1)5!, p4 − 1) ≤ 240(p − 1).

Since k2 > v, we have that p < 240, but then for every possibility we have

that 8p4 − 7 is not a square, which is a contradiction.

Lemma 4.24. We have that c is not 5.

Proof. If c = 5, then by [9, 27] n = 2, 3, 4, 5, or 6. If n = 3, 5, or 6, then

q
n
2 > (qn − 1, (q − 1)5!), so n = 2 or 4. If n = 2 then q = p or p2, and if

n = 4 then q = p. We have that k divides 240(q − 1). If n = 4 or q = p2,

then we check that for all the possibilities for p, we have that 8v − 7 is not

a square.
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If n = 2 and q = p, then k divides 2(p − 1) (p + 1, 120), which divides

120(p− 1), since 119 is not prime. So k = 120(p−1)
r

, and since v < k2, we have

p, r < 120. Now, from the equation k(k − 1) = 2(v − 1), we get that

p =
7200 + 60r + r2

7200− r2
.

The fact that p is positive forces r ≤ 84 (by the denominator), and p > 2

forces r ≥ 41. We check all possible values of r, and the only values for

which p is a prime are r = 75, and 80, which give the parameters (121,16,2)

and (529,33,2) respectively. (So p = 11 or 23). The case p = 23 is ruled

out by the fact that if A5
∼= SL2(5) ≤ SL2(p), then 5 divides p(p2 − 1)

(Lagrange’s Theorem), and this is not the case. For p = 11, the action

is 2-transitive [40], and by Theorem 1.11 the only 2-transitive biplane has

parameters (11,5,2).

Proof of Theorem 4.17

Proof. By Lemmas 4.18, 4.19, 4.20, 4.21, 4.22, 4.23, and 4.24, we have that

the group L is not an alternating group.

4.4 L is a Sporadic Group

In this section we will assume that L = H/Z(H) is a sporadic group, and

arrive at a contradiction, proving the following:

Theorem 4.25. If D is a biplane with an affine, primitive, flag-transitive

automorphism group G ≤ AΓLn(q), with n > 1, q odd, and L = H/Z(H)

where H = G
(∞)
x is simple, as in Theorem 4.10, then the group L is not a

sporadic group.

Assume D is a biplane with an affine, primitive, flag-transitive automor-

phism group G < AΓLn(q), with n > 1, q odd, and L = H/Z(H) a sporadic

group.
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Lemma 4.26. The sporadic group L is not J4, Ly, F i23, F i′24, BM , or

M . Moreover, Nl ≤ n ≤ Nu and q ≤ Q, where Nl, Nu, and Q are as in

Table 4.2.

Proof. The lower bounds for n are given by [43, 2.3.2]. Everything else follows

from the inequality 2(q − 1) · |Aut L|p′ > q
n
2 (*).

L |Aut L| Nl Nu Q
M11 24 · 32 · 5 · 11 5 19 811
M12 27 · 33 · 5 · 11 23 719
M22 28 · 32 · 5 · 7 · 11 6 25 1447
M23 27 · 32 · 5 · 7 · 11 · 23 11 35 73
M24 210 · 33 · 5 · 7 · 11 · 23 11 39 149
J1 23 · 3 · 5 · 7 · 11 · 19 7 39 673
J2 28 · 33 · 52 · 7 6 27 2887
J3 28 · 35 · 5 · 17 · 19 9 39 311
HS 210 · 32 · 53 · 7 · 11 20 33 3
McL 28 · 36 · 53 · 7 · 11 21 47 7
He 211 · 33 · 52 · 73 · 17 18 45 13
Ru 214 · 33 · 53 · 7 · 13 · 29 28 49 5
Suz 214 · 37 · 52 · 7 · 11 · 13 12 53 293
O′N 210 · 34 · 5 · 73 · 11 · 19 · 31 31 65 5
Co1 221 · 39 · 54 · 72 · 11 · 13 · 23 24 85 72

Co2 218 · 36 · 53 · 7 · 11 · 23 22 53 23
Co3 210 · 37 · 53 · 7 · 11 · 23 22 61 13
Fi22 218 · 39 · 52 · 7 · 11 · 13 27 61 11
HN 215 · 36 · 56 · 7 · 11 · 19 56 71 2
Th 215 · 310 · 53 · 72 · 13 · 19 · 31 48 85 3

Table 4.2:

Given that q, n must satisfy the inequality

2 (qn − 1, (q − 1)|AutL|) > q
n
2 (∗∗),

all through this section we will be calculating 2 (qn − 1, (q − 1 · |Aut L|) for

different values of q, n, and L. For this we use Lemma 4.9, which gives the
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orders of 2, 3, 4, 5, and 11 modulo several powers of small primes, and since

n ≥ 5.

Lemma 4.27. L is not HN or Th.

Proof. The fact that L is not HN is immediate from the bound q ≤ 2. Now

suppose L = Th. Then q = 3. Now,

22|Aut Th|3′ = 217 · 53 · 72 · 13 · 19 · 31 > 3
n
2

implies that n ≤ 53. But by Lemma 4.9, for 48 ≤ n ≤ 53 we have

2 (3n − 1, 2|Th|) < 3
n
2 , which is a contradiction.

Lemma 4.28. L is not He.

Proof. Suppose L is He. Then 18 ≤ n ≤ 45, and q ≤ 13. We have that

|Aut He| = 211 · 33 · 52 · 73 · 17. First suppose q = 13. Then n ≤ 21. Hence

23 - n, so 25 - (|Aut He|, qn − 1). Also, 34 - (|Aut He|, qn − 1), as well as 72

and 17.

So we have 2(q − 1) (|Aut He|, qn − 1) ≤ 24 · 24 · 33 · 52 · 7 < 13
12
2 , and

hence q ≤ 11. For q = 11 we have 28, 73 - (|Aut He|, qn − 1), so k ≤
20(27 · 33 · 52 · 72 · 17) < 11

18
2 and hence q ≤ 9.

If q = 7, then 29 - (|Aut He|, qn − 1), so we have that the inequalities

k < 12(28 · 33 · 52 · 17) < 7
18
2 imply that q 6= 7.

If q = 5, then 28, 73 - (|Aut He|, qn− 1), so k ≤ 8(27 · 33 · 72 · 17) < 5
22
2 , so

n ≤ 21. Therefore 25, 72, 17 - (|Aut He|, qn − 1), so k ≤ 8(24 · 33 · 7) < 5
16
2 ,

and hence q 6= 5.

Therefore we have p = 3. Then k ≤ 2 · 8 · 28 · 52 · 72 · 17 < 9
17
2 = 3

34
2 .

Hence q 6= 9, so q = 3 and k ≤ 4 · 27 · 52 · 72 · 17 < 3
30
2 , so n ≤ 29. But then

26, 72, and 17 do not divide (|Aut He|, qn− 1), so k ≤ 27 · 52 · 7 < 3
19
2 . Hence

n = 18, but by [41, lem 2.8] k ≤ 25 · 7 < 3
18
2 .

Lemma 4.29. L is not Fi22.
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Proof. Assume L is Fi22. Then 27 ≤ n ≤ 61, and q ≤ 11. By Lemma 4.9,

for 5 ≤ q ≤ 11 we have 2(q− 1) (|Aut Fi22|, qn − 1) < q
Nl
2 , so we have q = 3.

In this case, we have 2(q−1) (|Aut Fi22|, qn − 1) ≤ 29 ·52 ·7 ·11 ·13 < 3
30
2 ,

so 27 ≤ n ≤ 29; so again by Lemma 4.9, 25, 52, 7 and 11 do not divide

(|Aut Fi22|, qn − 1). Hence k ≤ 24 · 5 · 13 < 3
14
2 , so q 6= 3.

Lemma 4.30. L is not O′N .

Proof. Suppose L = O′N . Then 31 ≤ n ≤ 65, and q ≤ 5. By Lemma 4.9,

29, 73 - (|Aut O′N |, qn − 1). If 34 | (|Aut O′N |, qn − 1), then n = 54, (and

p = 5); so k ≤ 26 · 34 · 7 · 19 < 5
17
2 , which is a contradiction. So n 6= 54, and

34 - (|Aut O′N |, qn − 1).

If 33, 19 | (|Aut O′N |, qn − 1), then n = 36 (again, p 6= 3). If p = 5, then

k ≤ 27 · 33 · 7 · 19 < 5
18
2 ; so this value is not possible, and therefore n 6= 36,

and 33, 19 - (|Aut O′N |, qn − 1).

If 31 | k, then n = 60, and k ≤ 27 · 32 · 7 · 11 · 31 < 3
28
2 , which is a

contradiction. Therefore n 6= 60, and 31 - k; so k ≤ 211 · 32 · 72 · 11 < 3
30
2 ,

which is also a contradiction.

Lemma 4.31. L is not HS.

Proof. Suppose L is HS. Then 20 ≤ n ≤ 23, and q = 3. If n = 32, then

k | 29 · 5, and hence k < q
n
2 , so the highest power of 2 dividing n is 23.

Therefore, by Lemma 4.9, 26 - (qn − 1, |Aut HS|), and for the same reason

53 - (qn− 1, |Aut HS|). If 52 | k, then by Lemma 4.9 20 divides n, so n = 20,

but then 2 (310 − 1, 2|Aut HS|) < 310.

If n 6= 20, then 25 does not divide k, and 5 · 11 - k, so we have that

2 (qn − 1, (qn − 1)|Aut HS|) < q
Nl
2 , which is a contradiction.

Lemma 4.32. L is not McL.

Proof. Assume L is McL. Then 21 ≤ n ≤ 47, and q ≤ 7. By Lemma 4.9,

28, 35, and 53 do not divide (qn − 1, |Aut McL|), and if q 6= 4, then 34 does

not divide (qn − 1, |Aut McL|) either.
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So we have k ≤ 29 · 34 · 52 · 11 < 2
47
2 , 3

30
2 , and 5

21
2 . Hence q = 3, and

k ≤ 29 · 52 · 7 · 11 < 3
26
2 , so 21 ≤ n ≤ 25; but then by Lemma 4.9 27 and 52

do not divide k, so k ≤ 26 · 5 · 7 · 11 < 3
20
2 , which is a contradiction.

Lemma 4.33. L is not Ru.

Proof. Suppose L = Ru. Then 28 ≤ n ≤ 29, and q ≤ 5. By Lemma 4.9, we

have 28 and 53 do not divide (qn − 1, |Aut Ru|).
First consider q = 5. Then k ≤ 210 · 33 · 7 · 13 · 29 < 5

23
2 , which is a

contradiction, and so q < 5.

Now consider q = 3. Then we have k ≤ 29 · 52 · 7 · 13 · 29 < 3
32
2 , so

n ≤ 31. But then 23 - n, so 25 - (3n − 1, |Aut Ru|); and 20 does not divide

n, so 25 does not divide k. Therefore k ≤ 26 · 5 · 7 · 13 · 29 < 3
26
2 , which is a

contradiction.

Lemma 4.34. L is not a Conway group.

Proof. Suppose L is a Conway group. If p - |L|, then from the character

tables in [9] we have that n = 23 if L = Co2 or Co3, and n = 24 if L = Co1.

But then if n = 23 we have that k divides 46(q − 1), and if n = 24 then k

divides 2 · 3 · 7 · 13(q2 − 1), so that k < q
n
2 , which is contradiction.

So p divides L, and hence p ≤ 13 or p = 23. Write q = pa. Now assume

that qn− 1 is divisible by at least one of the following: 28, 34, 53, 72. Then by

Lemma 4.9 and some extra calculations for p = 13 or 23, we have that an is

divisible by 16, 27, 20, or 21 respectively. Also, q
n
2 < (q − 1)|Aut L|, so we

have an ≤ 92. Hence an is one of the following numbers:

27, 32, 40, 42, 48, 54, 60, 64, 80, 81.

Using Lemma 4.9 we see that for all these values of an, and p ≤ 13 or 23,

(pan − 1, (pa − 1)|Aut L|) < p
an
2 .

Hence k divides 2(q − 1)27 · 33 · 52 · 7 · 11 · 13 · 23.
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If p = 3, then k divides (q−1)28 ·52 ·7 ·11 ·13 ·23 < 318(q−1), and hence

q = 3 and n < 36.

Now, if 23 | k, then 11 | an, and one of the following holds:

(i) q = 3, n = 22, or 33.

(ii) q = 5 or 7, n = 22.

In all of the above cases we have

2(qn − 1, (q − 1)26 · 33 · 52 · 7 · 11 · 13 · 23) < q
n
2 .

Therefore 23 does not divide k. Similarly, 11 does not divide k, and hence k

divides (q − 1)28 · 33 · 52 · 7 · 13. This implies that if p ≥ 3, then q = 3, and

n < 26. But none of these possible values of n satisfy (**).

Lemma 4.35. L is not J1.

Proof. Let L be J1. By Lemma 4.26, n ≤ 39, and if p ≥ 5 then by the

inequality 2(q − 1) · |J1| > q
n
2 we have that n < 18. Hence from the p-

modular tables for J1 given in [9, 27] we see that n = 7 and q = 11. But

8 · 117 − 7 is not a square.

Lemma 4.36. L is not J2.

Proof. Suppose L = J2, and assume first that n = 6. As 52 does not divide

|L6(q)| for q = 3, or 7, we have that q 6= 7 and q ≥ 5. Also, we have that k

divides 2 (q6 − 1, (q − 1)|AutL|), so it divides 42(q2 − 1), and as k > q3, we

have q ≤ 41. But for all these values of q, 8q6 − 7 is not a square.

Hence 7 ≤ n ≤ 27. From the tables in [9, 27] for J − 2 and its covering

group we have that either n = 14 and q = p or p2, n = 21 and q = p or p2,

or n = 13 and q = 9. We check that for all of these values, 8v − 7 is not a

square.

Lemma 4.37. L is not J3.
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Proof. Suppose that L = J3. The subgroup L2(16) of J3 shows that n ≥ 15,

by [37]. Now, the inequality (*) forces q ≤ 17, and n ≤ 26. If q > 5 then by

the character tables of J3 and its covering group in [9] we have that n = 18,

but for none of the possible values of q do we have that 8q18 − 7 is a square.

Hence q = 3 or 5. If k is divisible by 25, 32, 17, or 19, then n is divisible by

8, 6, 16, or 9, so n = 16, 18, or 24; but none of these values of n satusfy (**).

Therefore k | 24 · 3 · 5, which implies k < q
n
2 , which is a contradiction.

Lemma 4.38. L is not Suz.

Proof. Suppose L = Suz. As 12 ≤ n ≤ 53, we know that p is odd. First

assume n = 12. We have that k divides 2 (q12 − 1, (q − 1)|AutL|), and so

divides 22 · 3 · 52 · 7 · 13(q2 − 1), and we also have that k > q6, hence q ≤ 11.

But we check for each of these values of q that 8q12 − 7 is not a square.

So 13 ≤ n ≤ 53. By [9], there is no such irreducible representation of Suz

(or any covering group) in characteristic not dividing |Suz|, so p ≤ 13. Write

q = pa. If either 27 or 34 divides r, then 24 or 33 divides an, so an = 16,

27, 32, or 48, but we check that none of these values of an satisfy (**) for

p ≤ 13. Therefore k | 26 · 33 · 52 · 7 · 11 · 13(q− 1). If p ≥ 5 this implies n < 18

and q = p, but we check that with none of the values for 13 ≤ n ≤ 17 and

5 ≤ p ≤ 13 is (**) satisfied.

Hence p = 3, and since k > p
an
2 we have an ≤ 28. If k is divisible by

25, 52, 11, or 13, then an is divisible by 8, 20, 6, or 5, so an = 16, 18, 20, 24,

or 25 and therefore a = 1, but we check that 8 · 3n − 7 is not a square for

these values of n. Hence k divides 24 · 5 · 13, but then k < 3
n
2 , which is a

contradiction.

Lemma 4.39. L is not a Mathieu group.

Proof. Suppose L is a Mathieu group. From the tables in [9, 27] and the

inequality (**), we see that (n, q) is as in the following table:
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L possibilities for (n, q)

M11 (5, 3), (10, p), (11, p)

M12 (10, p), (10, p2), (11, p), (12, p), (5, 3)

M22 (10, p), (10, p2), (21, 3)

M24 (22,3), (23,5)

The only case satisfying (**) is (n, q)=(5,3), but 8 · 35− 7 is not a square.

Proof of Theorem 4.25

Proof. The proof is a consequence of Lemmas 4.26 to 4.39.

4.5 L is a Group of Lie Type in

Characteristic p

Here we assume L = H/Z(H) is a group of Lie type in characteristic p, and

prove the following:

Theorem 4.40. If a biplane D has a primitive, affine, flag-transitive auto-

morphism group G ≤ AΓLn(q), where q = pn (with p > 2 and n > 1) and

L = H/Z(H) where H = G
(∞)
x , then L is not a simple group of Lie type in

characteristic p.

Assume D is a biplane with an affine, primitive, flag-transitive automor-

phism group G < AΓLn(q), with n > 1, q odd, and L a group of Lie type

in characteristic p, and V = Vn(q) is an absolutely irreducible module for H,

not realisable over any proper subfield of Fq. Write q = pa, and suppose that

L = L(s) is of Lie type over Fs, where s is a power of p.

First we state the following result, which will be useful in this section:
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Lemma 4.41. There is a positive integer u, and a faithful irreducible pro-

jective FpL-module of dimension t, such that at least one of the following

holds:

(i) s = qu, and dimV = n = tu.

(ii) L is of type 2Al,
2Dl, or 2E6; u is odd, s = q

u
2 , and n = tu.

(iii) L is of type 3D4, s = q
u
3 , 3 - u, and n = tu.

(iv) L is of type 2B2,
2G2, or 2F4; s = qu, and n ≥ tu.

Proof. Consequence of [33, 5.4.6 and 5.4.7].

Lemma 4.42. If U is a Sylow p-subgroup of L, then k divides

2(q − 1) · |L : NL(U)|. In particular, 2(q − 1)|L : NL(U)| > q
n
2 .

Proof. Let Gx = Gx/(Gx ∩ F∗q), so L C Gx. By [13, 4.3(c)], U fixes a

unique 1-space in V , which is therefore fixed by NGx
(U). By the Frattini

argument, we deduce that Gx has an orbit on P1(V ) (the 1-spaces of V ) of

size dividing |L : NL(U)|. Since k divides twice the size of any Gx-orbit on

V \{x}, we have that k divides 2(q−1)|L : NL(U)|. As k2 > v, we have that

q
n
2 < 2(q − 1)|L : NL(U)|, and this completes our proof.

Now, NL(U) is a Borel subgroup of L. Let l be the rank of the simple

algebraic group over Fp corresponding to L, and N the number of positive

roots in the corresponding root system.

Lemma 4.43. We have that (q − 1) | L : NL(U) |< qu(N+l).

Proof. By 4.41, we have s ≤ qu. If L is of untwisted type, then

|L : NL(U)| =
∏

i∈X

si − 1

s− 1
,

where X is a set of positive integers with sum N + l; hence the result.
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If L is of type 2Al,
2Dl, or 2E6, then some of the factors are replaced by

si+1
s+1

, which is even less than si−1
s−1

.

If L is of type 3D4,
2B2,

2G2, or 2F4; then |L : NL(U)| is at most (s8 +

s4 +1)(s6−1)(s2−1), (s2 +1), (s3 +1), or (s6 +1)(s4−1)(s3 +1) respectively;

and the result follows.

Lemma 4.44. If q ≥ 5, then n = dimV ≤ 2u(N + l). If q = 3, then

n ≤ 2u(N + l) + 1.

Proof. By 4.42, we have q
n
2 < 2(q − 1)|L : NL(U)|, and by 4.43 we have

(q − 1)|L : NL(U)| < qu(N+l). Therefore we have:

q
n
2 < 2(q − 1)|L : NL(U)| < 2qu(N+l),

and so n < 2 logq(2) + 2u(N + l). Hence the result.

Now let Rp(L) denote the minimal dimension of a faithful projective

representation of L in characteristic p. The values of Rp(L) are given by [33,

5.4.13], and are recorded, with the values of N + l, in the following table [41,

Table III]:

Type of L N + l Rp(L)
Aε

l l(l + 3)/2 l + 1
Bl, Cl,

2B2 l2 + l ≥ 2l
Dε

l (l > 4) L2 2l
Gε

2 8 ≥ 6
F ε

4 28 ≥ 25
Eε

6 42 27
E7 60 56
E8 128 248

Table 4.3:

Lemma 4.45. We have u = 1.

Proof. By 4.41, n ≥ Rp(L)u, so by 4.44:
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Rp(L)u ≤ 2u(N + l) if q ≥ 5, and

Rp(L)u ≤ 2u(N + l) + 1 if q = 3.

Suppose u ≥ 2. From Table 4.3 we see that L must be of type Aε
l , Bl, Cl,

2B2, or Dε
l with u = 2 and q = 3.

If L = Bl(q
u), and l = 3, then Rp(L) = 2l+1 which contradicts the above

equations; and if L = 2B2(q
u) then |L : NL(U)| = q2u + 1, so n > 2(2u + 1)

by Lemma 4.42, and n ≥ Rp(L)u = 4u, which is a contradiction.

Hence L is of type Aε
l , Cl, or Dε

l (q
2) with q = 3.

If L = Dε
l (q

2) (l ≥ 4), then Rp(L)2 = 4l2 ≥ n, and by Lemma 4.44 we

have n ≤ 4(N + l) + 1 = 4l2 + 1. From Lemma 4.41, n = tu, so n = (2l)2.

So we have that n = 4l2, u = 2, and L = PΩ2l(q
2), and therefore

V ⊗ Fq2 = W ⊗ W (q), where W = V2l(q
2); that is, the usual (projective)

module for L.

Now assume L = Aε
l . If l = 1, then L = L2(q

u), and by Lemma 4.42 we

have (q − 1)(qu + 1) > q
n
2 , so n > 2(u + 1). Now n = tu ≥ 2u, so u = 2 and

n = 4; therefore L = PΩ−
4 (q), which does not occur (by Lemma 4.12). So

l ≥ 2. From above equations, (l + 1)u < ul(l + 3), so either u = 2, or u = 3

and l = 2.

In the latter case, by Lemma 4.42 we have n ≤ 24, but n ≥ (l +1)u = 27.

Hence u = 2, so n = t2 ≤ 2l(l + 3) + 1, which forces t < (l+1)2

2
and also

t < l(l+1)
2

when l ≥ 3. Hence by [39, 1.1] we have that t = l + 1, and so [33,

5.4.6] implies that L = Al(q
2) and V ⊗Fq2 = W ⊗W (q), where W = Vl+1(q),

the usual (projective) module for L.

When L = Cl(q
u) with l ≥ 2, we have that (2l)u ≤ tu = n < 2u(N + l)

if q ≥ 5, and (2l)u ≤ tu = n ≤ 2u(N + l) + 1 if q = 3. Hence we have that

(2l)u ≤ tu < 2u(l2 + l) if q ≥ 5, and (2l)u ≤ tu ≤ 2u(l2 + l) + 1 otherwise. In

any case, we have that u = 2, and t = 2l. So, as above, V ⊗Fq2 = W ⊗W (q),

where W = V2l(q
2), the usual (projective) module for L.
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So, in any case we have L = Ld(q
2) or PSpd(q

2), and V ⊗Fq2 = W⊗W (q),

where W = Vd(q
2). A basis for the Fq-realisation of V is given in the proof

of [40, 2.4], it contains elements of the form v ⊗ v. So Gx on the vectors has

an orbit of size (q2d−1)(q−1)
q2−1

, and so k divides twice this number. Therefore

q
n
2 < k < q2d− 1

2 , and since n = d2, we have that d ≤ 3. We have already dealt

with the case d = 2, so here L = L3(q
2), n = 9, and k divides 2(q6−1, q9−1),

and hence divides 2(q3 − 1), but in that case we have k < q
n
2 , which is a

contradiction.

The previous two lemmas give the following:

n = dimV ≤ 2(N + l) if q ≥ 5

and

n = dimV ≤ 2(N + l) + 1 if q = 3.

The next lemma lists all the possibilities for the module V satisfying this

bound for q ≥ 5. The notation is standard, explained in [33, Section 5.4].

In particular, M(λ) denotes the irreducible module with high weight λ. By

“quasiequivalent”, we mean “equivalent, up to automorphisms of L”.

Lemma 4.46. If q ≥ 5, then as a projective FqL-module, V is quasiequivalent

to one of the modules M(λ) listed in Table 4.4 below.

Proof. Since dim V ≤ 2(N + l), the result follows directly from [40, 2.10]

and [39, 1.1], except when L is of type Aε
l , Cl, or Eε

6, but in these cases

we have dim V < l2 + 3l, 2l2 + 2l, or 84 respectively, so we require slight

improvements on the bounds in [40, 2.2, 2.7, 2.10]. These have been achieved

in [56].

Note that the modules M(λ1) for classical groups L are not listed in the

table, this is because if V = M(λ1), then Gx is in the class C8 of subgroups

of ΓLn(q), which we have dealt with already in Section 4.2
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type of L λ dimM(λ)

Aε
l λ2(l ≥ 3) l(l+1)

2

λ3(l ≥ 5) l(l2−1)
6

2λ1(p odd) (l+1)(l+2)
2

(1 + pi)λ1, λ1 + piλl (i > 0) (l + 1)2

λ1 + λl λ2 + 2l − δ (δ = 0 or 1
Bl (p odd , l ≥ 3) λ2 l(2l + 1)

λl 2l

Cl (l ≥ 2), 2B2 λ2 l(2l − 1)− δ (δ = 1 or 2)
2λ1 (p odd) 2l2 + 2 ≤ dim M(λ) ≤ 2l2 + l
λ3 (l = 3, p odd) 14

Dε
l (l ≥ 4) λ2 l(2l − 1)− δ (0 ≤ δ ≤ 2)

λl−1, λl 2l−1

Gε
2 λ1, λ2 7− δp,2, 14− 7δp,3

F ε
4 λ4, λ1 26− δp,3, 52− 26δp,2

Eε
6 λ1, λ2 27, 78-δp,3

E7 λ7, λ1 56, 133-δp,2

E8 λ8 248

Table 4.4:

Lemma 4.47. L is not a classical group.

Proof. Suppose L is classical and write L = Cld(s), with d the minimal

dimension of a natural projective L-module in characteristic p. By Lem-

mas 4.41 and 4.45, we have s = qx, with x = 1 except when L is of type U

or PΩ−, in which case x = 1 or 1
2
.

By [40, 2.3], the stabiliser in L of a maximal 1-space of V is a parabolic

subgroup that corresponds to the set of fundamental roots on which λ does

not vanish. Call this subgroup Pλ. Then k divides 2(q − 1)|L : Pλ|.
First supose λ = λ2. When L is unitary, we have L = Ud(q

1
2 ) rather than

Ud(q), as in this case M(λ2) is realised over Fs only when d = 4, so n = 6

and L = PΩ−
6 (q), which has already been dealt with.

Thus, (q − 1)|L : Pλ| is as follows:
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type of L (q − 1)|L : Pλ|
Lε

δ divides (qd−1)(qd−1−1)
q2−1

Cl, Bl
(q2l−1)(q2l−2−1)

q2−1

Dε
l

(q2l−2−1)(ql−ε)(ql−2+ε)
q2−1

If L = Lε
d(q

x), then since k divides 2(q − 1)|L : Pλ| and q
n
2 < k, we have

q
n
2 = q

d(d−1)
4 < 2q2d−1, so d(d−1)

4
< 2d− 2 + logq 2, therefore d(d−1)

4
≤ 2d− 2,

and hence d ≤ 8. (And d ≥ 4, by Table 4.4). Also, as noted above, d 6= 4,

since L 6= PΩε
6(q). So we have 5 ≤ d ≤ 8.

First assume d = 5. Then we have that k divides 2 ((q5 − 1)(q2 + 1), q10 + 1),

so k | 4(q5 − 1), and hence k = 4(q5−1)
r

, with 1 ≤ r ≤ 3, as q5 < k . Then

4(q5 − 1)

r
· 4(q5 − 1)− r

r
= 2(q10 − 1)

(recall k(k − 1) = 2(v − 1)), and so

8(q5 − 1)− 2r = r2(q5 + 1).

But substituting r = 1, 2, or 3 we get q5 = 11
7
, 4, and -23 respectively, which

is a contradiction.

Now assume d = 6. Then k divides 2 ((q5 − 1)(q4 + q2 + 1), q15 − 1), and

so

q
15
2 < k | 2(q5 − 1)(q2 + q + 1),

which implies that q ≤ 5, and

k =
2(q5 − 1)(q2 + q + 1)

r
,

with 1 ≤ r ≤ 2. But for none of these possible values of r and q is the

equation k(k − 1) = 2(v − 1) satisfied.

If d = 7, then k divides 2(q7−1)(q2 +q+1). As k > q
n
2 , this forces q = 2,

which is a contradiction.
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Finally, suppose d = 8.Then k divides 2
(

q8−1)(q7−1)
q2−1

, q28 − 1
)

, so we have

that

k | 2(q7 − 1)
(

(q4 + 1)(q2 + 1), (q14 + 1)(q7 + 1)
)

.

Hence we have that q14 < k ≤ 2(q7 − 1)(q4 + 1)(q2 + 1), which is a contra-

diction.

This completes the case L = Lε
d, λ = λ2.

Now consider L to be of type Cl, Bl, or Dε
l , still with λ = λ2. If l = 2,

then L = PΩ5(q) with n = 5, which has already been seen to not occur.

Hence l ≥ 3. Since k2 > v, from the above tables we have that

l(2l − 1)− 2

2
≤ n

2
< 4l − 2− 3

2
,

which implies l ≤ 3. Therefore l = 3 and so L is of type C3 or B3. In this

case k divides 2(q6 − 1)(q2 + 1), so n ≤ 18, and hence L = C3(q) and n = 13

or 14, but in both cases we have 2 ((q6 − 1)(q2 + 1), qn − 1) < q
n
2 , which is a

contradiction. This completes the case λ = λ2.

Now suppose λ = 2λ1, so from Table 4.4 L is of type Lε
d or Cl, with p

odd. Here |L : Pλ| = qd−1
q−1

. So q
n
2 < k, and k dividing 2(qd − 1) imply d ≥ n

2
,

which forces n = 2 and d = 3, but then L = PΩ3(q) with n = 3 has already

been dealt with.

Suppose now that V is a spin module, so that λ = λl for L of type Bl,

and λ = λl−1 or λl for L of type Dε
l . In the latter case, with ε = −, we have

L = D−
l (q

1
2 ), as the spin modules for D−

l (q) are not realised over Fq.

If L is of type Bl, then |L : Pλ| = (ql +1)(ql−1 +1) . . . (q+1), and if L is of

type Dε
l , then |L : Pλ| divides (ql−1 + 1) . . . (q + 1). As q

n
2 < k ≤ 2(q− 1)|L :

Pλ|, we have that

2l−1 =
n

2
< 2 + l(l + 1)
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if L is of type Bl, and

2l−2 =
n

2
< 2 + l(l − 1)

if L is of type Dε
l . This forces l ≤ 6 in the first case, and l ≤ 7 if L is of type

Dε
l .

If L = B3(q), D4(q), or D−
4 (q

1
2 ), then k divides 2 ((q3 + 1)(q4 − 1), q8 − 1),

so we have k | 4(q4− 1), and hence k = 4(q4−1)
r

, with 1 ≤ r ≤ 3. But for each

of these values of r the equality k(k− 1) = 2(v− 1) yields non-integer values

of q, which is a contradiction.

If L = C3(q), then p = 2, which is a contradiction.

If L = B4(q) or Dε
5(q), then k divides 2 ((q3 + 1)(q8 − 1), q16 − 1), so

k | 4(q8 − 1), but as q8 < k, we have that k = 4(q8−1)
r

, with 1 ≤ r ≤ 3, but

then k(k − 1) = 2(v − 1) taking each of these values of r forces q to have

non-integer values, which is a contradiction.

Now, if L = B5(q), C5(q), or Dε
6(q), then we have that k divides

2 ((q8 − 1)(q3 + 1)(q5 + 1), q32 − 1) < q16, a contradiction.

Similarly, if L = B6(q), C6(q), or Dε
7(q), then we have that k divides

2 ((q8 − 1)(q3 + 1)(q5 + 1)(q6 + 1), q64 − 1) < q32, a contradiction.

By Lemma 4.46, the remaining cases are

L = Lε
d(q

x), λ = λ3, (1 + pi)λ1, λ1 + piλd−1, λ1 + λd−1,

and

L = C3(q), (q odd), λ = λ3.

In the last case, n = 14 and | L : Pλ |= (q3 +1)(q2 +1)(q+1), so k divides

2 ((q4 − 1)(q3 + 1), q14 − 1) < q7, a contradiction.

Now consider L = Lε
d(q

x). If λ = λ3, then d ≥ 6. If d ≥ 7 then L = Ld(q)
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or Ud(q
1
2 ), so that k divides

2(qd − 1)(qd−1 − 1)(qd−2 − 1)

(q3 − 1)(q2 − 1)
,

so

3d− 7 ≥ n

2
=

d(d− 1)(d− 2)

12
,

which is not true. Therefore d = 6, L = Lε
6(q), and k divides

2 ((q5 − ε)(q3 + 1)(q2 + 1), q20 − 1), which implies k < q10, a contradiction.

If λ = (1 + pi)λ1, then n = d2 and k divides 2(qd − 1), forcing d2 ≤ 2d,

which can only happen if d = 2. In this case the equality k(k− 1) = 2(v− 1)

forces (v, k, λ) = (16, 6, 2), which we have already assumed not to happen.

If λ = λ1 + piλd−1, (with d ≥ 3), then n = d2 and we have that k divides

2

(

(qd − 1)(qd−1 − 1)

q − 1
, qd2 − 1

)

,

forcing k < q
n
2 , again, a contradiction.

Finally, if λ = λ1 + λd−1 (d ≥ 3), then n = d2 − δ with 0 ≤ δ ≤ 2. Then

k divides
2(qd − εd)(qd−1 − εd−1)(q − 1)

q − ε
,

so 2d − 1 ≥ n
2
≥ d2−2

2
, which is only possible if d = 3 or 4. If d = 3, then

n = 7 or 8. If ε = + then k divides 2 ((q3 − 1)(q2 − 1), qn − 1), and if ε = −
then k divides 2 ((q3 + 1)(q − 1)2, qn − 1). In both cases we have k < q

n
2 . If

d = 4, then n = 14. If ε = + then k divides 2 ((q4 − 1)(q3 − 1), q14 − 1),

and if ε = − then k divides 2 ((q3 + 1)(q2 + 1)(q − 1)2, q14 − 1). Here also,

in both cases we have k < q7, a contradiction.

Lemma 4.48. L is not an exceptional group of Lie type.

Proof. Just as above, we have V = M(λ), with λ as in Table 4.4, and k

divides 2(q − 1)|L : Pλ|; so we see that k is as in the following table:
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L λ k divides

G2(q) λ1 2(q6 − 1, q7−δp,2 − 1)

λ2 2(q6 − 1, q14−7δp,3 − 1)

F ε
4 (q) λ4 2

(

(q12 − 1)(q4 + 1), q26−δp,3 − 1
)

λ1 2
(

(q12 − 1)(q4 + 1), q52−26δp,2 − 1
)

Eε
6(q

x) λ1 2 ((q9 − 1)(q8 + q4 + 1), q27 − 1)

λ2 2( (q12−1)(q9−ε)(q4+1)(q−1)
(q3−ε)(q−ε)

, q78−δp,3 − 1)

E7(q) λ7 2 ((q14 − 1)(q9 + 1)(q5 + 1), q56 − 1)

λ1 2( (q18−1)(q14−1)(q6+1)
q4−1

, q133−δp,2 − 1)

E8(q) λ8 2( (q30−1)(q24−1)(q10+1)
q6−1

, q248 − 1)

3D4(q
x) λ4(x = 1

3
) 2 ((q4 − 1)(q3 + 1), q8 − 1)

λ2(x = 1) 2
(

(q8 + q4 + 1)(q6 − 1), q28−2δp,2−1
)

2B2(q) λ2 2 ((q2 + 1)(q − 1), q4 − 1)

It follows from the above table and from the inequality q
n
2 < k that if L

is an exceptional group of Lie then one of the following holds:

(i) L = 3D4(q
1
3 ) with λ = λ4;

(ii) L = 2B2(q).

In the first case,, we have that k divides 4(q4 − 1), and k > q4, so k =

4(q4−1)
r

, with 1 ≤ r ≤ 3.

First assume r = 1. Then k(k − 1) = 4(q4 − 1)(4q4 − 5), and we have

that 2(v − 1) = 2(q8 − 1), so 8q4 − 10 = q4 + 1, so 7q4 = 11, which is a

contradiction.

Now assume r = 2. Then k = 2(q4 − 1), so k(k− 1) = 2(q4 − 1)(2q4 − 3),

and so 2q4 − 3 = q4 + 1, hence q4 = 4, which is also a contradiction.

If r = 3, then k(k− 1) = 4(q4−1)(4q4−7)
9

, and since k(k− 1) = 2(q8− 1), we

have that q4 = −23, another contradiction.

Now consider the second case. Then L is the Suzuki group, and so v = q4,

with p = 2, but this is a contradiction.
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This completes the proof of Theorem 4.40.

4.6 L is a Group of Lie type in

Characteristic p′

Here we complete this chapter by proving that L = H/Z(H) is not a group

of Lie type in characteristic p′, that is:

Theorem 4.49. If a biplane D has an affine, primitive, flag-transitive au-

tomorphism group G ≤ AΓLn(q), with n > 1, q = pn odd, and H = G
(∞)
x ,

then L = H/Z(H) is not a group of Lie type in characteristic p′.

Assume L is a group of Lie type in characteristic p′, and is not isomorphic

to an alternating group. Then we have the following:

Lemma 4.50. L is one of the following groups:

L2(s), s ≤ 59

L3(s), s ≤ 5

L4(3)

PSp4(s), s ≤ 9, s 6= 8

PSp6(s), s = 2, 3, 5

PSp8(s), s = 2, 3

PSp10(3)

U3(s), s ≤ 5

U4(s), s ≤ 3

Ul(2), l = 5, 6, 7
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Ω7(3), Ω±
8 (2)

2B2(8), G2(3), G2(4), 3D4(2), 2F4(2)′, F4(2).

Proof. We know that n ≥ Rp′(L), which is the smallest degree of a faithful

projective representation of L over a field of p′-characteristic. In [37] there

are lower bounds for Rp′(L), and we also have:

2(q − 1) | Aut L |> q
n
2 ≥ q

R
p′

(L)

2 . (∗)

Substituting the lower bounds of [37] for Rp′(L) we obtain that the groups

satisfying the inequality are precisely those listed above.

Lemma 4.51. The group L is not L2(s).

Proof. Suppose that L = L2(s). As L 6= Ac, we have that s 6= 4, 5, or 9. We

see in the p′-modular character tables of SL2(s) (given in [8], and [27] for

s ≤ 32) that n is one of the numbers s±1
2

(s odd), s± 1, or s. In particular,

n ≥ s−1
(2,s−1)

.

If s ≥ 29, then the inequality (*) forces q ≤ 3 and n = s±1
2

, but for these

values of q and n, and 29 ≤ s ≤ 59, 2(qn − 1, (q − 1)|Aut L|) < q
n
2 .

If L = L2(27), then n = 13, 14, 26, 27, or 28, and by (*) we have that

q = 2 or 4, a contradiction.

Now let L = L2(25). Then n = 12, 13, 24, 25, or 36, and again (*) forces

q ≤ 4 or (q, n) = (7, 12). But

2 (qn − 1, (q − 1)|Aut L|) > q
n
2 (∗∗)

only if q = 2, again, a contradiction.

Similarly, when 16 ≤ s ≤ 23, (*) forces q ≤ 13, and the only values which

satisfy (**) are (s, q, n) = (19, 4, 9) and (17,2,8), another contradiction.

If L = L2(13), then n = 6, 7, 12, 13, or 14. Suppose p ≥ 3. Then by (*)

either n ≤ 7 or q = 3. If q = 3 then (**) forces n = 12, but then 8v − 7 is
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not a square. So n = 6 or 7, and by (*) q = p. If n = 7 then k | 14(p − 1),

so k < q
n
2 . Hence n = 6 and k divides 182(p2 − 1). Since p3 < k, we have

that p < 182, but then for all possibilities of p we have that 8v − 7 is not a

square.

Next consider L2(11), so |Aut L| = 23 · 3 · 5 · 11. First assume p ≥ 3. we

have n = 5, 6, 10, 11, or 12, and k divides 110(q − 1), 6(q2 − 1), 110(q2 − 1),

22(q − 1), or 60(q − 1) respectively. The only possibilities for k > q
n
2 are

(n, q) = (5, 3), (6,3), (6,5), and (10,3), but in none of these cases is 8v − 7 a

square.

If s = 8 then n = 7, 8, or 9, and k divides 14(q−1), 8(q2−1), or 126(q−1)

respectively. The only possibility for k > q
n
2 is (n, q) = (9, 3), but in this

case we have that 8v − 7 is not a square.

Now let L = L2(7), so |Aut L| = 24 · 3 · 7. As L ∼= L3(2), we take p 6= 7.

In this case n = 3,4,6,7, or 8, and k divides 42(q − 1), 4(q2 − 1), 42(q2 − 1),

14(q − 1), or 8(q2 − 1) respectively. Therefore n 6= 7 or 8. If n = 4 then

k = 2(q2−1) or 4(q2−1). First suppose k = 2(q2−1). As 2(v−1) = k(k−1),

we have 2(q4 − 1) = 4(q2 − 1)2 − 2(q2 − 1), so q2 + 1 = 2(q2 − 1)− 1, which

implies q2 = 4, a contradiction. Now suppose k = 4(q2− 1). Then, as above,

2(q4 − 1) = 16(q2 − 1)2 − 4(q2 − 1), so q2 + 1 = 8(q2 − 1)− 2, but this forces

q2 = 11
7
, which is another contradiction. Hence n 6= 4. If n = 6 then since

k > q3, we have q ≤ 41, and (**) forces q = 3, 5, or 11, but for none of

these values of q is 8q6 − 7 a square. Finally consider n = 3. From [27], we

have q = p or p2, and q = p if and only if -7 is a square in Fp, which occurs

only if p ≡ 1, 2, or 4 mod 7. If q ≤ 31, then q = 9, 11, 23, or 25. For

none of these values 8q3 − 7 is a square. If q ≥ 37, as k divides 42(q − 1)

we have that k = 42(q−1)
r

, and as k > q
3
2 then r < 7. Solving the equation

2(q3− 1) = k(k− 1) for q, with each 1 ≤ r ≤ 6 we get a non-integer solution,

which is a contradiction.

Lemma 4.52. L is not L3(s).
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Proof. Suppose L is L3(s), so by 4.50 s ≤ 5. If s = 5 then by [27] n ≥ 30,

but this does not satisfy (*). If s = 3 then n ≥ 12, but (*) forces q = 2,

which cannot occur.

So L = L3(4), and |Aut L| = 28 · 33 · 5 · 7. First suppose p ≥ 5. Then

by (*) n ≤ 17, so by [27] n = 6, 8, 10, 12, or 15. If n = 8, then k divides

40(q2 − 1), and the condition k > q4 forces q = 5, k = 40(q2 − 1), but

8 · 58 − 7 is not a square. For n = 10, 12, or 15 it is impossible with p ≥ 5

to satisfy the conditions q
n
2 < k | 40(q2 − 1). Now consider n = 6. Then

k divides 42(q2 − 1), and q = p ≤ 41. If p ≥ 17, then k = 42(q2−1)
r

, with

1 ≤ r ≤ 2. First suppose r = 1. Then 2(q6−1) = (42)2(q2−1)2−42(q2−1),

so q4 + q2 + 1 = (21)(42)(q2− 1)− 21, so q4 − 881q2 + 904 = 0, giving a non-

integer value of q between 29 and 31, which is a contradiction. Now suppose

r = 2. Then similarly, we have 2q4 − 880q2 + 904 = 0, giving a non-integer

value of q between 19 and 23, another contradiction. Hence q < 17, but we

check that for 5 ≤ q < 17, 8q6 − 7 is not a square. Hence p = 3, and by (*)

we have n ≤ 19, and so by [9, 27] n = 4, 6, 8, 10, 15 or 16, and q = 9, 3, 9, 9, 3

or 9 respectively, but we check that for none of these values 8qn − 7 is a

square.

Lemma 4.53. L is not L4(3) or PSp4(s).

Proof. If L = L4(3), then (*) and [27] force q = 2 and n = 26, a contradiction.

Now suppose L = PSp4(s), then by 4.50 s ≤ 9 and s 6= 8. If s = 7 or

9 then by [37] n ≥ 24 or 40 respectively, so by (*) we have that q ≤ 3 and

24 ≤ n ≤ 36 for s = 7, and q = 2 and 40 ≤ n ≤ 45 for s = 9. The latter

case cannot occur, and for q = 3 we check that for all values of n we have

2 ((qn − 1), (q − 1)|Aut L|) < q
n
2 .

If s = 5 then by (*) and the character tables for L and 2.L in [9, 27]

n = 12 or 13, so ((qn − 1), (q − 1)|Aut L|) divides 390(q2 − 1) or 13(q − 1)

respectively. The inequality k > q
n
2 forces n = 12 and q4 < 390, so q = 3,

but from [27] we see that if p = 3 then q = 9, a contradiction.
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If s = 4 then by (*) and [9, 27] n = 18, but 2 ((qn − 1), (q − 1) | Aut L |) <

q
n
2 .

Finally, if s = 3 then |Aut L| = 27 · 34 · 5, and as PSp4(3) ∼= U4(2), we

can assume p 6= 3. The inequality (*) forces n ≤ 11, so by [9, 27] n = 4, 5,

6, or 10. If n = 5, 6, or 10 then k divides 10(q − 1), 6(q − 1), or 10(q2 − 1),

so k < q
n
2 . Hence n = 4, and q = p or p2, with q = p if and only if −3 is a

square in Fp. If q = p2 then k divides 40(p2 − 1), so p = 5 or 6. We check

that in each case 8q4 − 7 is not a square. If q = p then k divides 20(p2 − 1),

so k = 20(p2−1)
r

, with r < 20. As 2(p4 − 1) = k(k − 1), we have that

400(p2 − 1)2

r2
− 20(p2 − 1)

r
= 2(p4 − 1),

which implies that
200(p2 − 1)

r2
− 10

r
= p2 + 1,

so

p2 =
r2 + 10r + 200

200− r2
,

and hence r ≤ 14. The only value of r that yields an integer value for p is

r = 10, but this forces p = 2, a contradiction.

Lemma 4.54. L is not PSp6(s).

Proof. First suppose L = PSp6(5). Then (*) forces q = 2 a contradiction.

Next suppose L = PSp6(3). In this case |Aut L| = 210 · 39 · 5 · 7 · 13, and

by [37] n ≥ 13. If p does not divide |L| (p > 13 or p = 11), then by (*) and

the tables in [9] we have n = 13 or 14, but neither case satisfies (**). If p = 13

then (*) forces n ≤ 18, but we check that 2 (13n − 1, 12|Aut L|) < 13
n
2 for

13 ≤ n ≤ 18.

Hence p ≤ 7. By (*) an < 40, where q = pa. If 26 or 33 divides k, then 8

or 9 divides an, so an = 16, 18, 24, 27, 32, or 36. But none of these values of

an satisfy (**) for p = 5 or 7. Therefore k divides 25 · 32 · 5 · 7 · 13 · (q− 1)2′,3′ .
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By (*) we have that with p = 5 or 7 a ≤ 2, so (q−1)2′,3′ = 1, and so k < q
13
2 ,

which is a contradiction.

Finally, consider L = PSp6(2). In this case |Aut L| = 29 · 34 · 5 · 7. By (*)

and the tables in [9, 27], we have that n = 7, 8, or 15 if p 6= 3, and n = 7,

8, 14, or 21 if p = 3, and in all cases we have q = p. The only possibility

satisfying (**) is (n, q) = 8, 3, but 8 · 38 − 7 is not a square.

Lemma 4.55. L is not PSp8(s) or PSp10(3).

Proof. If L = PSp8(3) or PSp10(3) then by [37], n is at least 40 or 121

respectively, but (*) forces q = 2, a contradiction.

Now consider the case L = PSp8(2). In this case we have by [37] that

n ≥ 28, and by (*) we have that either q = 5 and n ≤ 29, or q = 3 and

n ≤ 36, but we check that none of these cases satisfy (**).

Lemma 4.56. L is not U3(s).

Proof. Suppose L = U3(s). If s = 5, then by (*) and [9, 27] we have that

q = 3 and n = 20 or 28, and if s = 4 then n = 12 or 13. None of these cases

satisfy (**).

Now consider s = 3. Then |Aut L| = 26 · 33 · 7, and by (*) and the tables

in [9, 27] we have that n = 6, 7, or 14. In the last two cases k divides 14(q−1)

and 14(q2− 1) respectively, forcing q = 2, a contradiction. Hence n = 6, and

by [9, 27] q = p. In this case we have that k divides 42(p2 − 1). We know

p 6= 3, and if p ≥ 7 then (**) is not satisfied. Hence p = 5, but 8 · 56 − 7 is

not a square, which is a contradiction.

Lemma 4.57. L is not U4(3), or Ur(2), 5 ≤ r ≤ 7.

Proof. If L = U4(3) then by (*) and [9, 27] we have that either n = 15, 20,

or 21, or (n, q) = (6, 4); and if L = U5(2) then for the same reason we have

that n = 10 or 11. But we check that none of these possibilities satisfy (**).
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If L = U6(2) then by (*) and [37] we have that either q = p ≤ 11 and

21 ≤ n ≤ 32, or q = 13 and n = 21; and if L = U7(2) we have that q = 3 or

5, and 42 ≤ n ≤ 45. Again, none of these possibilities satisfy (**).

Lemma 4.58. L is not Ω7(3) or Ω±
8 (2).

Proof. If L = Ω7(3), then by [37] we have n ≥ 27, so by (*) p = 5. By (*)

q = 5 and n ≤ 28, but neither case satisfies (**).

Now consider L = Ωε
8(2). By (*) and [9, 27] we have that either ε = −,

q = 3, and n = 34, or ε = +, and n = 8 or 28. The only possibility satisfying

(**) is n = 8. In this case q = p, and k | 40(p2 − 1), hence p = 3 or 5, but in

both cases 8v − 7 is not a square.

Lemma 4.59. L is not 2B2(8), G2(3), G2(4),3 D4(2),2 F4(2)′, or F4(2).

Proof. First suppose L = F4(2). Then by [37] we have n ≥ 44, so (*) implies

q = 3 and n ≤ 56. we check that none of these values satisfy (**).

Now suppose L is one of the remaining groups. Then using the p-modular

tables for L and its covering groups from [9, 27], and (*), we find that the

possibilities are the following:

L = 2B2(8): n = 8(q = 5) or 14

L = G2(3): n = 14

L = G2(4): n = 12

L = 3D4(2): n = 25 or 26

L = 2F4(2)′: n = 26 or 27

The only cases satisfying (**) are (L, n, q) = ( 2B2(8), 8, 5), and (G2(4), 12, 3),

but in both of them 8v − 7 is not a square.

This completes the proof of Theorem 4.49, and hence we have completed

the proof of Theorem 4, namely:

Theorem 4. If D is a biplane with a primitive, flag-transitive automorphism

group G of affine type, then one of the following holds:
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(i) D has parameters (4,3,2).

(ii) D has parameters (16,6,2).

(iii) G ≤ AΓL1(q), for some prime power q.

4.7 Addendum

The proof of Theorem 4 can be greatly simplified using the following propo-

sition, very helpfully provided by Peter Cameron:

Proposition 4.60. Let G be an affine automorphism group of a biplane.

Suppose that G = TH, where T is the translation group of V (d, p) (acting

regularly on the points of the biplane) and H ≤ GL(d, p), and p is odd. Then

|G| is odd.

Proof. We have v = pd, so

pd = 1 +
k(k − 1)

2
.

Suppose that |G| is even. Then H contains an involution t. The fixed

points of t form an e-dimensional subspace of V for some e, so t fixes pe

points. Also, Gx = H permutes the k blocks incident with x. Suppose Gx

has m transpositions and k−2m fixed blocks. Then, since the points different

from x correspond bijectively to pairs of blocks incident with x, we see that

t has 1 + m + (k−2m)(k−2m−1)
2

fixed points. Thus

pe = 1 + m +
(k − 2m)(k − 2m− 1)

2
.

Subtracting the two displayed equations gives

pd − pe = 2m(k −m− 1).
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Note that the number of fixed points is at least k+1
2

, with equality only if

k − 2m = 1. So pe ≥ k+1
2

.

It cannot happen that p | m and p | k − m − 1, for then p | k − 1 and

pd = 1+ k(k−1)
2

≡ 1 (mod p). Hence either pe | m or pe | k−m−1. The former

is impossible since m ≤ k
2

and pe ≥ k+1
2

. We conclude that pe | k−m− 1, so

that indeed

pe = k −m− 1.

Now we have k −m− 1 = pd − 2m(k −m− 1), so

(2m + 1)(k −m− 1) = pd,

so 2m + 1 = pd−e.

If m = 0, then p divides k − 1 and pd = 1 + k(k−1)
2

≡ 1 (mod p), a

contradiction. If m ≥ 1, then p divides 2(k − m − 1) + (2m + 1) = 2k − 1,

so p2 divides (2k − 1)2 = 8pd − 7, also a contradiction. This completes the

proof.

To prove Theorem 4, we only need Corollary 4.7, Theorem 4.10 and

Proposition 4.60.



5. BIPLANES WITH

AUTOMORPHISM GROUPS OF

ALMOST SIMPLE TYPE

In this chapter we will prove Theorem 5, that is:

Theorem 5. If D is a biplane with a primitive, flag-transitive automor-

phism group of almost simple type, then D has parameters either (7,4,2), or

(11,5,2), and is unique up to isomorphism.

For this purpose we will consider biplanes that admit a primitive, flag-

transitive automorphism group G of almost simple type, that is, if X is the

socle of G (the product of all its minimal normal subgroups), then we have

that X is simple, and X E G ≤ AutX.

5.1 Preliminary Results

In this section we mention some results which will be useful throughout the

rest of this chapter.

Assume that D is a biplane with a primitive, flag-transitive automorphism

group G is of almost simple type, with socle (the product of its minimal

normal subgroups) X, a simple group, so X E G ≤ AutX.

We have the following results:

Lemma 5.1 (Tits Lemma). [61, 1.6] If X is a simple group of Lie type in

characteristic p, then any proper subgroup of index prime to p is contained
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in a parabolic subgroup of X.

Lemma 5.2. If X is a simple group of Lie type in characteristic 2, (X � A5

or A6), then any proper subgroup H such that [G : H]2 ≤ 2 is contained in a

parabolic subgroup of X.

Proof. First assume that G = Cln(q) is classical (q a power of 2), and take H

maximal in G. By Theorem 4.8, H is contained in a member of the collection

C of subgroups of ΓLn(q), or in S, that is, H (∞) is quasisimple, absolutely

irreducible, not realisable over any proper subfield of F(q).

We check for every family Ci that if H is contained in Ci, then 2|H|2 <

|G|2, except when H is parabolic.

Now we take H ∈ S. Then by [39, Theorem 4.2], |H| < q2n+4, or H and

G are as in [39, Table 4]. If |G|2 ≤ 2|H|2 ≤ q2n+4, then if G = Lε
n(q) we

have n ≤ 6, and if G = SPn(q) or PΩε
n(q) then n ≤ 10. We check the list

of maximal subgroups of G for n ≤ 10 in [30, Chapter 5], and we see that

no group H satisfies 2|H|2 ≤ |G|2. We then check the list of groups in [39,

Table 4], and again, none of them satisfy this bound.

Finally, assume G to be an exceptional group of Lie type in characteristic

2. Then by [51], if 2|H| ≥ |G|2, H is either contained in a parabolic subgroup,

or H and G are as in [51, Table 1]. Again, we check all the groups in [51,

Table 1], and in all cases 2|H|2 < |G|2.

As a consequence, we have a strengthening of Corollary 4.3:

Corollary 5.3. Suppose D is a biplane with a primitive, flag-transitive al-

most simple automorphism group G with simple socle X of Lie type in char-

acteristic p, and the stabiliser Gx is not a parabolic subgroup of G. If p

is odd p does not divide k; and if p = 2 then 4 does not divide k. Hence

|G| < 2|Gx||Gx|2p′.

Proof. We know from Corollary 4.3 that |G| < |Gx|3. Now, by Lemma 5.1,

p divides v = [G : Gx]. Since k divides 2(v − 1), if p is odd then (k, p) = 1,
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and if p = 2 then (k, p) ≤ 2. Hence k divides 2|Gx|p′, and since 2v < k2, we

have |G| < 2|Gx||Gx|2p′.

From the previous results we have the following lemma, which will be

quite useful throughout this chapter:

Lemma 5.4. Suppose p divides v, and Gx contains a normal subgroup H of

Lie type in characteristic p which is quasisimple and p - |Z(H)|; then k is

divisible by [H : P ], for some parabolic subgroup P of H.

Proof. As p divides v, then since k divides 2(v−1) we have that (k, p) ≤ (2, p).

Also, we have that k = [Gx : Gx,B] (where B is a block incident with x), so

[H : HB] divides k, and therefore ([H : HB], p) ≤ (2, p), so by Lemmas 5.1

and 5.2 HB is contained in a parabolic subgroup P of Gx, and since P is

maximal, we have Gx,B is contained in P , so k is divisible by [Gx : P ].

We will also use the following two lemmas:

Lemma 5.5. [49] If X is a simple group of Lie type in odd characteristic,

and X is not PSLd(q) nor E6(q), then the index of any parabolic subgroup

is even.

Lemma 5.6. [47, 3.9] If X is a group of Lie type in characteristic p, acting

on the set of cosets of a maximal parabolic subgroup, and X is not PSLd(q),

PΩ+
2m(q) (with m odd), nor E6(q), then there is a unique subdegree which is

a power of p.

Before stating the next result, we give the following [46]:

Definition 5.7. Let H be a simple adjoint algebraic group over an alge-

braically closed field of characteristic p > 0, and σ be an endomorphism of H

such that X = (Hσ)
′ is a finite simple exceptional group of Lie type over Fq,

where (q = pa). Let G be a group such that Soc(G) = X. The group AutX

is generated by Hσ, together with field and graph automorphisms. If D is
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a σ-stable closed connected reductive subgroup of H containing a maximal

torus T of H, and M = NG(D), then we call M a subgroup of maximal rank

in G.

We now have the following theorem and table [52, Theorem 2, Table III]:

Theorem 5.8. If X is a finite simple exceptional group of Lie type such

that X ≤ G ≤ Aut(X), and Gx is a maximal subgroup of G such that

X0 = Soc(Gx) is not simple, then one of the following holds:

(i) Gx is parabolic.

(ii) Gx is of maximal rank.

(iii) Gx = NG(E), where E is an elementary abelian group given in [11,

Theorem 1(II).].

(iv) X = E8(q), (p > 5), and X0 is either A5 × A6 or A5 × L2(q).

(v) X0 is as in Table 5.1.

X X0

F4(q) L2(q)×G2(q) (p > 2, q > 3)
Eε

6(q) L3(q)×G2(q), U3(q)×G2(q) (q > 2)
E7(q) L2(q)× L2(q) (p > 3), L2(q)×G2(q) (p > 2, q > 3)

L2(q)× F4(q) (q > 3), G2(q)× PSp6(q)
E8(q) L2(q)× Lε

3(q) (p > 3), G2(q)× F4(q)
L2(q)×G2(q)×G2(q) (p > 2, q > 3), L2(q)×G2(q

2) (p > 2, q > 3)

Table 5.1:

We will also use the following theorem [48, Theorem 3]:

Theorem 5.9. Let X be a finite simple exceptional group of Lie type, with

X ≤ G ≤ Aut(X). Assume Gx is a maximal subgroup of G, and Soc(Gx) =

X0(q) is a simple group of Lie type over Fq (q > 2) such that 1
2
rk(X) <

rk(X0). Then one of the following holds:
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(i) Gx is a subgroup of maximal rank.

(ii) X0 is a subfield or twisted subgroup.

(iii) X = E6(q) and X0 = C4(q) (q odd) or F4(q).

Finally, we will use the following theorem [54, Theorem 1.2]:

Theorem 5.10. Let X be a finite exceptional group of Lie type such that

X ≤ G ≤ Aut(X), and Gx a maximal subgroup of G with socle X0 = X0(q)

a simple group of Lie type in characteristic p. Then if rk(X0) ≤ 1
2
rk(X), we

have the following bounds:

(i) If X = F4(q) then |Gx| < q20.4 logp(q),

(ii) If X = Eε
6 then |Gx| < q28.4 logp(q),

(iii) If X = E7(q) then |Gx| < q30.4 logp(q), and

(iv) If X = E8(q) then |Gx| < q56.12 logp(q).

In all cases, |Gx| < |G| 5
13 .5 logp(q).

5.2 The Case in which X is an Alternating

Group

In this section we suppose there is a non-trivial biplane D that has a primi-

tive, flag-transitive almost simple automorphism group G with socle X, where

X is an alternating group, and arrive at a contradiction.

Lemma 5.11. The group X is not Ac.

Proof. We need only consider c ≥ 5. Except for three cases (namely c = 6

and G ∼= M10, PGL2(9), or PΓL2(9)) G is an alternating or a symmetric

group. The three exceptions will be dealt with at the end of this section.
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The point stabiliser Gx acts on the points on the biplane as well as on

the set Ωc = {1, 2, . . . , c}. The action of Gx on this set can be one of the

following three:

(i) Not transitive.

(ii) Transitive but not primitive.

(iii) Primitive.

We analyse each of these actions separately.

Case (i) Since Gx is a maximal subgroup of G, it is necessarily the full

stabiliser of a proper subset S of Ωc, of size s ≤ c
2
. The orbit of S under

G consists of all the s-subsets of Ωc, and Gx has only one fixed point in D,

hence we can identify the points in D with the s-subsets of Ωc. (We identify

x with S).

Two points of the biplane are in the same Gx-orbit if and only if the

corresponding s-subsets of Ωc intersect S in the same number of points.

Therefore G acting on the biplane has rank s+1, each orbit Oi corresponding

to a possible size i ∈ {0, 1, . . . , s} of the intersection of an s-subset with S in

Ωc.

Now fix a block B in D incident with x. Since G is flag-transitive on

D, B must meet every orbit Oi. Let i < s, and yi ∈ Oi ∩ B. Since D is a

biplane, the pair {x, yi} is incident with exactly two blocks, B, and say, Bi.

The group Gxyi
fixes the set of flags {(x, B), (x, Bi)}, and in its action on Ωc

stabilises the sets S and Yi, as well as their complements Sc and Y c
i . That

is, Gxyi
is the full stabiliser in G of the four sets S ∩ Yi, S ∩ Y c

i , Sc ∩ Yi, and

Sc ∩ Y c
i , so it acts as S(s−i) on Sc ∩ Yi, and at least as A(c−2s+i) on Sc ∩ Y c

i .

Any element of Gx,yi
either fixes the block B, or interchanges B and Bi, so

the index of Gx,yi
∩ GxB in Gx,yi

is at most 2, and therefore Gx,B ∩ Gx,yi

acts at least as the alternating group on Sc ∩ Yi, and Sc ∩ Y c
i . Since Gx,B
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contains such an intersection for each i, we have that Gx,B is transitive on

the s-subsets of Sc, that is, on O0. This implies that the block B is incident

with every point in the orbit, so every other block intersects this orbit in

only one point, (since for every point y in O0 the pair {x, y} is incident with

exactly B and only one other block).

However, any pair of distinct points in O0 is also incident with exactly

two blocks, which is a contradiction.

Case (ii) Here we have that since Gx is maximal, then in its action on Ωc

it is the full stabiliser in G of some non-trivial partition of Ωc into t classes

of size s, (with s, t ≥ 2). Since G acts transitively on all the partitions of Ωc

into t classes of size s, we may identify the points of the biplane D with the

partitions of Ωc into t classes of size s.

We fix a point x of the biplane, that is, a partition X of Ωc into t classes

C0, C1, . . . , Ct−1 of size s. We call a partition Y of Ωc j-cyclic (with respect

to X) if X and Y have t − j common classes, and if, numbering the other

j classes C0, . . . , Cj−1, for each Ci (i < j) there is a point ci such that the

j classes of Y which differ from those of X are (Ci − {ci}) ∪ {ci+1} for all

i = 0, . . . , j−1, with the subscripts computed modulo j. We define the cycle

of Y to be the cycle (C0, . . . , Cj−1). As we have that X is fixed, if s ≥ 3

then the points c0, . . . , cj−1 are uniquely determined by Y , and are called the

special points of Y . For every j = 2, . . . , t the set of j-cyclic partitions is an

orbit Oj of Gx.

Now fix a block B incident with x. Since we can identify the points of the

biplane D with the partitions of Ωc into t classes of size s, for simplicity we

will refer to partitions whose corresponding points of the biplane are incident

with B simply as partitions incident with B.

For every j = 2, . . . , t, the block B is incident with at least one j-cyclic

partition Yj, (since G is flag-transitive), and there is an even permutation of

the elements of Ωc that preserves X and Yj, stabilising each of their t − j
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common classes and acting as Zj on the remaining j classes of X. Therefore

GxB acts as St on the t classes of X. As a consequence, we have that for any

two classes C0 and C1 of X, the block B is incident with at least one 2-cyclic

partition with cycle (C0, C1).

Now we claim that s ≥ 3. Suppose to the contrary that the classes of X

have size 2. Then there are only two 2-cyclic partitions with cycle (C0, C1),

so B is incident with at least half of the points of the biplane corresponding

to the 2-cyclic partitions, which implies that there are at most two blocks

incident with x, which is a contradiction. Therefore s ≥ 3.

Now we claim that any two 2-cyclic partitions incident with B have a

common special point. Suppose to the contrary that for two points y, z

incident with the block B, the corresponding 2-cyclic partitions Y and Z

have cycle (C0, C1), with Y having special points {c0, c1}, which are both

distinct from the special points of Z. There is an even permutation of Ωc

that stabilises the partitions Y and Z, and maps {c0, c1} to any other disjoint

pair {c′0, c′1} (where c′i ∈ Ci). Therefore, the number m of 2-cyclic partitions

with cycle (C0, C1) incident with B satisfies m ≥ s2 − 2s + 1. However,

the flag-transitivity of G and the fact that GxB acts as St on the t classes

of X imply that m divides the total number s2 of 2-cyclic partitions with

cycle (C0, C1), so m = s2. Therefore the block B is incident with the whole

orbit O2 under Gx of all 2-cyclic partitions, which implies that B is the only

block incident with x, and this is a contradiction. Therefore any two 2-cyclic

partitions incident with B have a common special point.

If t ≥ 3, then since GxB acts as St on the t classes of X, and since any

2-cyclic partitions incident with B have a common special point, we have

that t = 3 and only one point ci in each class Ci is a special point of some

2-cyclic partition incident with B. However there is an even permutation of

Ωc that preserves each of the classes C0, C1, C2, fixing c0 and c1 but mapping

c2 into any other point of C2, preserving x and B but not {c0, c1, c2}, which
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is a contradiction. Therefore t = 2.

It follows that B is incident with only one partition, say Y , with special

points {c0, c1}. If the size of C0 and C1 is greater than 3, then B is incident

with a partition, say Z different to Y and X, and there is an even permutation

of Ωc which leaves X and Z invariant, but does not preserve {c0, c1}, which

is a contradiction. Therefore s = 3.

Hence c = 6, and since the points of D can be identified with the partitions

of Ω6 into 2 classes of size 3, we have that v = 10. However, there is no biplane

with 10 points, a contradiction.

Case (iii) Here first of all we mention that if G ∼= Sc then Gx � Ac, since

[G : Gx] = v > 2. If k, the number of blocks incident with a point is even,

then the group Gx contains a Sylow 2-subgroup of G. Therefore Gx contains

a subgroup acting transitively on 2 or 4 points of Ωc, and fixing all other

points, so by a theorem of Marggraf [66, Th.13.5], we have that c ≤ 8. If

we check all the divisors of |Sc| for 5 ≤ c ≤ 8, (since v divides G), the only

possibilities such that 8v − 7 is a square are v = 2, 4, 16, and 56. We rule

out v = 2 because it is too small. For v = 4, k = 3 which is odd, and v = 56

forces k = 11 which is also odd. Finally by Theorem 1 we rule out v = 16.

If k is odd, then let p be a prime divisor of k, so p divides 2|Gx|. Then Gx

contains a Sylow p-subgroup of G, and so Gx acting on Ωc contains an even

permutation with exactly one cycle of length p and c− p fixed points. By a

result of Jordan [66, Th. 13.9], the primitivity of Gx on Ωc yields c− p ≤ 2.

Since c−2 ≤ p ≤ c, we have that p2 does not divide |G|, so p2 does not divide

k. Therefore either k is a prime, namely c − 2, c − 1, or c, or the product

of two twin primes, namely c(c − 2). On the other hand, k2 > v, and by a

result of Bochert [66, Th. 14.2], we have that v ≥
c+2
2

!

2
. From this and the

previous conditions on k, we have that c = 13(k = 11 · 13), 8,7,6, or 5.

If c = 13, then k = 143, so k(k − 1) = 2(v − 1) forces v = 10154. But if

v is even, k − 2 must be a square, however 141 is not a square, which is a
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contradiction.

As we have seen earlier in this proof, for 5 ≤ c ≤ 8 the only possibilities

with k odd are the (4,3,2) and the (56,11,2) biplanes. Given the above

conditions on k we have that k = 3 and c = 5, but we check in [9] that there

are no maximal subgroups of S5 nor A5 of index 4.

We know consider the case c = 6, and G ∼= M10, PGL2(9), or PΓL2(9).

Checking the divisors of 22|A6|, the only possibilities for v such that 8v−7 is

a square are v = 4 and 16, and by Section 2.2 we know this is not the case.

This completes the proof of Lemma 5.11, and hence X is not an alternat-

ing group.

5.3 The Case in which X is a Sporadic

Group

Here we consider D to be a biplane with a primitive, flag-transitive, almost

simple automorphism group G with simple socle X, with X a sporadic group.

Lemma 5.12. If D is a non-trivial biplane with a flag-transitive, primitive,

almost simple automorphism group G, then Soc(G) = X is not a sporadic

group.

Proof. The way we proceed is as follows: We assume that the automorphism

group G of D is almost simple, such that X E G ≤ AutX with X a sporadic

group. Then G = X, or G = AutX. We know that v = [G : Gx], and Gx is a

maximal group of G. The lists of maximal subgroups of X and AutX appear

in [9, 34, 35, 55]. (They are complete except for the 2-local subgroups of the

Monster group). For each sporadic group (and its automorphism group), we

rule out the maximal subgroups the order of which is too small to satisfy

|G| < |G|3. In the remaining cases, for those v > 2 , we check if 8v − 7 is
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a square, or if 2 (|Gx|)2v′ > 2v. If this does happen, we check the remaining

arithmetic conditions (v even then k − 2 a square, k(k − 1) = 2(v − 1)).

To illustrate this procedure, suppose X = J1. Then G = J1, since

|OutJ1| = 1. The maximal subgroups H of J1, with their orders and in-

dices are as follows:

L2(11), of order 660, v = 266,

23.7.3, of order 168, v = 1045,

2× A5, of order 120, v = 1463,

19 : 6, of order 114, v = 1540,

11 : 10, of order 110, v = 1596,

D6 ×D10, of order 60, v = 2926, and

7 : 6, of order 42.

In the last case, the order of the group is too small to satisfy |Gx|3 > |G|,
and in all the remaining cases we have that 8v − 7 is not a square.

Proceeding in the same manner with the other sporadic groups, the only

cases in which all conditions are met are the following:

(i) G = M23, Gx = 24 : (A5 × 3) : 2, (v, k) = (1771, 60).

(ii) G = M24, Gx = 26 : (3 · S6), (v, k) = (1771, 60).

In the first case we have that the subdegrees of M23 on 24 : (A5 × 3) : 2

are 1, 60, 480, 160, 90, and 20 (calculated with GAP, my sincere thanks to

A.A. Ivanov and D. Pasechnik), but 30 does not divide 20, contradicting the

fact that k must divide twice the order of every subdegree.

In the second case, the subdegrees are 1,90, 240, and 1440 [25, pp.126],

however M24 has only one conjugacy class of subgroups of index 1771 [9],

so if x is a point and B is a block we have Gx is conjugate to GB, so Gx
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fixes a block, say, B0. We have that x cannot be incident with B0 since the

flag-transitivity of G implies that Gx is transitive on the k blocks incident

with x. Hence x and B0 are not incident, so the points (or a subset of them)

incident with the block B0 are a Gx-orbit, which is a contradiction since the

smallest non-trivial Gx-orbit has size 90, and B0 is incident with 60 points.

This completes the proof of Lemma 5.12, and hence X is not a sporadic

group.

5.4 The Case in which X is a Classical

Group

Here we consider D to be a non-trivial biplane, with a primitive, flag-

transitive, almost simple automorphism group G, with simple socle X, such

that X = Xd(q) is a simple classical group, with a natural projective action

on a vector space V of dimension d over the field Fq, where q = pe, (p prime).

5.4.1 X is a Linear Group

In this case we consider the socle of G to be PSLn(q), and β = {v1, v2, . . . , vn}
a basis for the natural n-dimensional vector space V for X.

Lemma 5.13. If the group X is PSL2(q), then it is one of the following:

(i) PSL2(7) acting on the (7,4,2) biplane, with point stabiliser S4.

(ii) PSL2(11) acting on a (11,5,2) biplane, with point stabiliser A5.

Proof. Suppose X ∼= PSL2(q), (q = pm) is the socle of a flag-transitive

automorphism group of a biplane D, so G ≤ PΓL2(q). As G is primitive,

Gx is a maximal subgroup of G, and hence Xx is isomorphic to one of the

following [22]: (Note that |Gx| divides (2, q − 1)m|Xx|):
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(i) A solvable group of index q + 1.

(ii) D(2,q)(q−1).

(iii) D(2,q)(q+1).

(iv) L2(q0) if (r > 2), or PGL2(q0) if (r = 2), where q = qr
0, r prime.

(v) S4 if q = p ≡ ±1 (mod8).

(vi) A4 if q = p ≡ 3,5,13,27,37 (mod40).

(vii) A5 if q ≡ ±1 (mod10).

(i) Here we have that v = q + 1, so k(k − 1) = 2(v − 1) = 2q, hence q = 3,

but PSL2(3) is not simple.

(ii), and (iii) The degrees in these cases are a triangular number, but the

number of points on a biplane is always one more than a triangular number.

(iv) First assume r > 2. Here we clearly have that q0 divides v =

qr−1
0

(

q2r
0 −1

q2
0−1

)

, so k | 2 (v − 1, mq0(q
2
0 − 1)), which divides 2m (q2

0 − 1), so

k =
2m(q2

0−1)
n

. Say q0 = pb, so m = br and (except for p = 2 and 2 ≤ b ≤ 4),

we have b <
√

q0.

Now, as k2 > 2v, we have

4m2 (q2
0 − 1)

2

n2
> 2qr−1

0

(

q2r
0 − 1

q2
0 − 1

)

,

so

n2 <
2m2 (q2

0 − 1)
3

qr−1
0

(

q2r
0 − 1

)

.

First consider r > 3, so (r ≥ 5). Here
(q2

0−1)
3

(q2r
0 −1)

< 1
4
, so

n2 <
m2

2qr−1
o

<
q0

2
,
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(as m = rb > 4).

From k(k − 1) = 2(v − 1), we get

2m2
(

q2
0 − 1

)3 −mn
(

q2
0 − 1

)2
= n2

(

q3r−1
0 − qr−1

0 − q2
0 + 1

)

.

Now,

2m2
(

q2
0 − 1

)3 −mn
(

q2
0 − 1

)2
< 2m2q6

0,

and

n2
(

q3r−1
0 − qr−1

0 − q2
0 + 1

)

> n2q3r−2
0 ,

so

n2q3r−8
0 < 2m2 < 2qr

0 ≤ qr+1
0 .

This implies that 3r − 8 < r + 1, so 2r < 9, which is a contradiction.

Next consider r = 3. Here
(q2

0−1)
3

(q2r
0 −1)

< 1, so

n2 <
2m2

q2
0

=
18b2

q2
0

,

hence n < 5b
q0

.

As q = q3
0 6= 2, we have m2 < q3

0, so 9b2 < q3
0, and therefore q0 6= 2, and

b2 < q0. Hence n2 < 18
q0
≤ 6, so n ≤ 2.

Since
√

q0 < 5
n
, we have that n > 1 implies q0 < 7. Also, n < 5√

q0
implies

q0 < 25, so b ≤ 4.

Assume n = 1. From k(k − 1) = 2(v − 1), we have 2m2 (q2
0 − 1)

3 −
m (q2

0 − 1)
2

= q8
0 − 2q2

0 + 1. As m = 3b, we have

q8
0 − 2q2

0 + 1 = 18b2
(

q2
0 − 1

)3 − 3b
(

q2
0 − 1

)2
< 18 · 16q6

0.

So q8
0−25 ·32q6

0 ≤ 2q2
0, hence q4

0 (q2
0 − 25 · 32) ≤ 2. This implies q2

0 ≤ 25 ·32,

which forces q0 ≤ 16.

We check for all values of q0 = 3, 4, 5, 7, 8, 9, 11, 13, and 16 that 8v − 7
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is not a square.

Now assume r = 2. Then v =
q0(q2

0+1)
(2,q−1)

. As q = q2
0 6= 2, we have m2 < q,

so 4b2 < q2
0 , which implies q0 6= 2.

Now, from k2 > 2v, we get
(2,q−1)2 ·2m2(q2

0−1)
2

q0(q2
0+1)

> n2. If q is even then

n2 < 2m2 = 8b2, so n < 3b. If q is odd then n2 < 8m2 = 32b2 so n < 6b.

First consider q even. From k(k − 1) = 2(v − 1), we have

16b2
(

q2
0 − 1

)2 − 4bn
(

q2
0 − 1

)

= 2n2
(

q3
0 + q0 − 1

)

< 16b2
(

q3
0 + q0 − 1

)

,

so

4b
(

q2
0 − 1

)2 − 4b
(

q3
0 + q0 − 1

)

< n
(

q2
0 − 1

)

< 3b
(

q2
0 − 1

)

,

hence (q2
0 − 1)

2 − q3
0 − q0 + 1 < q2

0 − 1, which is a contradiction.

Now consider q odd. Then we have

16b2
(

q2
0 − 1

)2 − 4bn
(

q2
0 − 1

)

= n2
(

q3
0 + q0 − 2

)

< 32b2
(

q3
0 + q0 − 2

)

,

so

4b
(

q2
0 − 1

)2 − 8b
(

q3
0 + q0 − 2

)

< n
(

q2
0 − 1

)

< 6b
(

q2
0 − 1

)

,

that is, 2 (q2
0 − 1) − 4 (q3

0 + q0 − 2) < 3 (q2
0 − 1), which forces q0 = 3, and

q = 9. However this implies v = 12, but there is no k such that k(k−1) = 22,

which is a contradiction.

(v) In this case q = p ≡ ±1 (mod 8), and m = 1, so G0
∼= S4. So, we have

q odd, v = q(q2−1)
48

, and k divides 2
(

q(q2−1)−48
48

, 24
)

, so k | 48. As k2 > 2v, we

have that q ≤ 37, hence q = 7, 17, 23, or 31. The only one of these values

for which 8v − 7 is a square is q = 7, so v = 7 and k = 4, that is, we have

the (7,4,2) biplane and G = X ∼= PSL2(7).

(vi) Here q = p ≡ 3, 5, 13, 27, or 37 (mod 40), so m = 1 and Gx
∼= A4.

Here v = q(q2−1)
24

, and so k divides 2
(

q(q2−1)−24
24

, 12
)

, so k | 24. As 2v < k2,
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we have q = 3, 5, or 13. For q = 3 we have v = 1, which is a contradiction.

For q = 5 we have v = 5, but there is no such biplane. Finally, q = 13 implies

v = 91, but then 8v − 7 is not a square.

(vii) Here q = p or p2 ≡ ±1 (mod 10), v = q(q2−1)
120

, and so k divides 120m,

with m = 1 or 2. As 2v < k2, q3 − q < 60k2 < 60(120)2m2, so q = 9, 11,

19, 29, 31, 41, 49, 59, 61, 71, 79, 81, 89, or 121. Of these, the only value for

which 8v − 7 is a square is q = 11. In this case, v = 11 and k = 5, that is,

we have a (11,5,2) biplane, with G = X ∼= PSL2(11), and Gx
∼= A5.

This completes the proof of Lemma 5.13.

Lemma 5.14. The group X is not PSLn(q), with n > 2, and (n, q) 6= (3, 2).

Proof. Suppose X ∼= PSLn(q), with n > 2 and (n, q) 6= (3, 2) (since PSL3(2) ∼=
PSL2(7)). We have q = pm, and take {v1, . . . , vn} to be a basis for the natu-

ral n-dimensional vector space V for X. Since Gx is maximal in G, then by

Theorem 4.8 Gx lies in one of the families Ci of subgroups of ΓLn(q), or in the

set S of almost simple subgroups not contained in any of these families. We

will analyse each of these cases separately. In describing the Aschbacher sub-

groups, we denote by Ĥ the pre-image of the group H in the corresponding

linear group.

C1) Here we have Gx reducible. That is, Gx
∼= Pi stabilises a subspace of

V of dimension i.

Suppose Gx
∼= P1. Then G is 2-transitive, and this case has already been

done (Theorem 1.11).

Now suppose Gx
∼= Pi, 1 < i < n fixes W , an i-subspace of V . We will

assume i ≤ n
2

since our arguments are arithmetic, and for i and n− i we have

the same calculations. Considering the Gx-orbits of the i-spaces intersecting
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W in i− 1-dimensional spaces, we have that k divides

2q (qi − 1) (qn−i − 1)

(q − 1)2
.

Also,

v =
(qn − 1) . . . (qn−i+1 − 1)

(qi − 1) . . . (q − 1)
> qi(n−i),

but we have that k2 > 2v, so either i = 3 and n = 7, or i = 2.

First assume (n, i) = (7, 3). Then k divides

2

(

q (q3 − 1) (q4 − 1)

(q − 1)2
,
(q7 − 1) (q6 − 1) (q5 − 1)

(q3 − 1) (q2 − 1) (q − 1)
− 1

)

,

but then k2 < v, which is a contradiction.

Hence i = 2. Here v =
(qn−1)(qn−1−1)

(q2−1)(q−1)
, and G has suborbits with sizes:

|{2-subspaces H : dim(H ∩W ) = 1}| = q(q+1)(qn−2−1)
q−1

and

|{2-subspaces H : H ∩W = 0}| = q4(qn−2−1)(qn−3−1)
(q2−1)(q−1)

.

If n is even then k divides
q(qn−2−1)

(q2−1)
, since q + 1 is prime to

(qn−3−1)
q−1

, and

so k2 < v, which is a contradiction.

Hence n is odd, and k divides
2q(qn−2−1)

q−1

(

q + 1, n−3
2

)

.

First assume n = 5. Then v = (q2 + 1) (q4 + q3 + q2 + q + 1), and k

divides 2q (q2 + q + 1). The fact that k2 > 2v forces k = 2q (q2 + q + 1).

From k(k − 1) = 2(v − 1), we have

4q2
(

q2 + q + 1
)2 − 2q

(

q2 + q + 1
)

= 2
(

q6 + q5 + 2q4 + 2q3 + 2q2 + q
)

,

so

(

q2 + q + 1
) (

2q
(

q2 + q + 1
)

− 1
)

=
(

q5 + q4 + 2q3 + 2q2 + 2q + 1
)

.
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If we expand we get the following equality:

q5 + 3q4 + 4q3 + q2 − q − 2 = 0,

which is, of course, a contradiction. Hence n ≥ 7. Here we have

v =
(

qn−1 + qn−2 + . . . + q + 1
) (

qn−3 + qn−5 + . . . + q2 + 1
)

,

and k divides 2dc, where d = q (qn−3 + qn−4 + . . . + q + 1) and c =
(

q + 1, n−3
2

)

.

Say k = 2dc
e

. The inequality v < k2 forces e ≤ 2q. We have that

v − 1

d
= qn−2 + qn−4 + . . . + q3 + q + 1,

and also, since k(k − 1) = 2(v − 1), we have

k =
2(v − 1)

k
+ 1 =

2eqn−2 + 2eqn−4 + . . . + 2eq3 + 2eq + 2e + c

c
.

We have that
(

kc
2
, d
)

divides d, and also

(eqn−2 + eqn−4 + . . . + eq + e + c, q (eqn−3 + eqn−5 + eq2 + e)) =

(eqn−2 + . . . + eq + e + c, e + c) , and

(eqn−2 + . . . + eq + e + c, eqn−3 + eqn−4 + . . . + eq + e) =

(eqn−2 + . . . + eq + e + c, (2e + c)q + e + c) .

Therefore kc
2

divides c2(e + c) ((2e + c)q + e + c), and since e ≤ 2q and

c =
(

q + 1, n−3
2

)

, the only possibilities for n and q are n = 7 and q ≤ 3, or

n = 9 and q = 2. However in none of these possibilities is 8v − 7 a square.

C ′1) Here G contains a graph automorphism and Gx stabilises a pair {U, W}
of subspaces of dimension i and n− i, with i < n

2
. Write G0 for G∩PΓLn(q)

of index 2 in G.

First assume U ⊂ W . By 5.6, there is a subdegree which is a power of p.

On the other hand, if p is odd then the highest power of p dividing v − 1 is
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q, it is 2q if q > 2 is even, and is at most 2n−1 if q = 2. Hence k2 < v, which

is a contradiction.

Now suppose V = U ⊕ W . Here p divides v, so (k, p) ≤ 2. First assume

i = 1. If x = {〈v1〉, 〈v2 . . . vn〉}, then consider y = {〈v1, . . . , vn−1〉, 〈vn〉}, so

[Gx : Gxy] =
qn−2(qn−1−1)

q−1
, and k divides

2(qn−1−1)
q−1

, so as v = qn−1(qn−1)
q−1

>

q2(n−1), we have k2 < v, a contradiction.

Now assume i > 1. Consider x = {〈v1, . . . , vi〉, 〈vi+1, . . . , vn〉} and

y = {〈v1, . . . , vi−1, vi + vn〉, 〈vi+1, . . . , vn〉}. Then [G0
x : G0

xy]p′ divides

2 (qi − 1) (qn−i − 1), so again we have k2 < v, a contradiction.

C2) Here Gx preserves a partition V = V1 ⊕ . . . ⊕ Va, with each Vi of the

same dimension, say, b, and n = ab.

First consider the case b = 1, n = a, and let x = {〈v1〉, . . . , 〈vn〉} and

y = {〈v1 + v2〉, 〈v2〉, . . . , 〈vn〉}. As n > 2, we have that k divides 4n(n −
1)(q− 1) = 2[Gx : Gxy]. We have v > qn(n−1)

n!
and k2 > v, so n = 3 and q ≤ 4.

So v = q3(q3−1)(q+1)
(3,q−1)6!

. As k | 2(v − 1), only for q = 2 can k > 2, so consider

q = 2. Then k | 6, and v = 28, but there is no such value of k satisfying

k(k − 1) = 2(v − 1).

Now let b > 1, and consider x = {〈v1, . . . , vb〉, 〈vb+1, . . . , v2b〉, . . .} and y =

{〈v1, . . . , vb−1, vb+1〉, 〈vb, vb+2, . . . , v2b〉, . . . , 〈vn−b+1, . . . , vn〉}. Then k divides
2a(a−1)(qb−1)

2

q−1
. Since v > qn(n−b)

a!
, we have n = 4, q ≥ 5, and a = 2 = b. In

none of these cases can we have k > 2.

C3) In this case Gx is an extension field subgroup. Since 2|Gx||Gx|2p′ > |G|,
we have that either:

(i) n = 3, and X ∩Gx = (̂q2 + q + 1) · 3 < PSL3(q) = X, or

(ii) n is even, and Gx = NG(̂PSLn
2
(q2)).

First consider case (i). Here v =
q3(q2−1)(q−1)

3
, so k divides

6 (q2 + q + 1) (logp q). As k2 > v, we have q = 3, 4, 5, 8, 9, 11, or 13. But in
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none of these cases is 8v − 7 a square.

Now consider case (ii), and write n = 2m. As p divides v, we have that

(k, p) ≤ 2. First suppose n ≥ 8, and let W be a 2-subspace of V considered

as a vector space over the field of q2 elements, so that W is a 4-subspace

over a field of q elements. If we consider the stabiliser of W in Gx and

in G we have that in GW \ GxW there is an element g such that Gx ∩ Gg
x

contains the pointwise stabiliser of W in Gx as a subgroup. Therefore k

divides 2 (qn − 1) (qn−2 − 1), contrary to 2v < k2, which is a contradiction.

Now let n = 6. Then since (k, p) ≤ 2, by Lemma 5.4, we have that k is

divisible by the index of a parabolic subgroup of Gx, so it is divisible by the

primitive prime divisor q3 of q3 − 1, but this divides the index of Gx in G,

which is v, a contradiction.

Hence n = 4. Then v =
q4(q3−1)(q−1)

2
, and so k is odd and prime to q− 1.

As (v − 1, q + 1) = 1, we have that k is also prime to q + 1, and hence

k | (q2 + 1) logp q, contrary to k2 > 2v, another contradiction.

C4) Here Gx stabilises a tensor product of spaces of different dimensions,

and n ≥ 6. In these cases we have v > k2.

C5) In this case Gx is the stabiliser in G of a subfield space. So Gx =

NG (PSLn(q0)), with q = qm
0 , m a prime.

If m > 2 then 2|Gx||Gx|2p′ > |G|, forces n = 2, a contradiction.

Hence m = 2. If n = 3 then v =
(q3

0+1)(q2
0+1)q3

0

(q0+1,3)
.

Since p divides v, we have (k, p) ≤ 2, so by Lemma 5.4 we have that GxB

(where B is a block incident with x) is contained in a parabolic subgroup of

Gx. Therefore q2
0 + q0 + 1 divides k, and (v − 1, q2

0 + q0 + 1) divides 2q0 +

(q0 + 1, 3), forcing q0 = 2 and v = 120, but then 8v − 7 is not a square.

If n = 4, then by Lemma 5.4 q2
0 + 1 divides k, but q2

0 + 1 also divides v,

which is a contradiction.

Hence n ≥ 5. Considering the stabilisers of a 2-dimensional subspace of
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V , we have that k divides 2 (qn
0 − 1)

(

qn−1
0 − 1

)

, but then k2 < v, which is

also a contradiction.

C6) Here Gx is an extraspecial normaliser. Since 2|Gx||Gx|2p′ > |G|, we have

n ≤ 4. Now, n > 2 implies that Gx ∩ X is 24A6 or 32Q8, with X either

PSL4(5) or PSL3(7) respectively. Since k divides 2(v − 1, |Gx|), we check

that k ≤ 6, contrary to k2 > 2v.

If n = 2 then Gx ∩ X = A4.a < L2(p) = X, with a = 2 precisely when

p ≡ ±1 (mod 8), and a = 1 otherwise, (and there are a conjugacy classes

in X). From |G| < |Gx|3 we have that p ≤ 13. If p = 7 then the action

is 2-transitive. The remaining case are ruled out by the fact that k divides

2(v − 1, |Gx|), and k(k − 1) = 2(v − 1).

C7) Here Gx stabilises the tensor product of a spaces of the same dimension,

say, b, and n = ba. Since |Gx|3 > |G|, we have n = 4 and Gx ∩ X =

(PSL2(q)× PSL2(q)) 2d < X = PSL4(q), with d = (2, q − 1). Then v =
q4(q2+1)(q3−1)

x
> q9

x
, with x = 2 unless q ≡ 1 (mod 4), in which case x = 4.

Hence 4 - k, and so k divides 2 (q2 − 1) logp q, and if q is odd then k divides
(q2−1) logp q

32
.

If q is odd. Then k2 < q9

32
< q9

x
= v, a contradiction. Hence q is even, and

so

k =
2 (q2 − 1)

2
logp q

r
,

and since k2 > 2v we have r2 <
4(q+1)4 logp q

q5 , therefore q ≤ 32.

However, the five cases are dismissed by the fact that k divides 2(v − 1).

S) We finally consider the case where Gx is an almost simple group, (mod-

ulo the scalars), not contained in the Aschbacher subgroups of G. From [39,

Theorem 4.2] we have that |Gx| < q2n+4, G′
x = An−1 or An−2, or Gx ∩X and

X are as in [39, Table 4].
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Also, we have that |G| < |Gx|3, and |G| ≤ qn2−n−1, so n ≤ 7, and by the

bound 2|Gx||Gx|2p′ > |G|, we need only consider the following possibilities [30,

Chapter 5]:

n = 2, and Gx ∩X = A5, with q = 11, 19, 29, 31, 41, 59, 61, or 121.

n = 3, and Gx ∩X = A6 < PSL3(4) = X.

n = 4, and Gx ∩X = U4(2) < PSL4(7) = X.

In the first case, with A5 < L2(11) the action is 2-transitive. In the

remaining cases, the fact that k divides 2|Gx| and 2(v − 1) forces k2 < v,

which is a contradiction.

This completes the proof of Lemma 5.14.

5.4.2 X is a Symplectic Group

Here the socle of G is X = PSp2m(q), with m ≥ 2 and (m, q) 6= (2, 2). As a

standard symplectic basis for V , we have β = {e1, f1, . . . , em, fm}.

Lemma 5.15. The group X is not PSp2m(q) with m ≥ 2, and (m, q) 6=
(2, 2).

Proof. We will consider Gx to be in each of the Aschbacher families of sub-

groups, and finally, an almost simple group not contained in any of the

Aschbacher families of G. In each case we will arrive at a contradiction.

When (p, n) = (2, 4), the group Sp4(2
f) admits a graph automorphism,

this case will be treated separately after the eight Aschbacher families of

subgroups.

C1) If Gx ∈ C1, then Gx is reducible, so either it is parabolic or it stabilises

a nonsingular subspace of V .
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First assume that Gx = Pi, the stabiliser of a totally singular i-subspace

of V , with i ≤ m. Then we have

v =
(q2m − 1)(q2m−2 − 1) . . . (q2m−2i+2 − 1)

(qi − 1)(qi−1 − 1) . . . (q − 1)
.

From this we see that v ≡ q + 1 (modpq), so q is the highest power of p

dividing v − 1. By Lemma 5.6 there is a subdegree which is a power of p,

and as k divides twice every subdegree, we have that k divides 2q, contrary

to v < k2.

Now suppose that Gx = N2i, the stabiliser of a nonsingular 2i-subspace

U of V , with m > 2i. Then p divides v, so (k, p) ≤ 2.

Take U = 〈e1, f1, . . . ei, fi〉, and W = 〈e1, f1, . . . ei−1, fi−1, ei+1, fi+1〉. The

p′-part of the size of the Gx-orbit containing W is

(q2i − 1)(q2m−2i − 1)

(q2 − 1)2
.

Since v < q4i(m−i), we can only have v < k2 if q = 2 and m = i + 1, which is

a contradiction.

C2) If Gx ∈ C2 then in preserves a partition V = V1⊕ . . .⊕Va of isomorphic

subspaces of V .

First assume all the Vj’s to be totally singular subspaces of V of maximal

dimension m. Then Gx ∩ X = ĜLm(q).2, and since Gx is maximal we have

that q is odd [33]. Then

v =
q

m(m+1)
2 (qm + 1)(qm−1 + 1) . . . (q + 1)

2
>

qm(m+1)

2
,

and (k, p) = 1.

Let

x = {〈e1, . . . , em〉, 〈f1, . . . fm〉},
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and

y = {〈e1, . . . , em−1, fm〉, 〈f1, . . . , fm−1, em〉}.

Then the p′-part of the Gx-orbit of y divides 2(qm − 1), and so k divides

4(qm − 1), contrary to v < k2.

Now assume that each of the Vj’s is nonsingular of dimension 2i, so we

have Gx ∩X = Ŝp2i(q)wrSt, with it = m. Let

x = {〈e1, f1, . . . , ei, fi〉, 〈ei+1, fi+1, . . . , e2i, f2i〉, . . .},

and take

y = {〈e1, f1, . . . , e1, fi + ei+1〉, 〈ei+1, fi+1 − ei, ei+2, . . . , e2i, f2i, . . .〉}.

Considering the size of the Gx-orbit containing y, we see that k divides

t(t− 1)(q2i − 1)2

q − 1
.

Now, we have that
q2i2t(t−1)

t!
< v,

so from v < k2 we have that t!t4 > q2i2t(t−1)+2−8i, so q2t(t−1)−6 < tt+4, and

therefore t < 4.

First assume t = 3. Then by the above inequalities we have that i = 1

and q = 2, but then Gx is not maximal [9, p.46].

Now let t = 2. Then k < 2q4i−1, so q4i2−8i+2 < 8, and therefore i ≤ 2.

If i = 2 then q = 2 and v = 45696 = 27 · 3 · 7 · 17, but then 8v − 7 is not

a square, which is a contradiction.

If i = 1 then X = PSp4(q),

v =
q2(q2 + 1)

2
,



5. Biplanes with Automorphism Groups of Almost Simple Type 113

and k divides 2(q+1)2(q−1). Since k divides 2(v−1), we have that k divides

(q2(q2 + 1)− 2, 2(q + 1)2(q − 1)), that is, k divides

(

(q2 + 2)(q2 − 1), 2(q + 1)2(q − 1)
)

= (q2 − 1)
(

q2 + 2, 2(q + 1)
)

≤ 6(q2 − 1).

Therefore

k =
6(q2 − 1)

r
,

with 1 ≤ r ≤ 6. We have that 2(v − 1) = (q2 + 2)(q2 − 1), and also

2(v − 1) = k(k − 1), but we check that for all possible values of r this

equality is not satisfied.

C3) If Gx ∈ C3, then it is an extension field subgroup, and there are two

possibilities.

Assume first that Gx ∩ X = PSp2i(q
t).t, with m = it and t a prime

number. From |G| < |Gx|3, we have that t = 2 or 3.

If t = 3, then since v < k2 we have that i = 1, and so

Gx ∩X = PSp2(q
3) < PSp6(q) = X,

and

v =
q6(q4 − 1)(q2 − 1)

3
.

This implies that k is coprime to q +1, but applying Lemma 5.4 to PSp2(q
3)

we have that q3 + 1 divides k, which is a contradiction.

If t = 2, then

v =
q2i2(q4i−2 − 1)(q4i−6 − 1) . . . (q6 − 1)(q2 − 1)

2
.

Consider the subgroup Sp2(q
2) ◦ Sp2i−2(q

2) of Gx ∩ X. This is contained in

Sp4(q) ◦ Sp4i−4(q) in X. Taking g ∈ Sp4(q) \ Sp2(q
2), we see that Sp2i−2(q

2)

is contained in Gx ∩Gg
x, so k divides 2(q4i − 1) logp q. The inequality v < k2
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forces i ≤ 2.

First assume i = 2. Then

v =
q8(q6 − 1)(q2 − 1)

2

and k divides 2(q8 − 1) logp q, but since (k, v) ≤ 2 and q2 − 1 divides v,

we have that k divides 2(q4 + 1)(q2 + 1) logp q, forcing q = 2. In this case

v = 27 · 33 · 7 = 24192, and k = 2 · 5 · 17 = 170 (otherwise k2 < v), but then

k does not divide 2(v − 1), which is a contradiction.

Hence i = 1, so

v =
q2(q2 − 1)

2
,

and Gx ∩ X = PSp2(q
2).2 < PSp4(q) = X, so k divides 4q2(q4 − 1), but

since (k, v) ≤ 2, then k divides 4(q2 +1), so k = 4(q2+1)
r

for some r ≤ 8 (since

v < k2). Now 2(v − 1) = k(k − 1), and also 2(v − 1) = (q2 − 2)(q2 + 1), so

we have that

r2(q2 − 2) = 16(q2 + 1)− 4r,

that is,

(r + 4)(r − 4)q2 = 2(8 + r(r − 2)).

This implies that 4 < r ≤ 8, but solving the above equation for each of

these possible values of r gives non-integer values of q, which is a contradic-

tion.

Now assume that Gx ∩ X = ĜUm(q).2, with q odd. Since v is even, 4

does not divide k. Also, k is prime to p, so by the Lemma 5.4, the stabiliser

in Gx ∩ X of a block is contained in a parabolic subgroup. But then q + 1

divides the indices of the parabolic subgroups in the unitary group, so q + 1

divides k, but q + 1 also divides v, which is a contradiction.
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C4) If Gx ∈ C4, then Gx stabilises a decomposition of V as a tensor product

of two spaces of different dimensions, and Gx is too small to satisfy

|G| < 2|Gx||Gx|2p′.

C5) If Gx ∈ C5, then Gx ∩X = PSp2m(q0).a, with q = qb
0 for some prime b

and a ≤ 2, (with a = 2 if and only if b = 2 and q is odd). The inequality

|G| < 2|Gx||Gx|2p′ forces b = 2. Then

v =
q

m2

2 (qm + 1) . . . (q + 1)

(2, q − 1)
>

q
m(2m+1)

2

2
.

Now Gx stabilises a GF (q0)-subspace W of V . Considering a nonsingular

2-dimensional subspace of W we see that

Sp2(q0) ◦ Sp2m−2(q0) < Sp2(q) ◦ Sp2m−2(q) < X.

If we take g ∈ Sp2(q) \ Sp2(q0) we see that Sp2m−2(q0) < Gx ∩ Gg
x. This

impies that there is a subdegree of X with the p′-part dividing q2m
0 − 1, so

that k divides 2(qm − 1) logp q, contrary to v < k2.

C6) If Gx ∈ C6, then Gx ∩ X = 22s

Ω−
2s(2).a, q is an odd prime, 2m = 2s,

and a ≤ 2. Since |G| < |Gx|3, we have that s ≤ 3, and if s = 3 then q = 3,

but then k is too small. If s = 2, then q ≤ 11, but again k is too small in

each of these cases.

C7) If Gx ∈ C7 then Gx = NG (PSp2a(q)
2r2r−1Ar) and 2m = (2a)r ≥ 8, but

this is a contradiction since |G| < |Gx|3.

C8) If Gx ∈ C8, then Gx ∩X = Oε
2m(q), with q even, and 2m ≥ 4. We can

assume q > 2 as in this case the action is 2-transitive, and that has been
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done in Theorem 1.11. Here

v =
qm(qm + ε)

2
,

and from the proof of [45, Prop.1] we have that the subdegrees of X are

(qm − ε)(qm+1 + ε), and (q−2)
2

qm−1(qm − ε). This implies by Lemma 3.2 that

k divides 2(qm − ε) (q − 2, qm−1 + ε). However, by Lemma 5.4 k is divisible

by the index of a parabolic subgroup in Oε
2m(q), which is not the case.

p = m = 2 Here 2m = 4, q is even, and we have the following possibilities:

Gx normalises a Borel subgroup of X in G. Then v = (q+1)(q3+q2+q+1),

so 2q is the highest power of 2 dividing v − 1. But k is also a power of 2,

conrtary to v < k2.

Gx ∩X = D2(q±1)wrS2. So k divides 2(q ± 1)2 log2 q, too small to satisfy

v < k2.

Gx ∩X = (q2 + 1).4, which is too small.

S) Finally consider the case in which Gx ∈ S is an almost simple group

(modulo scalars) not contained in any of the Aschbacher subgroups of G.

These subgroups are listed in [30] for 2m ≤ 10.

First assume 2m = 4. then we have one of the following possibilities:

(i) Gx ∩X = Sz(q), q even.

(ii) Gx ∩X = PSL2(q), q ≥ 5, or

(iii) Gx ∩X = A6.a, a ≤ 2 and q = p ≥ 5.

In case (i), v = q2(q2 − 1)(q + 1). Applying Lemma 5.4 to Sz(q), we see

that q2 + 1 divides k. Now, (v − 1, q2 + 1) = (q − 2, 5), so q = 2, contrary to

our initial assumptions.

In case (ii), since (k, v) ≤ 2, we have k ≤ 2 logp q, contrary to v < k2.

In case (iii), 4 does not divides k, so k must divide 90, contrary to v < k2.
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Now let 2m = 6. As |G| < 2|Gx||Gx|2p′, from [30] we have that either

Gx ∩ X = J2 < PSp6(5) = X, or Gx ∩ X = G2(q) with q even. In the first

case, k divides 2·33 ·7, which is too small. In the second case, v = q3(q4−1)4,

so (k, q + 1) = 1. Applying Lemma 5.4 to G2(q), we see that q6−1
q−1

divides k,

a contradiction.

If 2m = 8 or 10, then by [30] we have Gx = S10 < Sp8(2) = G, or

Gx = S14 < Sp12(2) = G. In the first case, k divides 2(v − 1, |Gx|) = 70,

which si too small. In the second case, since (k, v) ≤ 2, we have that k

divides 2 · 72 · 11 · 13, also too small.

If 2m ≥ 12, then by [39] we have |Gx| ≤ q4(m+1), G′
x = An+1 or An+2,

or X and Gx ∩ X are E7(q) ≤ PSp56(q). The latter is not possible as here

k2 < v, and the bound |Gx| < q4(m+1) forces m < 6.

The only possibilities for the alternating groups are q = 2, and m = 7, 8,

or 9, however in all these cases k is too small.

This completes the proof of Lemma 5.15.

5.4.3 X is an Orthogonal Group of Odd Dimension

Here we consider X = PΩ2m+1(q), with q odd and n = 2m + 1 ≥ 7, (since

Ω3(q) ∼= L2(q), and Ω5(q) ∼= PSp4(q)).

Lemma 5.16. The group X is not PΩ2m+1(q), with n ≥ 7.

Proof. Here, as in the symplectic case, we will consider Gx to be in each of

the Aschbacher families of subgroups, and then to be a subgroup of G not

contained in any of these families, and arrive at a contradiction in each case.

C1) If Gx ∈ C1, then Gx is either parabolic or it stabilises a nonsingular

subspace of V .

First assume Gx = Pi, the stabiliser of a totally singular i-subspace of

V . Then, as in the symplectic case, v ≡ q + 1 (mod pq), so q is the highest
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power of p dividing v − 1. As there is a subdegree which is a power of p, we

have that k divides 2q, contradicting v < k2.

Now assume that Gx = N ε
i , the stabiliser of a nonsingular i-dimensional

subspace W of V of sign ε (if i is odd ε is the sign of W⊥).

First let i = 1. Then

v =
qm(qm + ε)

2
,

and the X-subdegrees are (qm − ε) (qm + ε), qm−1(qm−ε)
2

, and qm−1(qm−ε)(q−3)
2

.

This implies that k divides qm − ε, contrary to v < k2.

Hence i ≥ 2. Let W be the i-space stabilised by Gx, choose w ∈ W with

Q(w) = 1, and u ∈ W⊥ with Q(u) = −c for some non-square c ∈ GF (q).

Then 〈v, w〉 is of type N−
2 , and if g ∈ G stabilises W⊥ pointwise but does not

fix neither u nor w, then we have Gx ∩Gg
x contains SOi−1(q)× SOn−i−1(q).

This implies that k ≤ 4qm logp q, but since v > q
i(n−i)

4 , q is odd, and m ≥ 3;

this is contrary to v < k2.

C2) If Gx ∈ C2, then Gx is the stabiliser of a subspace decomposition into

isometric nonsingular spaces. From the inequality |G| < 2|Gx||Gx|2p′ it follows

that the only possibilities are:

Gx ∩X = 26A7 < Ω7(q) with q either 3 or 5, and

Gx ∩X = 2n−1An < Ωn(3) with n = 7, 9, or 11.

In each case the fact that k divides 2(v−1) forces v < k2, a contradiction.

C3) If Gx ∈ C3, then Gx ∩X = Ωa(q
t).t with n = at. Since a and t are odd,

a = 2r + 1 < n
2
, so

|Gx|p′ = t

r
∏

i=1

(

q2it − 1
)

,

and since k divides 2 (|Gx|p′, v − 1), it is too small to satisfy k2 > v.
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C4) If Gx ∈ C4, then it stabilises a tensor product of nonsingular subspaces,

but these have to be of odd dimension and so Gx is too small.

C5) If Gx ∈ C5, then Gx ∩ X = Ωn(q0).a, with q = qb
0 for some prime b,

and a ≤ 2, with a = 2 if and only b = 2. The inequality |G| < |Gx||Gx|2p′
forces b = 2. If n = 2m + 1, then we have that k divides 2|Gx ∩ X| =

qm2

0 (q2m
0 − 1) . . . (q2

0 − 1), but v = qm2
(q2m

0 + 1) . . . (q2
0 + 1), so k is prime to

q, and (v − 1, (q2m − 1) . . . (q2
0 − 1)) is too small.

C6), C7), and C8) In this cases C6 and C8, the classes are empty, and for C7

we have that Gx ∩ X stabilises the tensor product power of a non-singular

space, but it is too small to satisfy |G| < |Gx|3.

S) Now consider the case in which Gx is a simple group not contained in

any of the Aschbacher collection of subgroups of G. As in the symplectic

section, we only need to consider the following possibilities:

(i) Gx ∩X = G2(q) < Ω7(q) = X with q odd,

(ii) Gx ∩X = Sp6(2) < Ω7(p) with p either 3 or 5, or

(iii) Gx ∩X = S9 < Ω7(3).

In all three cases we have that as k divides 2 (v − 1, |Gx|) it is too small.

This completes the proof of Lemma 5.16.

5.4.4 X is an Orthogonal Group of Even Dimension

In this section X = PΩε
2m(q), with m ≥ 4. We write β+ = {e1, f1, . . . , em, fm}

for a standard basis for V in the O+
2m-case, and β− = {e1, f1, . . . , em−1, fm−1, d, d′}

in the O−
2m-case.
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Lemma 5.17. The group X is not PΩε
2m(q), with m ≥ 4.

Proof. As before, we take Gx to be in one of the Aschbacher families of

subgroups of G, or a simple group not contained in any of these families, and

analyse each case separately. We postpone until the end of the proof the case

where (m, ε) = (4, +) and G contains a triality automorphism.

C1) If Gx ∈ C1, then we have two possibilities.

First assume that Gx stabilises a totally singular i-space, and suppose

that i < m. If i = m− 1 and ε = +, then Gx = Pm,m−1, otherwise Gx = Pi.

In any case there is a unique subdegree of X that is a power of p (except in

the case where ε = +, m is odd, and Gx = Pm or Pm−1). On the other hand,

the highest power of p dividing v − 1 divides q2 or 8, so k is too small.

Now consider Gx = Pm in the case X = PΩ+
2m(q), and note that in this

case Pm−1 and Pm are the stabilisers of totally singular m-spaces from the

two different X-orbits. If m is even then

x = 〈e1, . . . , em〉, y = 〈f1, . . . , fm〉

are in the same X-orbit, and the size of the Gx-orbit of y is a power of p.

However, the highest power of p dividing v − 1 is q, so k is too small.

If m is odd, m ≥ 5, then v = (qm−1 + 1) (qm−2 + 1) . . . (q + 1) > q
m(m−1)

2 .

Let

x = 〈e1, . . . , em〉, y = 〈e1, f2, . . . , fm〉.

Then x and y are in the same X-orbit, and the index of Gxy in Gx has p′-part

dividing qm − 1. Since the highest power of p dividing v − 1 is q, we have

that k divides 2q (qm − 1). By the inequality v < k2, we have that m = 5.

In this case the action is of rank three, with nontrivial subdegrees

q (q2 + 1) (q5 − 1)

q − 1
and

q6 (q5 − 1)

q − 1
.
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Therefore k divides
2q (q5 − 1)

q − 1
,

and since v < k2, then we have that k is either 2q (q4 + q3 + q2 + q + 1), or

q (q4 + q3 + q2 + q + 1), but neither of these satisfies the equality k(k− 1) =

2(v − 1).

Now suppose that Gx = Ni. First let i = 1. The subdegrees of X are

(see [5]):

q2m−2−1,
qm−1(qm−1+ε)

2
,

qm−1(qm−1−ε)(q−1)

4
, and

qm−1(qm−1+ε)(q−3)

4
if q ≡ 1 mod

4,

q2m−2−1,
qm−1(qm−1−ε)

2
,

qm−1(qm−1−ε)(q−3)

4
, and

qm−1(qm−1+ε)(q−3)

4
if q ≡ 3 mod

4, and

q2m−2 − 1,
qm(qm−1−ε)

2
, and

qm−1(qm−1+ε)(q−2)

2
if q is even.

We have that k divides twice highest common factor of the subdegrees,

and in every case this is too small for k to satisfy v < k2.

Now let Gx = N ε1
i , with 1 < i ≤ m, and ε1 = ± present only if i is even. If

q is odd, as in the odd-dimensional case we get that SOi−1(q)×SOn−i−1(q) ≤
Gx∩Gg

x for some g ∈ G\Gx. Since k is prime to p, we have that k < 8qm logp q,

contrary to v < k2. Now assume that q is even. Then i is also even.

If i = 2 then we can find g1, g2 ∈ G \Gx ∩X such that (Gx ∩X)∩ (Gx ∩
X)g1 ≥ SO+

n−4(q) and (Gx∩X)∩(Gx∩X)g2 ≥ SO−
n−4(q). Therefore k divides

2(q − ε1) (qm−1 − εε1) (log2 q)2′ , so k2 < v.

If 2 < i ≤ m then we can find g ∈ G \Gx ∩X such that (Gx ∩X)∩ (Gx ∩
X)g ≥ SOε1

i−2(q)× SOε2
n−i−2(q), with ε2 = εε1. It follows that k divides

(

q
i
2 − ε1

)(

q
i−2
2 + ε1

) (

q
n−i
2 + ε2

)(

q
n−i−2

2 + ε2

)

(log2 q)2′,

forcing k2 < v, a contradiction.
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C2) If Gx ∈ C2 then Gx stabilises a decomposition V = V1 ⊕ . . . ⊕ Va

of subspaces of equal dimension, say b, so n = ab. Here we have three

possibilities.

(1) First assume that all the Vi are nonsingular and isometric. (Also, if b

is odd then so is q). If b = 1 then by the inequality |G| < 2|Gx||Gx|2p′ we have

that Gx ∩X = 2n−2An, with n being either 8 or 10 and X either PΩ+
8 (3) or

PΩ−
10(3) respectively. (Note that if X = PΩ+

8 (5), then the maximality of Gx

in G forces G ≤ X.2 ([31]), so Gx is too small). In the first case, k divides

112, and in the second it is a power of 2. Both contradict the inequality

v < k2.

Now let b = 2. If q > 2 then we can find g ∈ G \ Gx so that Gx ∩ Gg
x

contains the stabiliser of V3 ⊕ . . .⊕ Va. From this it follows that k ≤ 2a(a−
1). (2(q + 1))2 |OutX|, and from v < k2 we get that n = 8 and q = 3. If

q = 2 then we can find g ∈ G \Gx so that Gx ∩Gg
x contains the stabiliser of

V4⊕ . . .⊕Va, and in this case k is at most 2a(a−1)(a−2) (2(q + 1))3 |OutX|,
and so n = 8 or 10. Using the condition that k divides 2(v − 1) we rule out

these three cases.

Finally let b > 2. From the inequality |G| < 2|Gx||Gx|2p′ we have that

b = m, (and so ε = +). Let δ be the type of the Vi if m is even. Assume first

that m = 4. Then

v =
q8 (q2 + 1)

2
(q4 + 12 + 1)

4

if δ = +, and

v =
q8 (q6 − 1) (q2 − 1)

4

if δ = −. In the first case, (q2 − 1, v − 1) ≤ 2 and 4 does not divide v − 1,

so k divides 6(logp q)2′ , contrary to v < k2. In the latter case, v is even and

divisible by (q2 − 1), and k divides the odd part of 3 (q2 + 1)
2
logp q, again

contrary to v, k2. Hence m ≥ 5, and we argue as in C1.

In the case where m and q are odd, a = 2, and V1, V2 are similar but not
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isometric, we also argue as in C1.

Now consider the case ε = +, a = 2, and V1 and V2 totally singular. If

m = 4, then we can apply a triality automorphism of X to get to the case

Gx = N+
2 , which we have ruled out in C1. Assume then that m ≥ 5. Then

v =
q

m(m−1)
2 (qm−1 + 1) (qm−2 + 1) . . . (q + 1)

2e
,

where e is 0 or 1 ([33, 4.2.7]), so

v >
qm(m−1)

2
.

However, there exists g ∈ G \Gx such that GLm−2(q) ≤ Gx ∩Gg
x, and so

k divides 2 (qm − 1) (qm−1 − 1) logp q, and in fact, since (k, v) ≤ 2, k divides

twice the odd part of
(qm−1)(qm−1−1) logp q

q+1
, which is contrary to k2 < v.

C3) If Gx ∈ C3, then Gx is an extension field subgroup, and there are two

possibilities ([33]).

(1) First assume that Gx = NG(Ωδ
n
s
(qs)), with s a prime and δ = ± if n

s

is even (and empty otherwise). Since |G| < |Gx|3, we have s = 2. If q is odd,

then by Lemma 5.4 we see that a parabolic degree of Gx divides k, and so it

follows that k is even, but since v is even then 4 does not divide k, which is

a contradiction.

If q is even then m is also even, and

v =
q

m2

2 (q2m−2 − 1) (q2m−2 − 1) . . . (q2 − 1)

2e
,

with e ≤ 2 ([33, 4.3.14,4.3.16]). As k divides 2(v − 1), it is prime to q2 − 1,

and it follows that k2 < v, another contradiction.

(2) Now let Gx = NG (̂GUm(q)), with ε = (−1)m. If q is odd, then as in the

symplectic case we have that q + 1 divides v and k, which is a contradiction.
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So let q be even. If m = 4 then applying a triality automorphism of X

the action of G becomes that of N−
2 , which has been ruled out in the case

C1. So let m ≥ 5. Now, Gx is the stabiliser of a hermitian form [, ] on V over

GF (q2) such that the quadratic form Q preserved by X satisfies Q(v) = [v, v]

for v ∈ V . Let W be a nonsingular 2-dimensional hermitian subspace over

GF (q2). Then W over GF (q) is of type O+
4 . The pointwise stabiliser of W⊥

in Gx ∩X is GU2(q), which is properly contained in the pointwise stabiliser

of W⊥ in X. Thus we can find g ∈ G \ Gx so that GUm−2(q) ≤ Gx ∩ Gg
x.

Then we have that k divides 2 (qm − (−1)m) (qm−1 − (−1)m−1) logp q, which

is contrary to v < k2.

C4) If Gx ∈ C4 then Gx stabilises an asymmetric tensor product, so either

Gx = NG (PSpa(q)× PSpb(q)) with a and b distinct even numbers, or Gx =

NG (PΩε1
a (q)× PΩε2

b (q)) with a, b ≥ 3 and n = ab. From the inequality

|G| < 2|Gx||Gx|2p′ we have that n = 8 and Gx = NG (PSp2(q)× PSp4(q)).

Applying a triality automorphism of X, the action becomes that of N3, a

case that has been ruled out in C1.

C5) If Gx ∈ C5 then it is a subfield subgroup. From the inequality |G| <

2|Gx||Gx|2p′ we have that Gx∩X = PΩδ
2m(q0).2

e < PΩ+
2m(q) = X, with q = q2

0

and e ≤ 2 ( [33, 4.5.10]), so

v >
q2m2−m
0

4
.

Now, Gx stabilises a GF (q0)-subspace V0 of V . Let U0 be a 2-subspace of

V0 of type O+
2 (q0), and U a subspace of V of type O+

2 (q) containing U0.

There exists and element g ∈ G \Gx that stabilises U⊥ pointwise, from this

it follows that Gx ∩ Gg
x involves PΩδ

2m−2(q0). This implies that k divides

2 (qm
0 − δ)

(

qm−1
0 + δ

)

|OutX|, which contradicts the inequality v < k2.



5. Biplanes with Automorphism Groups of Almost Simple Type 125

C6) If Gx ∈ C6, it is an extraspecial normaliser. From the inequality |G| <
|Gx|3 we have that Gx ∩ X = 26A8 < PΩ+

8 (3) = X. Applying a triality

automorphism of X, we have one of the cases already ruled out in C2.

C7) If Gx ∈ C7, then it stabilises a symmetric tensor product of a spaces of

dimension b, with n = ba. Here Gx is too small.

C8) In this case this class is empty.

S) Now consider the case in which Gx is an almost simple group (modulo

scalars) not contained in any of the Aschbacher subgroups of G. For n ≤ 10,

the subgroups Gx are listed in [30] and [31]. Since |G| < 2|Gx||Gx|2p′, we have

one of the following:

(i) Ω7(q) < PΩ+
8 (q),

(ii) Ω+
8 (q) < PΩ+

8 (q) with q = 3, 5, or 7, or

(iii) A9 < Ω+
8 (q), A12 < Ω−

10(2), A12 < PΩ+
10(3).

In the first case, applying a triality automorphism gives an action on N1,

which was excluded in C1. In the second case, from the fact that k divides

2 (|Gx|, v − 1) we have that k divides 20, 6, and 2 ·35 ·52, and so is too small.

In the third case since 6 divides v, again we have that k is too small.

So n ≥ 12. If n > 14, then by [39, Theorem 4.2] we need only consider

the cases in which G′
x is alternating on the deleted permutation module, and

in fact A17 < Ω+
16(2) is the only group which is big enough. Again, since v is

divisible by 2 ·3 ·17 we have that k is too small. Now let n = 12, respectively

14. If X is alternating, we only have to consider A13 < Ω−
12(2), respectively

A16 < Ω+
14(2), however since k divides 2(v − 1, |Gx|), we have that k2 < v, a

contradiction. If X is not alternating, then again since |Gx| < q2n+4 by [39,

Theorem 4.2], it follows that |Gx| < q28, respectively |Gx| < q32. However,
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from |G| < 2|Gx||Gx|2p′ we have that |Gx|p′ > q19
√

2
, respectively |Gx|p′ > q29.

We can now see (cf. [40, Seccions 2,3, and 5]) that no sporadic or Lie type

group will do for Gx.

Finally assume that X = PΩ+
8 (q), and G contains a triality automorphism.

The maximal groups are determined in [31]. If Gx∩X is a parabolic subgroup

of X, then it is either P2 or P134. The first was ruled out in C1, so consider

the latter. In this case we have

v =
(q6 − 1) (q4 − 1)

(q − 1)3
> q11,

and (3, q)q is the highest power of p dividing v − 1. Since X has a unique

suborbit of size a power of p (by Lemma 5.6), we have that k < 2q(3, q),

which contradicts v < k2.

Now, by [31], and |G| < |Gx||Gx|2p′, the only cases we have to consider

are G2(q) for any q, and (29)L3(2) for q = 3. In the first case, we have

v =
q6 (q4 − 1)

2

(q − 1, 2)2
,

and by Lemma 5.4 applied to G2(q) we have that GxB is contained a parabolic

subgroup, so
(q6−1)

q−1
divides k, however k is prime to q +1, which is a contra-

diction. In the second case, k divides 28, which is too small.

This completes the proof of Lemma 5.17.

5.4.5 X is a Unitary Group

Here X = Un(q) with n ≥ 3, and (n, q) 6= (3, 2), (4, 2), since these are

isomorphic to 32.Q8 and PSp4(3) respectively. We write β = {u1, . . . , un}
for an orthonormal basis of V .
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Lemma 5.18. The group X is not Un(q), with n ≥ 3 and (n, q) 6= (3, 2), (4, 2).

Proof. As we have done all through this section, we will consider Gx to be

in one of the Aschbacher families of subgroups of G, or a nonabelian simple

group not contained in any of these families, and analyse each of these cases

separately.

C1) If Gx is reducible, then it is either a parabolic subgroup Pi, or the

stabiliser Ni of a nonsingular subspace.

First assume Gx = Pi for some i ≤ n
2
. Then we have

v =
(qn − (−1)n) (qn−1 − (−1)n−1) . . . (qn−2i+1 − (−1)n−2i+1)

(q2i − 1) (q2i−2 − 1) . . . (q2 − 1)
.

There is a unique subdegree which is a power of p. The highest power

of p dividing v − 1 is q2, unless n is even and i = n
2
, in which case it is q,

or n is odd and i = n−1
2

, in which case it is q3. If n = 3 then the action is

2-transitive, so consider n > 3. Then v > qi(2n−3i), and so v < k2, which is a

contradiction.

Now suppose that Gx = Ni, with i < n
2
, and take x = 〈u1, . . . , ui〉. If we

consider y = 〈u1, . . . , ui−1, ui+1〉, then we see that k divides

2 (qi − (−1)i) (qn−i − (−1)n−i). But in this case we have

v =
qi(n−1) (qn − (−1)n) . . . (qn−i+1 − (−1)n−i+1)

(qi − (−1)i) . . . (q + 1)
,

and since v < k2 we have that i = 1. Then k divides 2(q+1) (qn−1 − (−1)n−1).

Applying Lemma 5.4 to Un−1(q), we have that k is divisible by the degree of

a parabolic action of Un−1(q). We check the subdegrees, and the fact that k

divides |Gx|2 as well as k2 > v, we get that n ≤ 5.

If n = 5 then k divides 2(q + 1) (q4 − 1) and is divisible by q3 + 1, which

can only happen if q = 2, but in this case none of the possibilities for k satisfy

the equality 2(v − 1) = k(k − 1).
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If n = 4 then q3 + 1 divides k, but (2(v − 1), q3 + 1) ≤ 2 (q2 − q + 1),

which is a contradiction.

Finally, if n = 3 then q + 1 divides k, but q + 1 is prime to v − 1, which

is another contradiction.

C2) If Gx ∈ C2, then it preserves a partition V = V1 ⊕ . . .⊕ Va of subspaces

of the same dimension, say b, so n = ab and either the vi are nonsingular and

the partition is orthogonal, or a = 2 and the Vi are totally singular.

First assume that the Vi are nonsingular. If b > 1, then taking

x = {〈u1, . . . ub〉, 〈ub+1, . . . u2b〉, . . .}

and

y = {〈u1, . . . ub−1, ub+1〉, 〈ub, ub+2, . . . u2b〉, . . .},

we see that k divides 2a(a− 1)
(

qb − (−1)b
)2

. From the inequality v < k2 we

have that n = 4 and b = 2. Then we have that

v =
q4 (q4 − 1) (q3 + 1)

2 (q2 − 1) (q + 1)
,

and k divides 4 (q2 − 1)
2
. However, (v − 1, q + 1) = (2, q + 1), so k divides

16(q − 1)2, which is contrary to v < k2.

If b = 1 then Gx ∩X = (̂q + 1)n−1Sn. First let n = 3, with q > 2. Then

v =
q3 (q3 + 1) (q2 − 1)

6(q + 1)2
,

and k divides 12(q + 1)2 logp q. The inequality v < k2 forces q ≤ 17, but

from the fact that k divides 2(v − 1) we rule out all these values. Now let

n > 3, and let x = {〈u1〉, 〈u2〉, . . . , 〈un〉}. If q > 3 let W = 〈u1, u2〉. If we

take g ∈ G\Gx acting trivially on W⊥ we see that k divides n(n−1)(q+1)2,

contrary to v < k2. If q ≤ 3 then let W = 〈u1, u2, u3〉. Taking g ∈ G \ Gx
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acting trivially on W⊥ we see that now k divides n(n−1)(n−2)(q+1)3

3
, so n ≤ 6

if q = 2, or n ≤ 4 if q = 2. By the fact that k divides 2(v − 1) we rule these

cases out.

Now assume that a = 2 and both the Vi’s are totally singular. Let

{e1, f1, . . . , eb, fb} be a standard unitary basis. Take

x = {〈e1, . . . , eb〉, 〈f1, . . . , fb〉}, and y = {〈e1, . . . , eb−1, fb〉, 〈f1, . . . , fb−1, eb〉}.

Then we have that k divides 4 (qn − 1). The inequality v < k2 forces n = 4,

but then

v =
q4 (q3 + 1) (q + 1)

2
,

so in fact k divides 2 (q2 + 1) (q − 1), contrary to v < k2.

C3) If Gx ∈ C3 then it is a field extension group for some field extension of

GF (q) of odd degree b. From the inequality |G| < 2|Gx||Gx|2p′ we have b = 3

and n = 3. Then

v =
q3 (q2 − 1) (q + 1)

3
.

Therefore 4 does not divide k, and so k < 6q2(logp q)2′. Since v < k2, we

have q ≤ 9. With the condition that k divides 2(v − 1) we rule out these

cases.

C4) If Gx ∈ C4 then it is the stabiliser of a tensor product of two nonsingular

subspaces of dimensions a > b > 1, but then the inequality |G| < 2|Gx||Gx|2p′
is not satisfied.

C5) If Gx ∈ C5 then it is a subfield subgroup. We have three possibilities:

If Gx is a unitary group of dimension n over GF (q0), where q = qb
0

with b an odd prime, then since |G| < |Gx|3 we have that b = 3. However

|G| < 2|Gx||Gx|2p′ forces q = 8 and n ≤ 4, but in these cases since k divides

2(v − 1) it is too small.
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If Gx ∩X = PSOε
n(q).2, with n even and q odd, then by Lemma 5.1 k is

divisible by the degree of a parabolic action of Gx. Here we have that q + 1

divides k, and q+1
(4,q+1)

divides v.The fact that k divides 2(v − 1) forces q = 3,

so v = 2835, but then 8v − 7 is not a square, which is a contradiction.

Finally, if Gx = N (PSpn(q)), with n even, then by Lemma 5.4 GxB is

contained on some parabolic subgroup, so k is divisible by the degree of some

parabolic action of Gx, and so is divisible by q + 1. However, v is divisible

by q+1
(q+1,2)

, contradicting the fact that k divides 2(v − 1)

C6) If Gx ∈ C6, then it is an extraspecial normaliser, and since |G| < |Gx|3,
we only have to consider the cases Gx ∩ X = 32Q8, 24A6, or 24S6, and

X = U3(5), U4(3), and U4(7) respectively. In all cases the fact that k divides

2 (|Gx|, v − 1) forces k2 < v, a contradiction.

C7) If Gx ∈ C7, then it stabilises a tensor product decomposition of Vn(q)

into t subspaces Vi of dimension m each, so n = mt. Since m ≥ 3 and t ≥ 3,

|Gx| is too small to satisfy |G| < |Gx|3.

S) Finally consider the case in which Gx is an almost simple group (modulo

the scalars) not contained in any of the Aschbacher families of subgroups.

For n ≤ 10, the subgroups Gx are listed in [30, Chapter 5]. Since |G| < |Gx|3,
we only need to consider the following possibilities:

L2(7) in U3(3),

A6.2, L2(7), and A7 in U3(5),

A6 in U3(11),

L2(7), A7, and L2(4) in U4(3),

U4(2) in U4(5),

L2(11) in U5(2), and
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U4(3) and M22 in U6(2).

Since k divides 2 (|Gx|, v − 1), we have that k2 < v in all cases except in

the case L2(7) < U3(3). In this last case, v = 36, but then there is no k such

that k(k − 1) = 2(v − 1), which is a contradiction.

If n ≥ 14, then by [39] we have that |G| < |Gx|3, a contradiction. Hence

n = 11, 12, or 13. By [39], |Gx| is bounded above by q4n+8, and since

|G| < 2|Gx||Gx|2p′, we have that |Gx|p′ is bounded below by q33, q43, or q53

respectively. Using the methods in [39, 40] we rule out all the almost simple

groups Gx.

This completes the proof of Lemma 5.18, and hence we have that if X is

a simple classical group, it is either PSL2(7) or PSL2(11).

5.5 The Case where X is an Exceptional

Group of Lie Type

In this section we consider the socle X of the group G to be a simple excep-

tional group of Lie type.

Lemma 5.19. The group X is not a Suzuki group 2B2(q), with q = 22e+1.

Proof. Suppose that the socle X is a Suzuki group 2B2(q), with q = 22e+1.

Then |G| = f |X| = f(q2 + 1)q2(q − 1), where f | 2e + 1, and so the order of

any point stabiliser Gx is one of the following [62]:

(i) fq2(q − 1)

(ii) 4f(q +
√

2q + 1)

(iii) 4f(q −√
2q + 1)

(iv) f(q2
0 + 1)q2

0(q0 − 1), where 8 ≤ qm
0 = q, with m ≥ 3.
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Case (i) Here v = (q2 + 1), so from k(k − 1) = 2(v − 1) we get that

k(k − 1) = 2q2, a power of 2, which is a contradiction.

Cases (ii) and (iii) From the inequality |G| < |Gx|3, we get that

f ·7
8
q5 < f(q2+1)q2(q−1) < 44f 3(q±

√

2q+1)3 < 44f 3(2q+1)3 ≤ 44

(

17

8
fq

)3

,

so

q2 <
44 · (17)3 · f 2

82 · 7 < 2808f 2,

hence q ≤ 128.

First assume q = 128. Then v = 58781696 in case (ii), and 75427840 in

case (iii), and |Gx| = 4060 in case (ii), and 3164 in case (iii). Now we have

that k divides 2(|Gx|, v − 1), but here (|Gx|, v − 1) = 1015 in case (ii), and

113 in case (iii). In both cases k2 < v, which is a contradiction.

Next assume q = 32. Then v = 198400 in case (ii), and 325376 in

case (iii). In case (ii), (|G−x|, v−1) = 41, and in case (iii) (|Gx|, v−1) = 25

or 125, depending on whether f = 1 or 5. In all cases we see k2 < v, a

contradiction.

Finally assume q = 8. Then v = 560 in case (ii), and 1456 in case (iii).

In case (ii), (|Gx|, v− 1) = 13, and in case (iii) (|Gx|, v− 1) = 5f . Therefore

k is again too small.

Case (iv) Here |Gx| = f (q2
0 + 1) q2

0(q0 − 1), so q0 divides v and hence q0

and v − 1 are relatively prime, so from |G| < 2|Gx||Gx|2p′ we get:

(

q2m
0 + 1

)

q2m
0 (qm

0 − 1) < 4f 2
(

q2
0 + 1

)3
q2
0(q0 − 1)3.

Now, q5m−1
0 < (q2m

0 + 1) q2m
0 (qm

0 − 1), and we have that also

4f 2
(

q2
0 + 1

)3
q2
0(q0 − 1)3 = 4f 2q2

0

(

q3
0 − q2

0 + q0 − 1
)3

< f 2q13
0 ,
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so

q5m−1
0 < f 2q13

0 < q13+m
0 .

Therefore 5m− 1 < 13 + m, which forces m = 3. Then

v =
(

q4
0 − q2

0 + 1
)

q4
0

(

q2
0 + q0 + 1

)

,

and so k ≤ 2(|Gx|, v− 1) ≤ 2fq3
0 < 2q

9
2
0 . The inequality v < k2 forces q0 = 2,

and so q = 8. Then v = 1456, and |Gx| = 20f , with f = 1 or 3. Then

(|Gx|, v − 1) = 5f , and so k2 < v, which is a contradiction.

This completes the proof of Lemma 5.19.

Lemma 5.20. The point stabiliser Gx is not a parabolic subgroup of G.

Proof. First assume X 6= E6(q). Then by Lemma 5.6 there is a unique

subdegree which is a power of p. Therefore k divides twice a power of p, but

it also divides 2(v − 1), so it is too small.

Now assume X = E6(q). If G contains a graph automorphism or Gx = Pi

with i = 2 or 4, then there is a unique subdegree which is a power of p and

again k is too small. If Gx = P3, the A1A4 type parabolic, then

v =
(q3 + 1) (q4 + 1) (q12 − 1) (q9 − 1)

(q2 − 1) (q − 1)
.

Since k divides 2(|Gx|, v−1), we have that k divides 2q (q5 − 1) (q−1)5 logp q,

and hence k2 < v, which is a contradiction. If Gx = P1, then

v =
(q12 − 1) (q9 − 1)

(q4 − 1) (q − 1)
,

and the nontrivial subdegrees are ([50])
q(q8−1)(q3+1)

(q−1)
, and

q8(q5−1)(q4+1)
(q−1)

. The

fact that k divides twice the highest common factor of these forces k2 < v,

again, a contradiction.

This completes the proof of Lemma 5.20.
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Lemma 5.21. The group X is not a Chevalley group G2(q).

Proof. Assume X = G2(q), with q > 2 since G2(q)
′ = U3(3). The list of

maximal subgroups of G2(q) with q odd can be found in [32], and in [12] for

q even.

First consider the case where X ∩Gx = SLε
3(q).2. Here

v =
q3 (q3 + ε)

2
.

From the factorization Ω7(q) = G2(q)N
ε
1 ([43]), it follows that the suborbits of

Ω7(q) are unions of G2-suborbits, and so k divides each of the Ω7-subdegrees.

We have that q cannot be odd, since this is ruled out by the first case with

i = 1 in the section of orthogonal groups of odd dimension in this chapter.

For q even, the subdegrees for Sp6(q), given in the last case of the section on

symplectic groups are (q3 − ε) (q4 + ε) and
(q−2)q2(q3−ε)

2
. This implies that k

divides 2 (q3 − ε) (q − 2, q2 + ε), and since v < k2 then ε = −, and so

v =
q3 (q3 − 1)

2
.

So we have that k divides 2 (q3 + 1) (q − 2, q2 − 1) ≤ 6 (q3 + 1). Also, we

have k(k − 1) = 2(v − 1) = (q3 + 1) (q3 − 2). This is impossible.

If X ∩ Gx = G2(q0) < G2(q) or 2G2(q) < G2(q) then p does not divide

[Gx : GxB], so by Lemma 5.4 k is divisible by the index of a parabolic

subgroup of Gx which is
q6
0−1

q0−1
in the case of G2(q0), or q3 + 1 in the case of

2G2(q). But this is not so since k also divides 2 (v − 1, |Gx|).
If Gx = NG (SL2(q) ◦ SL2(q)), then we have that

v =
q4 (q6 − 1)

q2 − 1
.

Now k divides 2 (q2 − 1)
2
logp q but (q2 − 1, v − 1) ≤ 2, so k is too small.

If X ∩Gx = J2 < G2(4) then v = 416. But k divides 2(|Gx|, 415), which
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is too small.

Now suppose X ∩ Gx = G2(2), with p = q ≥ 5. Then the inequality

v < k2 forces q = 5 or 7. In both cases (v − 1, |Gx|) is too small.

If X ∩ Gx = PGL2(q), or L2(8), then the inequality |G| < |Gx|3 is not

satisfied.

Next consider X ∩ Gx = L2(13). Then the inequality |G| < |Gx|3 forces

q ≤ 5. If q = 5 then v = 23 · 32 · 56 · 13 · 31, so (v − 1, |Gx|) ≤ 7, hence k is

too small. If q = 3 then v = 23 · 35, and k divides 2(v − 1, |Gx|) ≤ 2 · 7 · 13,

this does not satisfy the equation k(k − 1) = 2(v − 1).

Finally, if X ∩Gx = J1 with q = 11 then the inequality v < k2 cannot be

satisfied.

There is no other maximal subgroup Gx satisfying the inequality |G| <

|Gx|.

This completes the proof of Lemma 5.21.

Lemma 5.22. The group X is not a Ree group 2G2(q), (q > 3).

Proof. Suppose X = 2G2(q), with q = 32e+1 > 3. A complete list of maximal

subgroups of G can be found in [32, p.61]. First suppose Gx∩X = 2×SL2(q).

Then

v =
q2 (q2 − q + 1)

2
,

so 2(v− 1) = q4− q3 + q2− 2, and k divides 2(|Gx|, v− 1). But we have that

(q (q2 − 1) , q4 − q3 + q2 − 1) = q − 1, which is too small.

The groups X ∩Gx = NX(S2), (where S2 is a Sylow 2-subgroup of X of

order 8), of order 23 · 3 · 7 and L2(8) are not allowed since |G| < |Gx|3 forces

q = 3.

If X ∩Gx = 2G2(q0), with qm
0 = q, m prime, then

v = q
3(m−1)
0

(

q
3(m−1)
0 − q

3(m−2)
0 + . . . + (−1)mq3

0 + (−1)m−1
)

(

qm−1
0 + qm−2

0 + . . . + 1
)

.
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Now k divides 2mq3
0 (q3

0 + 1) (q0− 1), but since q0 and v− 1 are relatively

prime, q0 does not divide k, so in fact k ≤ 2m (q3
0 + 1) (q0 − 1), and the

inequality v < k2 forces m = 2, which is a contradiction.

If X ∩ Gx = Zq±
√

3q+1 : Z6, since q ≥ 27 we have that the inequality

|G| < |Gx|3 is not satisfied.

Finally, if X∩Gx =
(

22 ×D( 1
2)(q+1)

)

: 3, since q ≥ 27 then the inequality

|G| < |Gx|3 is not satisfied.

This completes the proof of Lemma 5.22.

Lemma 5.23. The group X is not a Ree group 2F4(q).

Proof. Suppose X = 2F4(q). Then from [57] we see that there are no max-

imal subgroups Gx that are not parabolic satisfying the inequality |G| <

2|Gx||Gx|22′ , except for the case q = 2. In this case Gx ∩ X = L3(3).2 or

L2(25). In both cases, since k must divide 2(v − 1, |Gx|) it is too small.

Lemma 5.24. The group X is not 3D4(q).

Proof. Suppose X = 3D4(q). If X ∩Gx = G2(q) or SL2(q
3)◦SL2(q).(2, q−1)

then v = qe (q8 + q4 + 1), where e = 6 or 8 respectively. By Lemma 5.4, k is

divisible by q + 1, which forces q = 3 (since q + 1 also divides 2(v − 1)), but

then in neither case is 8v − 7 a square.

If X ∩Gx = PGLε
3(q) then the inequality |G| < |Gx|3 is not satisfied.

Lemma 5.25. The group X is not F4(q).

Proof. Suppose X = F4(q). First assume that X0 = Soc(X ∩ Gx) is not

simple. Then by Theorem 5.8 and Table 5.1, Gx∩X is one of the following,

(i) Parabolic.

(ii) Maximal rank.

(iii) 33.SL3(3).
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or X0 = L2(q)×G2(q)(p > 2, q > 3).

The parabolic subgroups have been ruled out by Lemma 5.20.

The possibilities for the second case are given in [46, Table 5.1]. We check

that in every case there is a large power of q dividing v, and since (k, v) ≤ 2,

we have that q does not divide k (unless q = 2, but then 4 does not divide

k). But then k divides 2 (|Gx|, v − 1), and in each case (|Gx|p′, v − 1) is too

small for k to satisfy k2 > v.

The local subgroup is too small to satisfy the bound |Gx|3 > |G|.
Finally, we have that |L2(q) × G2(q)| ≤ q7 (q2 − 1)

2
(q6 − 1) < |F4(q)|

1
3 .

Therefore X0 is simple.

First suppose that X0 /∈ Lie(p). Then by [53, Table 1], it is one of the

following:

A7, A8, A9, A10, L2(17), L2(25), L2(27), L3(3), U4(2), Sp6(2), Ω+
8 (2),

3D4(2), J2, A11(p = 11), L3(4)(p = 3), L4(3)(p = 2), 2B2(8)(p = 5), M11(p =

11).

The only possibilities for X0 that could satisfy the bound |Gx|3 > |G| are

A9, A10(q = 2), Sp6(2)(q = 2), Ω+
8 (2)(q = 2, 3), 3D4(2)(q = 3), J2(q = 2),

and L4(3)(q = 2). However, since k divides 2 (|Gx|, v − 1), in all these cases

k2 < v.

Now assume X0 ∈ Lie(p). First consider the case rk(X0) > 1
2
rk(G),

where X0 = X0(r). If r > 2, then by Theorem 5.9 it is a subfield subgroup.

We have seen earlier that the only subgroups which could satisfy the bound

|Gx|3 > |G| are F4

(

q
1
2

)

and F4

(

q
1
3

)

. If q0 = q
1
2 , then

v = q12
(

q6 + 1
) (

q4 + 1
) (

q3 + 1
)

(q + 1) > q26.

We have that k divides 2F4

(

q
1
2

)

, and (k, v) ≤ 2. Since (q, k) ≤ 2, we have

that k divides

2
(

2(q6 − 1)(q4 − 1)(q3 − 1)(q − 1), v − 1
)

< q13,
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so k2 < v, a contradiction.

If q0 = q
1
3 , then

v =
q16 (q12 − 1) (q4 + 1) (q6 − 1)

(

q
8
3 − 1

)(

q
2
3 − 1

) ,

but k < q10 so k2 < v, which is a contradiction.

If r = 2, then the subgroups X0(2) with rk(X0) > 1
2
rk(G) that satisfy

the bound |Gx|3 > |G| are Aε
4(2), B3(2), B4(2), C3(2), C4(2), and Dε

4(2).

Again, in all cases the fact that k divides 2 (|Gx|, v − 1) forces k2 < v, a

contradiction.

Now consider the case rk(X0) ≤ 1
2
rk(G). By Theorem 5.10 we have that

|Gx| < q20.4 logp q. Looking at the orders of groups of Lie type, we see that

if |Gx| < q20.4 logp q, then |Gx|p′ < q12, so 2|Gx||Gx|2p′ < |G|, contrary to

Corollary 5.3.

This completes the proof of Lemma 5.25.

Lemma 5.26. The group X is not Eε
6(q).

Proof. Suppose X = Eε
6(q). As in the previous lemma, assume first that X0

is not simple. Then by Theorem 5.8 Gx ∩X is one of the following,

(i) Parabolic.

(ii) Maximal rank.

(iii) 36.SL3(3).

or X0 = L3(q)×G2(q), U3(q)×G2(q)(q > 2).

The first case was ruled out in Lemma 5.20.

The possibilities for the second case are given in [46, Table 5.1]. In

some cases |Gx|3 < |G|, and in each of the remaining cases, calculating

2 (|Gx|, v − 1) we get that k2 < v.
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The local subgroup for the third case is too small.

Finally, the order of the groups in the last case is less than q17 < |Eε
6|

1
3 .

Now assume X0 is simple. If X0 /∈ Lie(p), then we find the possibilities

in [53, Table 1]. However, the only two cases which satisfy Corollary 4.3 have

order that does not divide |Eε
6|. Hence X0 = X0(r) ∈ Lie(p).

If rk(X0) > 1
2
rk(G), then when r > 2 by Theorem 5.9 are Eε

6

(

q
1
s

)

with

s = 2 or 3, C4(q), and F4(q). In all cases we have that k is too small.

When q = 2 then the possibilities satisfying |Gx|3 > |G| with order dividing

Eε
6(2) are Aε

5(2), B4(2), C4(2), Dε
4(2), and Dε

5(2). However since k divides

2 (|Gx|, v − 1), in all cases we have that k2 < v, a contradiction.

If rk(X0) ≤ 1
2
rk(G), then by Theorem 5.10 we have that |Gx| < q28.4 logp q.

Looking at the p and p′ parts of the orders of the possible subgroups, we see

that the p′-part is always less than q17. Hence |Gx|p′ < q17, so 2|Gx||Gx|2p′ <

|G|, contradicting Corollary 5.3.

This completes the proof of Lemma 5.26.

Lemma 5.27. The group X is not E7(q).

Proof. Suppose X = E7(q). First assume X0 is not simple. Then by Theorem

5.8, Gx ∩X is one of the following,

(i) Parabolic.

(ii) Maximal rank.

(iii) 22.S3.

or X0 = L2(q)×L2(q)(p > 3), L2(q)×G2(q)(p > 2, q > 3), L2(q)×F4(q)(q >

3), or G2(q)× PSp6(q).

The parabolic subgroups have been ruled out in Lemma 5.20. The sub-

groups of maximal rank can be found in [46, Table 5.1]. Of these, the

only ones with order greater than |E7(q)|
1
3 are d.

(

L2(q)× PΩ+
12(q)

)

.d and
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f.Lε
8(q).g.

(

2×
(

2
f

))

, where d = (2, q − 1), f =
(

4, q−ε

d

)

, and g =
(

8, q−ε

d

)

.

However in both cases the fact that (k, v) ≤ 2 forces k2 < v, a contradiction.

The local subgroup is too small to satisfy |Gx|3 > |G|.
In the last case, the only group that is not too small to satisfy |Gx|3 > |G|

is L2(q) × F4(q), but here q38 divides v, and since (v, k) ≤ 2, we have that

k2 < v. So X0 is simple.

First assume X0 /∈ Lie(p). Then by [53, Table 1], the possibilities are

A14(p = 7), M22(p = 5), Ru(p = 5), and HS(p = 5). None of these groups

satisfy Corollary 4.3.

Now assume X0 = X0(r) ∈ Lie(p). If rk(X0) ≤ 1
2
rk(G), then by Theo-

rem 5.10 |Gx|3 < |G|, which is a contradiction.

If rk(X0) > 1
2
rk(G) then if r > 2 by Theorem 5.9 X∩Gx = E7

(

q
1
s

)

, with

s = 2 or 3. However in both cases (v, k) ≤ 2 forces k2 < v, a contradiction.

If r = 2 then the possible subgroups satisfying the bound |Gx|3 > |G| and

having order dividing |E7(2)| are Aε
6(2), Aε

7(2), B5(2), C5(2), Dε
5(2), and

Dε
6(2). However in all of these cases (v, k) ≤ 2 forces k2 < v.

Lemma 5.28. The group X is not E8(q).

Proof. Suppose X = E8(q). First suppose that X0 is not simple. Then by

Theorem 5.8 Gx ∩X is one of the following,

(i) Parabolic.

(ii) Maximal rank.

(iii) (215).L5(2) (q odd) or 53.SL3(5) (5|q2 − 1).

(iv) Gx ∩X = (A5 × A6).2
2.

or X0 = L2(q) × Lε
3(q)(p > 3), G2(q) × F4(q), L2(q) × G2(q) × G2(q)(p >

2, q > 3), or L2(q)×G2(q
2)(p > 2, q > 3).



5. Biplanes with Automorphism Groups of Almost Simple Type 141

We know from Lemma 5.20 that the first case does not hold.

From [46, Table 5.1] we have that the only subgroups of maximal rank

such that |Gx|3 ≥ |G| are d.PΩ+
16(q).d, d. (L2(q)× E7(q)) .d, f.Lε

9(q).e.2, and

e. (Lε
3(q)× Eε

6(q)) .e.2, (where d = (2, q − 1), e = (3, q − ε), and f = (9,q−ε)
e

).

In all cases, since (k, v) ≤ 2 we have k2 < v, which is a contradiction.

In all other cases, for all possible groups we have that |Gx|3 < |G|, a

contradiction. Hence X0 is simple.

First consider the case X0 /∈ Lie(p). Then by [53, Table 1] the possibilities

are Alt14, Alt15, Alt16, Alt17, Alt18(p = 3), L2(16), L2(31), L2(32), L2(41),

L2(49), L2(61), L3(5), L4(5)(p = 2), PSp4(5), G2(3), 2B2(8), 2B2(32)(p = 5),

and Th(p = 3). In every case the inequality |Gx|3 > |G| is not satisfied.

Now consider the case X0 ∈ Lie(p). If rk(X0) ≤ 1
2
rk(G), then by Theo-

rem 5.10 we have |Gx|3 ≥ |G|, which is a contradiction.

So rk(X0) > 1
2
rk(G). If r > 2, then by Theorem 5.9 Gx ∩X is a subfield

subgroup. The only cases in which |Gx|3 > |G| can be satisfied are when

q = q2
0 or q = q3

0, but in all cases since (v, k) ≤ 2 we have that k is too small.

If r = 2, then rk(X0) ≥ 5. The groups for which |G| < |Gx|3 are Aε
8(2),

B8(2), B7(2), C8(2), C7(2), Dε
8(2), and Dε

7(2). However, in all cases (v, k) ≤ 2

forces k2 < v, which is a contradiction.

This completes the proof of Lemma 5.28, and hence we have that X is

not an exceptional group of Lie type, completing thus the proof of Theorem

5, namely:

Theorem 5. If D is a biplane with a primitive, flag-transitive automor-

phism group of almost simple type, then D has parameters either (7,4,2), or

(11,5,2), and is unique up to isomorphism.

Thus the proof of our Main Theorem is now complete.
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