AROUND RATIONALITY OF INTEGRAL CYCLES
RAPHAEL FINO

ABSTRACT. In this article we prove a result comparing rationality of integral algebraic
cycles over the function field of a quadric and over the base field. This is an integral
version of the result known for Z/2Z-coefficients. Those results have already been proved
by Alexander Vishik in the case of characteristic 0, which allowed him to work with
algebraic cobordism theory. Our proofs use the modulo 2 Steenrod operations in the
Chow theory and work in any characteristic # 2.
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Let F be a field and let Y be a smooth F-variety. We write Y := Yz where F is an
algebraic closure of F' and we write C H(Y") for the integral Chow group of Y. Let X be a
geometrically integral variety over F. An element 7 of CH(Y) is F/(X)-rational if its image
YF(x) under the change of fields homomorphism CHY) — CH(YF(x)) is in the image of

CH(Yr(x)) = CH(YF(x)). An element J of CH(Y) is called rational if it belongs to the

subgroup CH(Y) :=Im(CH(Y) — CH(Y)). Note that since F' is algebraically closed,

the homomorphism CH(Y) — CH(YF(x)) is injective by the specialization arguments.
In the present paper, we prove the following theorem (see Theorem 3.1 for the proof):

Theorem 0.1. Let F' be a field of characteristic # 2 and let Q) be be a smooth projective
quadric over I of positive dimension. Assume that m < |dim(Q)/2] and i,(Q) > 1. Then

any F(Q)-rational element of CH™(Y') is the sum of a rational element and an exponent
2 element.

In the above statement, the assumption that the first Witt index of @) is strictly greater
than 1 means that ) has a projective line defined over the generic point of ). Note
that in a previous paper we proved a version of Theorem 0.1 for Chow groups modulo
2 (see |4, Theorem 1.1]), namely, we have shown that an F(Q)-rational element 7 in
CH™(Y)/2CH™(Y), withm < |dim(Q)/2], is the sum of a rational element and the class
modulo 2 of an exponent 2 element in CH™(Y) (we did not need the extra assumption
on i1(Q) to deal with this modulo 2 version).

In characteristic 0, Alexander Vishik proved a stronger version of Theorem 0.1 in the
sense that, using symmetric operations in algebraic cobordism theory, he got rid of the
exponent 2 element appearing in the conclusion (see [9, Theorem 3.1]). Although our ver-
sion is weakened by the presence of an exponent 2 element, our proof only uses the Chow
theory itself (including the Steenrod operations on Chow groups modulo 2). The Chow
theory do not rely on resolution of singularities (algebraic cobordism requires resolution
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of singularities) and our method allows one to get a valid result in any characteristic
different from 2.

Theorem 0.1 is a new integral version of the so-called Main Tool Lemma (see |7, The-
orem 3.1|) which was set by Alexander Vishik to construct fields with u-invariant 2" + 1,
for r > 3 (in fact, he used the contrapositive statement to show that certain irrational
cycles are F'(Q)-irrational, see [8, Theorem 5.1]). This construction is the main existing
application of the Main Tool Lemma. Moreover, since the proof of [8, Theorem 5.1| only
deals with torsion-free Chow groups, our versions with exponent 2 element can also be
used here.

I would like to gratefully thank Nikita Karpenko for sharing his great knowledge and
his valuable advice. This work could not have been done without his help. I also would
like to thank the referee for useful comments and suggestions.
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1. PRELIMINARIES: DECOMPOSITION OF CHOW GROUPS

In this paper, the word scheme means a separated scheme of finite type over a field and
a variety is an integral scheme. Let F' be a field and Y be a smooth F-variety. For any
p € Z, we write CH,(Y') for the integral Chow group of dimension p classes of cycles on
Y and CH?(Y) for the Chow group CHgimy—p(Y') (see |3, Chapter X]). We write Ch(Y")
for CH(Y') modulo 2.

The main purpose of this section is to introduce the notion of coordinates for a cycle
r € CH(Q xY), where () is a smooth projective quadric over F. This notion will be
useful during the proofs of Theorem 3.1 and Theorem 4.1.

Let @@ be a smooth projective quadric over F' of dimension n given by a quadratic form
@, and let us set ig(Q) = io(p), where iy(¢) is the Witt index of .

For i = 0,...,n, let us denote as h' € C H'(Q) the ith power of the hyperplane section
class (note that for any 4, the cycle h' is defined over the base field). For i < io(Q), let us
denote as [; € C'H;(Q) the class of an i-dimensional totally isotropic subspace of P(V),
where V' is the underlying vector space of p. Fori < |n/2], we still write |; € CH;(Q) for
the class of an i-dimensional totally isotropic subspace of P(V5), where F is an algebraic
closure of F' (if i < io(Q), the cycle [; € CH;(Qx) is the image of [; € CH;(Q) under the
change of field homomorphism CH(Q) — CH(Q%)). Let us notice that for i < |n/2],
the cycle I; (in CH;(Qx) or in CH;(Q) if i < io(Q)) is canonical by [3, Proposition 68.2]
(in case of even n, there are two classes of n/2-dimensional totally isotropic subspaces
and we fix one of the two).
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Let x be an element of CH"(Q x Y'). We write pr for the projection @ x Y — Y. For
every i =0, ...,ip(Q) — 1, we have the following homomorphisms

CH(QxY) — CH™(Y)
r — pro(li-x) =2’

and
CH"(QxY) — CH™(Y)
r — pro(ht-z) =12

Definition 1.1. The cycle ' € CH"(Y) is called the coordinate of x on h' while
x; € CH™™"T(Y) is called the coordinate of x on ;.

Note that if r < |n/2], for any i = 0,...,i9(Q) — 1, one has x; = 0 by dimensional
reasons.

Remark 1.2. For any nonnegative integer k < io(Q), let us set z(k) := z — Zf:o ht x
at — 3% I; x ;. Note that for any i = 0, ..., k, the coordinate of x(k) on h' (as well as
its coordinate on ;) is 0. The writing

k k

x:x(k:)—i—Zhixxi—i—Zlixxi
i=0

1=0

is called a decomposition of x.
Assume now that r < ig(Q) and r < k. Then, by [3, Theorem 66.2|, one can write

z(k) = Z h' x w'
i=0
with some w' € CH™ (Y. Since, for any ¢ = 0, ...,7, the cycle w’ coincides with the
coordinate x(k)’ of x(k) on h', we get that z(k) = 0.
Recall that one says that the quadric @ is completly split if io(Q) = [n/2]| + 1.

Remark 1.3. Assume that Y = @, r = n, and that k¥ < |n/2] (what is the case if
the quadric @ is not completly split). Let x be an element of CH"(Q x Q). Since, for
i =0,..,k, the group CH"*(Q) is free with basis {l;} (because i < |n/2], see [3, §68]),
one can uniquely write

k k
v=a(k)+ > b h <L+ Y L%,
=0 1=0

with some b; € Z.

Note that everything in Section 1 holds for Chow groups modulo 2 in place of the
integral Chow groups.
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2. PRELIMINARIES: STEENROD OPERATIONS AND CORRESPONDENCES

In this section we continue to use notation introduced in the beginning of Section 1.

The Steenrod operations are the main tool of this note. We refer to |3, Chapter XI| for
an introduction to the subject. We just recall here that for a smooth scheme X over a field
F of characteristic # 2, Patrick Brosnan constructed in [2, §10] a certain homomorphism
Sx : Ch(X) — Ch(X) called the total Steenrod operation on X of cohomological type.
Note that since the proof of the main theorem (Theorem 3.1) uses Steenrod operations
on Chow groups modulo 2, our result is slightly stronger than |9, Theorem 3.1 in the
sense that we do not need the assumption of quasi-projectivity (Alexander Vishik needed
that assumption in [9] because the algebraic cobordism theory is defined on the category
of smooth quasi-projective schemes over a field of characteristc 0, see [6]).

In the following proposition, whose the statement and the proof are very close to [5,
Lemma 3.1|, we focus on how the Steenrod operations interact with the composition of
correspondences (correspondences are defined in [3, §62]). This will be useful during the
proof of Theorem 3.1.

For a vector bundle E over a scheme, we abuse notation and write ¢(£) for both the
total Chern class and its modulo 2 reduction.

Let X, X5, X3 be smooth schemes over F' (of characteristic # 2), and assume that X,
is complete (so the push-forward associated with the projection X7 x Xo x X3 — X7 X X3
is well defined).

Proposition 2.1. For any correspondence o € Ch(X; x X3) and for any correspondence
B € Ch(Xs x X3), one has

1) Sxyxx5(B 0 ) = (Sxyxx35(8) - c(=Tx,)) 0 Sxyxx, (@);
2) Sxyxx3(B 0 @) = Sxyxx5(8) 0 (Sxyxx, () - ¢(=TXx,)),
where T, 1is the tangent bundle of Xy and c is the total Chern class.
Proof. For any i,7 € {1,2,3} such that i < j, let us write p;; for the projection
X1 x Xo x Xg — X; x Xj.
According to the composition rules of correspondences described in [3, §62|, we have
Boa=pi.(p2*(a) - pa3™(B)).
Therefore, by [3, Proposition 61.10] applied to pi3, we get
Sx1xx; (B0 a) = P13, (Sxyxxax x5 (P27 () - p23™(8)) - pr2* (pr2*(c(—T'x,)))),
and since S conmmutes with products and pull-backs, we get
Sxyxx3 (B0 a) = pi3. (P12 (Sxyxx2 (@) - P23 (Sxax x5 (8)) - ([X1] X o(=Tx,) x [X3])),
this gives, on the one hand
Sxixx3(B 0 a) = P13, (P12 (Sx,xx, (@) - Pas™(Sxyxx; (B) - ¢(—Txy))),
thus 1) is proved, and on the other hand, this gives

Sxyxx5 (80 @) = pra3.(pr2* (Sxyx x5 (@) - ¢(—=T'x,)) - P23” (Sxux x5 (8))),
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thus 2) is proved. O

3. MAIN THEOREM

In this section we continue to use notation introduced in the beginnings of Sections 1
and 2.

Let F' be a field of characteristic # 2 and let Y be a smooth F-variety.

Let @ be a smooth projective quadric over F' of positive dimension n (in that case,
@ is geometrically integral) given by a quadratic form . Since for isotropic @), any
F(Q)-rational element (in any codimension) is rational, we make the assumption that the
quadric @ is anisotropic. In particular, () is not completly split and one can consider the
first Witt index i1(¢) of ¢, which we simply denote as ;.

In a way, the following result is a generalization of [9, Theorem 3.1]. Indeed, the use of
the Steenrod operations on the modulo 2 Chow groups allows one to obtain a valid result
in any characteristic different from 2. Nevertheless, an exponent 2 element appears in our
conclusion while it is not the case in [9, Theorem 3.1].

The main idea of the proof (inspired by the proof of [9, Theorem 3.1]) is as follows.
First of all, we consider the F(Q)-rational element 7 € CH™(Y) as the coordinate on
h® of a rational cycles T € C_Hm(Q x Y), and we use T mod 2, the 1-primordial cycle
in Ch(Q x Q) and the Steenrod operations on Chow groups modulo 2 to form “special
cycles”. Then we choose carefully some integral representatives of these special cycles and
we obtain 7 as a specific linear combination of rational cycles (modulo 2-torsion).

Theorem 3.1. Assume that m < [n/2] and iy > 1. Then any F(Q)-rational element of
CH™(Y) is the sum of a rational element and an exponent 2 element.

Proof. The statement being trivial for negative m, we may assume that m > 0 in the proof.
Let 7 be an F(Q)-rational element of CH™(Y). Since the quadric Q is isotropic over F, the
homomorphism CH(Y) — CH (Y#(q)) 1s surjective and is consequently an isomorphism.
The element § € CH™(Y) being F(Q)-rational, there exists y € CH™(Yp(q)) mapped to
y under the homomorphism

CH™(Yr) — CH™(Y5(g)) = CH™(Y).

Let us fix an element x € CH™(Q x Y) mapped to y under the surjection (see [3,
Corollary 57.11])
CHm(Q X Y) —» CHm(YF(Q)).

Since over F the quadric () becomes completly split and m < |n/2|, by Remark 1.2
(applied with r = k = m), the image T € CH™(Q x Y') of x decomposes as

(3.2) T=Y hxa'
=0

where 2' € CH™*(Y) is the coordinate of T on h’ (see Definition 1.1). Note that, by [7,

Lemma 3.2|, one has

° =7.
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Let 7 € Chy,y4,—1(Q?) be the 1-primordial cycle (see [3, Definition 73.16] and paragraph
right after [3, Theorem 73.26]). Since i1 > 1, by [3, Proposition 83.2], we get that the
cycle (R° x k=) - 1 € Ch,(Q?*) decomposes as

(3.3) (° x k7)o = ng(h% X lap) + ng(l2p+i1—1 x pPrnh),
p=0 p=0
where ¢, € {0,1}, g0 = 1, and r = |40+ | with d = [2]. Thus, one can choose a rational
integral representative ¥ € CH,,(Q?) of (h® x h"~1) . 7 such that 7 decomposes as
5] 5]
(3.4) T=> ai(hi x L)+ Bili x ') + 612 x I2)),

i=0 =0
with some integers «;, 3; and 9, where «; is even for all odd ¢ and « is odd.
The element ¥ being rational, there exists v € C'H,(Q?) mapped to 7 under the re-
striction homomorphism CH,,(Q?) — CHn(@2). The cycles v and 7 are considered here
as correspondences of degree 0.

Lemma 3.5. For any i = 0,...,m, one can choose a rational integral representative
st € CH™(Q xY) of SU((Z mod 2) o (¥ mod 2)) such that

1) for any 0 < j < m, 259 is rational , where %9 € CH™=I(Y) is the coordinate of
st on h;

2) for any odd 0 < j < m, s is rational.
Proof. First of all, since m < |n/2], for any j = 0,...,m, one has h"~7 = 21, (see |3, §68]).

Therefore, for any rational cycle s € CH(Q x Y), the element 2pr.(I; - s) (where pr is the
projection @ X Y — Y') is rational and 1) is proved.

Assume now that j is odd. By Proposition 2.1 1), for any ¢ = 0, ..., m, one has

(3.6) S'((Tmod2)o (Fmod2))=> Y (S"Tmod?2)-ciky(~Ty)) o S*(F mod 2).

k=0 t=0

For every k = 0,...,m, let a* € CH""*(Q x Q) be a rational integral representative
of S*(F mod 2) € Ch"™(Q x Q). We write @ € CH"**7(Q) for the coordinate of
@* on k7. For every k = 0,...,m and every t = 0,...,m, we choose a rational integral
representative di; € CH™5(Q x Y) of ST mod 2) - ¢;__+(—Tg) € Ch™k(Q x Y).
Thus, by the equation (3.6), the cycle

5= Z Z dpsod” € CH™(Q xY)
k=0 t=0

is a rational integral representative of S*((Z mod 2) o ( mod 2)).

Moreover, for any 0 < k < m, one has by (3.3)

S* T mod 2) = ) | epS (W™ x by) + ) epS* (liy—r4zp x HITHP).
p=0 p=0
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Therefore, for any 0 < k < m, denoting as a®/ € Ch"*7(Q) the coordinate of
S*(F mod 2) on h7, we have

ai = Z & (ip) Skft(bp)
(pt)EEK,;
where & ; = {(p,t) € [0,7] x [0,k] |2p +t = j}.

Furthermore, since j is odd, for any (p,t) € & ;, the binomial coefficient (t
Therefore, for any 0 < k < m, we have a*/ = 0 and, consequently, the cycle "/ &
CH™=3(Q) is divisible by 2. Since j — k < [n/2], the group CH"*=7(Q) is generated
by lj_x and 2, = h"™7 (see |3, §68]). Hence, for any 0 < k < m, the cycle a*J is
rational.

2 .
b ) is even.

According to the composition rules of correspondences described in [3, §62|, we have
the identity

h? x sh = Z de,t o (k! x @) = Z Z B X pro(@™ - dyy).
k=0 t=0 k=0 t=0

Therefore, since for any 0 < k < m and for any 0 < t < m, the cycles @*7 and dy; are
rational, we get that s*7 is rational and 2) is proved. U

Furthermore, we fix a smooth subquadric P of () of dimension m; we write in for the
imbedding
(P— Q) xidy : PxXY — QxY.
Then, considering = as a correspondence, we set
z:=1in"(roy) € CH™(P xY).
According to the composition rules of correspondences described inL?), §6_2] and in view
of decompositions (3.2) and (3.4), we get that the image Z € CH™(P x Y') of z can be

written as
m
zZ= E ;- h' x o
i=0

(we recall that the integer «; is even for all odd 7 and that aq is odd). For every i =0, ..., m,
we set 2! := ;- 2* € CH™(Y). Note that since 2° = 7, the cycle 2° is an odd multiple
of 7.

Note also that since the Steenrod operations of cohomological type commute with in*
(see [3, Theorem 61.9]), for every i = 0, ...,m, the cycle in*(s') € CH™ (P xY) (with s’
as in Lemma 3.5) is a rational integral representative of S*(zZ mod 2) € Ch™*(P x Y).

Lemma 3.7. For any [(m+1)/2] <m/ <m, the cycle
WAy _
) (m T )sm —im'=i ¢ O™ (T
i
=0

is the sum of a rational element 6, and an exponent 2 element.
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Proof. For any |(m + 1)/2] < m’ < m, we can fix a smooth subquadric P’ of P of
dimension m'; we write in,, for the imbedding

(PP P)xidy : PPxY — PxY.
By [4, Lemma 1.2], one has

ml

S™ Dt i (2 MoOd 2) = Zprm/*(cz-(—Tp/) iy S™ Tz mod 2))  in Ch™(Y)
=0
(where Tp: is the tangent bundle of P’ ¢; are the Chern classes, and pr,, is the projection
P'xY —Y).
It m' > [(m +1)/2] + 1, since pryy,ing,(z mod 2) € Ch™ ™ (Y) and m —m/ < m/,
we have S™ pro,ing,*(z mod 2) = 0. Therefore, we get

Zprm/*(ci(—Tp/) iy *S™ T2 mod 2)) =0 in Ch™(Y).
=0

Furthermore, by [3, Lemma 78.1], for any ¢ = 0, ..., m/, one has ¢;(=Tp/) = (m/ti“)hi (mod 2).
By combining the congruence for Chern classes with the observation just prior to the
statement of the lemma, we deduce that

m’ / . 1 A o
i=0 !

is twice a rational element 4, € CH™(Y). Since, by the pl“OJGCthIl formula ([3 PI‘OpOSl—
tion 56. 9]) for any i = 0, ..., m’, one has prm s (R ing S in* (s 1) = pro (Rrm L g ) =
25" "=l we are done Wlth the case m' > [(m+1)/2] + 1.

If m" = |(m+1)/2] and m is odd, we still have m —m’ < m’ and we can do the same
reasoning as in the first case. If m’ = [(m+1)/2] and m is even, we have m —m/ = m’ =
m/2, and in this case, we have

Sm/Qme/Q*inm/Q*(z mod 2) = (prm/g*mm/g*(z mod 2))2.

Therefore, by the same reasoning as in the first case, there exists d,,o € CH™(Y') such

that
m/2

1 m s m N - ——
2 Z ( o ) 2TET =200 + (PFimg2, 0" (7))

Moreover, we have
m2

(PP, inma" ()2 = (222)* =2 (222 7),
and since for any i = 0, ..., m, the cycle 2z = pr,,,(h™~" - Z) is rational, the cycle

m 2 .
222" =pr,,(z°) — 4 E AR A
0<i<m
S

is rational also and we are done with the proof of Lemma 3.7. O
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Lemma 3.8. AFO.T any j = 0,...,m, one can choose an integral representative v/ €
CH™(Y) of S7(2? mod 2) such that

1) the cycle 207 is rational and v° is an odd multiple of y;

2) the cycle v3 is rational for odd j;

3) for any k = 0,...,m, one has s** = Ek akv?, where af is the binomial coefficient

()
k—j)"

Proof. We induct on j. For j = 0, one has 2z2° = pr,,,(h™ - Z). Hence the element 22° is

rational, and since the cycle z° is an odd multiple of 7, we choose v° := 2°. For j = 1,
one has
SY((z mod 2)o(§ mod 2)) = Z h'xS* (2" mod 2)+Zi-hi+lx(zi mod 2) € Ch™ ™ (QxY).
=0 i=0
In the latter expression, the coordinate on h!, whose s!!' is an integral representative,
is S'(z' mod 2). Since, by Lemma 3.5, the cycle s' is rational, we choose v' := s"'.
Assume that the representatives 1%, v!,...,07/~! are already built.
One has
i m
S7((Z mod 2) o (7 mod 2)) = Z S*(hY) x ST7F(2" mod 2) € CA™H(Q x Y).
k=0 i=0

In the latter expression, the coordinate on h/, whose s77 is an integral representative, is
ag - S9(27 mod 2) + ag_l SN2 mod 2) + - - -+ afy - S°(2° mod 2),

where ag = ( ) for any 0 <[ < j. Therefore, the cycle

i
j—i

= — (a0 - o0)
is an integral representative of S7(27 mod 2). Moreover, the element

2570 = 2(v7 + a;;l T a) - o0)
is rational by Lemma 3.5. By the induction hypothesis, we get that the cycle 2v7 is
rational. Furthermore, if j is odd, then the cycle s7/ is rational by Lemma 3.5, and for
any even 0 < [ < j, the binomial coefficient a] is even. Therefore, by the induction

hypothesis, we get that the cycle v7 is rational. We are done with the proof of Lemma
3.8. O

Finally, the following lemma will lead to the conclusion. Denote by 7n(X) the power
series > ..o 7; - X' in variable X, where n, = (—1)'(*]").

Lemma 3.9. For any polynomial f € Z|X] of degree < |m/2]|, the linear combination

m
§ gm—j v’
=0

is the sum of a rational element and an exponent 2 element, where g(X) = >, g1 - X' is
the power series f(X)-n(X).
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Proof. Let f =5 fi - X*¥ € Z|X] be some polynomial of degree < |m/2]. Consider the
element

ei= > fumw 6w € CH™(Y),

m/=[ " |
with 0, as in Lemma 3.7. Then, we have

Z s mi (m’ +iz'+1)sm/_i,m/_i'

m/= Lm+1 =0

Furthermore, by Lemma 3.8 3), for any k = 0,...,m, one has s"* = Z;ﬂ Oag‘fvj. Hence,
we get the identity

” WLy | j .
fmfm’ (m * )( )) j>
m’:LZMSLlJ J;O (; ! m/_l_'] ’

and the latter identity can be rewritten as

L3

26=2 Zm:f “Cij e &

=0 5=0

v[3

where ¢; ; := m—i=j (mettltl J ). Ifm—i—7j <0, then we have ¢; ; = n,,_;_: = 0.
2] =0 l m—i—j—l J ’ ) n J

Otherwise —if m —7—j > 0 — we set k :=m — i — 7, and we have

BT o

=

?) by the Chu-Vandermonde Identity (see [1, Corollary

(%,;H) (mod 2), we get that, for any i = 0, ..., |m/2|

0
which is congruent modulo 2 to (

2.2.3]). Therefore, since (7%7)

k—
k
. k E

and for any j =0,...,m
Cij = Nm—i—j (mod 2)

Thus, since by Lemma 3.8 1), for any j = 0,...m, the cycle 20’ is rational, we get that
there exists an element 6 € CH™(Y') such that

1%

3:2 Zf Nm—i—j - U_ngm] .7

=0 7=0

vl3

where g(X) =, 9:- X' is the power series f(X)-n(X). Hence, there exists an exponent
2 element A € CH™(Y) such that

zm:gm_j-vjzg—l-)\,

J=0

and we are done. 0
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We finish now the proof of Theorem 3.1. By [9, Lemma 3.13|, there exists a polynomial
f € Z|X] of degree < |m/2] such that the power series g(X) := f(X) - n(X) has an odd
coefficient g, at X™ and even coefficients g,,,_; (with even j) at smaller monomials of
the same parity. Applying Lemma 3.9 to this polynomial f, we get that there exists an
exponent 2 element A € CH™(Y') such that the cycle

igm—j ' Uj —A
j=0

is rational. Since for any j = 1,...,m, the cycle 2¢7 is rational and v/ is rational for all
odd j, the product g,—;-v’, with j > 1, is always rational. Therefore, we get that the
cycle

Gm - 00 — A
is rational. Furthermore, since g, is odd, the cycle 20 is rational and v° = oy -7, where oy
is odd, there exist an integer k and an element § € C H™(Y') such that g,, 0% = T+2ky+0.

Finally, note that the cycle 27 is rational since it is equal to pr.(h™ - T). Il

4. A STRONGER VERSION OF MAIN THEOREM

In this section we continue to use notation introduced in the beginning of Section 3.
The following result is stronger than Theorem 3.1 although its statement is less eloquent.

Let K/F be an extension and X be an F-variety. In the following proof, an element

r € CH*(Xg) is called rational if it is in the image of the restriction homomorphism
CH*(X) — CH*(Xg).

In the same way as before, the following theorem is a generalization of [9, Proposition
3.7] (although, putting aside characteristic, Theorem 4.1 is still weaker than the original
version in the sense that an exponent 2 element appears in the conclusion).

Theorem 4.1. Assume that m < [n/2] and iy > 1, and let E/F be an extension such
that io(Qg) > m. Then, for any y € CH™(Yrq)) there exists 6 € CH™(Y) and an
exponent 2 element X € CH™(Yp(q)) such that ypQ) = 0p@Q) + A

Proof. We proceed the same way as in the proof of Theorem 3.1.
Let us fix an element 2 € CH™(Q x Y') mapped to y under the surjection

CHm(Q X Y) - CHm(YF(Q)).

Since io(Qg) > m, by Remark 1.2 (applied with r = k& = m), the image xp) €
CH™(Qp) X Yr(q)) of © decomposes as

TEQ) = Zhi X xi
1=0

where ' € CH™ (Yg(q)) is the coordinate of zp(g) on h' (see Definition 1.1).

The image of x under the composition

CH™Q xY)— CH™(Qp x Yg) = CH™(Yg(q))
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is 2°. Therefore, by the commutativity of the diagram

| |

CHm(Q X Y) e CHm(YF(Q))

we get that 2° = yg) and we want to prove that there exists 6 € CH™(Y) and an
exponent 2 element A € CH™(Yg(q)) such that 2° = dgq) + .

Let 7 € Chpii,—1(Q?) be an element mapped to the l-primordial cycle under the
restriction homomorphism Ch*(Q) — Ch*(Q). By [3, Proposition 83.2], there is no
cycle of type b/ x I; with odd j appearing in the decomposition of (h” x A1) - w5, €
C’hn(Q%(Q)) (and the cycle h°® x [y appears).

Moreover, since the coefficients near the cycles contained in the decomposition of (h° x
R 1Y) mr) € C’hn(Q%(Q)) given by Remark 1.3 (with & = m) do not change when going
over E(Q), the cycle (h® x h''=1) - w5 ) can be uniquely written as a linear combination

of cycles of type h/ x I; with even j € [0, m] (and the coefficient near h° x [y is 1) , of
cycles of type [; x h? (where j € [0,m]), and of a cycle p € Ch™( %E(Q)) whose coordinate

on h? (as well as coordinate on [;) is 0 for j € [0,m].

Thus, fixing a rational integral representative ypq) € CH,(QF ) of (h°xh"™1) (),
we get that the integral coefficient «; near the cycle A’ x [; contained in the decomposition
of Yg(o) (given by Remark 1.3 , with k£ = m), is even for all odd j, and that o is odd.

Let v € CH,(Q?) mapped to yg ) under the restriction homomorphism CH,(Q*) —
CHn(QQE(Q)). We have the following lemma, whose the statement and the proof are very
close to Lemma 3.5.

Lemma 4.2. For any ¢ = 0,...,m, one can choose a rational integral representative

s' € CH™ ™ (Qgq) X Yr) of S (( @) mod 2) o (Yg(qg) mod 2)) such that
1) for any 0 < j <m, 25" is mtwnal , where s%7 is the coordinate of s on W/ ;
2) for any odd 0 < j < m, s* is rational.

Proof. We use same notation as those introduced during the proof of Lemma 3.5. One
can prove 1) exactly as the same way as Lemma 3.5 1). We need the following proposition
to prove 2).

Proposition 4.3. Let X be a smooth F-variety and let p be an element of Ch(Q x X)
such that for any j = 0, ...,7, its coordinate p’ on W is 0. Then, for any integer k and
for any j =0,...,7, the coordinate of S*(p) on h’ is 0.

Proof. We induct on k. For k = 0, one has S° = Id. Assume that the statement is true
till the rank k£ and let j € [0,7]. By [3, Corollary 61.15| (Cartan Formula), one has
k+1

Sk+1(lj . ) Sk’—i—l + Z Sz Sk+1—z( )
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Since for any i = 1,...,k + 1, the cycle S%(l;) is a multiple of I;_; (see |3, Corollary 78.5]),
by the induction hypothesis, we get

pra(ly - S (p)) = pro(S*(L; - p)).
Furthermore, by [3, Proposition 61.10|, one has
k1
S opru(ly-p) =D pru(crsa—i(—Tg) - S'(l - p)),
i=0
and since pr.(l; - p) = 0, we deduce that
k
proly - S (p)) = ) as,
i=0
where a; = pri(crr1-i(=Tg)-S*(L;-p)). We are going to prove that for any i = 0, ..., k, one
has a; = 0. Let ¢ be an integer in [0, k]. Since by [3, Lemma 78.1|, the cycle cxi1-;(—Tg)
is a multiple of h**1=% it suffices to show that pr.(h*™1=". Si(l; - p)) = 0.

By the Cartan Formula and [3, Corollary 78.5], the cycle pro(h*™=". Si(l; - p)) is a
linear combination of cycles of type pr.(h*™1=¢-1;_, - S*7!(x)), where t € [0,7]. Since by
3, Proposition 68.1], for any ¢ = 0, ..., 7, one has h*** =" . [,_, =1, 4 (414, we are done
by the induction hypothesis. Il

We finish now the proof of Lemma 4.2. Assume that j is odd. Since by Proposition
4.3, for any k = 0, ..., m, the coordinate of S*(p) on h’ is 0, the only fact that we have
to explain here to prove 2) (i.e what is new compared to the proof of Lemma 3.5) is why
the corresponding cycle a*/ € CH™ ™71 (Qp(q)) is rational.

For the same reasons as in the proof of Lemma 3.5, the cycle a*7 € CH" ™ (Qpq)) is
divisible by 2. Moreover, since one has j —k < m < io(Qg), the cycle l;_j is defined over
FE and it is consequently defined over F(Q). Furthermore, since j — k < m < [n/2], the
group CH"*7(Qp(q)) is free with basis {l;_1} (as well as the group CH" ™ 7(Qzq;))

and therefore the restriction homomorphism
CH" (QE(Q)) — CH"** (QE(Q))

is injective (it is even an isomorphism). Since 2[; , = h""*~7 we deduce that any cycle
of CH™™=1(Qp(q)) divisible by 2 is rational. Thus, for any 0 < k < m, the cycle a*7 is

rational and we finish as in the proof of Lemma 3.5. U

Now, one can finish the proof of Theorem 4.1 exactly the same way as the proof of

Theorem 3.1 replacing F' by F(Q). O
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