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ABSTRACT

A linear stability analysis is presented for fluid dynamics with water vapor

and precipitation, where the precipitation falls relative to the fluid at speed

VT . The aim is to bridge two extreme cases by considering the full range of

VT values: (i) VT = 0, (ii) finite VT , and (iii) infinitely fast VT . In each case,

a saturated precipitating atmosphere is considered, and the sufficient condi-

tions for stability and instability are identified. Furthermore, each condition is

linked to a thermodynamic variable: either a variable θs that we call the satu-

rated potential temperature, or the equivalent potential temperature θe. When

VT is finite, separate sufficient conditions are identified for stability versus

instability: dθe/dz > 0 versus dθs/dz < 0, respectively. When VT = 0, the

criterion dθs/dz = 0 is the single boundary that separates the stable and un-

stable conditions; and when VT is infinitely fast, the criterion dθe/dz = 0 is

the single boundary. Asymptotics are used to analytically characterize the

infinitely fast VT case, in addition to numerical results. Also, the small VT

limit is identified as a singular limit; i.e., the cases of VT = 0 and small VT

are fundamentally different. An energy principle is also presented for each

case of VT , and the form of the energy identifies the stability parameter, either

dθs/dz or dθe/dz. Results for finite VT have some resemblance to the no-

tion of conditional instability: separate sufficient conditions exist for stability

versus instability, with an intermediate range of environmental states where

stability or instability is not definitive.
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1. Introduction36

Various notions of stability and instability have been valuable in understanding moist convection.37

For example, two common types are potential instability and conditional instability. Furthermore,38

conditional instability can be defined in multiple ways, in terms of lapse rates or in terms of parcel39

buoyancy (Schultz et al. 2000; Sherwood 2000), and it can be further modified to include or neglect40

various aspects of moist convection (Xu and Emanuel 1989; Williams and Renno 1993; Emanuel41

1994).42

As their definitions come in a multitude of forms, stability and instability can be investigated43

using a multitude of approaches. The present paper utilizes a set of equations for idealized precip-44

itating fluid dynamics. The equations include moist thermodynamics in a simplified form, which45

facilitates analytical calculations; at the same time, the equations also have a representation of the46

fall speed of precipitation, which adds an extra element of realism beyond traditional analytical47

approaches. To put this approach in perspective, we next summarize some broader ultimate goals48

and some of the approaches used in their pursuit. As is the case for all approaches, the present49

approach falls short of a complete answer but nevertheless provides an interesting perspective.50

The ultimate question concerning deep moist convection can perhaps be summarized as follows:51

Given an unsaturated profile of the environmental thermodynamic state (e.g., potential tempera-52

ture θ(z) and water vapor mixing ratio qv(z)), what is the probability that cumulus convection53

and/or precipitation will form? Refinements to this question could include further details, such as54

a measure of the convective intensity in terms of cloud-top height or maximum vertical velocity.55

In the end, due to the complexity of the question, the ultimate answer will likely not be a sim-56

ple “yes” or “no” answer but an answer in terms of probabilities. As such, this question could57

potentially be answered probabilistically using a numerical forecasting perspective, although at58

3



considerable computational expense. Instead, investigations have traditionally sought a simpler59

answer in terms of environmental lapse rates and/or single-column models of plumes or rising60

parcels (Xu and Emanuel 1989; Williams and Renno 1993; Emanuel 1994; Schultz et al. 2000;61

Sherwood 2000), which perhaps are not as accurate as the numerical forecasting perspective, but62

which are advantageous for their conceptual simplicity.63

Difficulties abound in this ultimate question. Two examples are the following. First, a nonlin-64

ear switch arises between the unsaturated and saturated states. As a result, the buoyancy has a65

different form in the unsaturated and saturated states (Stevens 2005). Second, the formulas for66

cloud microphysics and precipitation are mathematically intractable and hence amenable only to67

numerical computations. More specifically, these equations typically take a complex form involv-68

ing nonlinear switches (i.e., the Heaviside function) and polynomial nonlinearities (Grabowski69

and Smolarkiewicz 1996; Seifert and Beheng 2001, 2006; Morrison and Grabowski 2008b). Con-70

sequently, the ultimate question is perhaps impossible to answer analytically precisely as stated.71

To circumvent these difficulties, various simplifications are traditionally employed. For exam-72

ple, one simplification is to ignore the nonhydrostatic pressure gradient force, which is essentially73

tantamount to ignoring hydrodynamics altogether. Such an assumption leads to the commonly74

used parcel dynamics and parcel theory for analyzing atmospheric stability (Xu and Emanuel75

1989; Williams and Renno 1993; Xu and Randall 2001). As another example, one could ignore the76

effect of condensate loading (or hydrometeor drag) on buoyancy, by assuming a pseudoadiabatic77

thermodynamic process rather than a reversible process. As a last example, in some analytical78

theories it is necessary to assume saturated conditions in order to circumvent the nonlinear switch79

between the unsaturated and saturated states.80

Analytical theories typically neglect the rain fall velocity, VT . An exception is the work of81

Emanuel (1986), who considered the linear stability of an idealized saturated atmosphere with82
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precipitation that falls at speed VT . Emanuel (1986) showed that upright or tilted modes could83

exist and be unstable. Further work by Bretherton (1987b) examined the same model and focused84

on the limit of infinitely small spatial scales.85

The use of finite VT helps bridge two extreme cases: those that ignore VT and those that assume86

VT is infinitely fast (e.g., with the result that liquid water is removed immediately when it forms87

in a rising parcel). The work of Emanuel (1986) presents illuminating results in this direction,88

but its main aim is geared toward the dynamical consequences of finite VT , such as tilted updrafts89

of propagating squall lines. In the present paper, the focus is not on the detailed structure of90

the unstable eigenmodes but rather on the atmospheric conditions for guaranteeing stability or91

instability. In other words, one aim here is to put the finite VT case in the context of lapse-rate92

criteria for moist atmospheric stability and instability.93

The main results presented here consider three possible cases: (i) the case VT = 0, (ii) finite94

VT , and (iii) the limit VT → ∞. For finite VT , it is shown that two separate conditions arise for95

instability versus stability: the sufficient condition for instability (dθs/dz < 0), is determined by96

a variable θs = θe−θ0qt that we call the saturated potential temperature, whereas the equivalent97

potential temperature gradient provides a sufficient condition for stability (dθe/dz > 0). This is98

in contrast to the previously derived case of VT = 0 where a single quantity (dθs/dz) provides the99

sufficient conditions for both stability and instability. Two other interesting results also arise from100

analyzing cases (i)–(iii): the limit VT → 0 is shown to be a singular limit (i.e., the case of small101

VT is fundamentally different from the case of VT = 0), and the limit VT → ∞ leads to stability102

and instability conditions determined by a single quantity, the equivalent potential temperature103

gradient, dθe/dz. Finally, all of these conditions are related to the energy principle that arises in104

each case.105

5



In this paper, saturated conditions will be the focus. As such, the processes leading to saturation106

are not addressed, and the approach falls short of the goals in the ultimate question described107

above. Nevertheless, several realistic features are included in the hydrodynamic theory here but108

neglected in typical parcel theories; this includes the nonhydrostatic pressure gradient force (and109

hence hydrodynamics), and finite rain fall velocity, VT .110

The nonlinear version of the model was described by Hernandez-Duenas et al. (2013). In that111

work, the model was named the Fast Autoconversion and Rain Evaporation (FARE) model, due112

to the assumption of fast microphysical time scales. In many ways, the nonlinear FARE model is113

similar to the earlier models of Seitter and Kuo (1983), Majda et al. (2010), Sukhatme et al. (2012),114

and Deng et al. (2012), all of which employ an assumption of infinitely fast autoconversion: small115

cloud droplets instantaneously collide and amalgamate to form large rain drops. Short- and long-116

time, two-dimensional simulations with fast autoconversion were studied, respectively, in Seitter117

and Kuo (1983) and Sukhatme et al. (2012). To investigate cyclogenesis, Majda et al. (2010)118

considered fast autoconversion together with a weak-temperature gradient (WTG) approximation,119

and later Deng et al. (2012) relaxed WTG to allow for the effects of inertia-gravity waves. What120

distinguishes the FARE model from these earlier models is the additional assumption of fast rain121

evaporation: if rain water falls into unsaturated air, it is instantaneously evaporated until saturation122

is reached or until all rain water is depleted. Hernandez-Duenas et al. (2013) show that the FARE123

model can reproduce the basic regimes of precipitating turbulent convection: scattered convection124

in an environment of low wind shear, and a squall line in an environment with strong wind shear.125

These two cases are reproduced here in Figure 1. While a linearized version of the FARE model126

is used in the present paper, these nonlinear results lend confidence to the idealizations used in the127

model.128
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The rest of the paper is organized as follows. In Section 2, the nonlinear equations of the FARE129

model are described, followed by the linearized models for saturated and unsaturated regions.130

Energy principles are also presented for each case, and some initial insight into stability conditions131

can be gleaned from the form of the energy. Section 3 describes the linear stability analysis for132

three cases: (i) the case VT = 0, (ii) finite VT , and (iii) the limit VT →∞. In Section 4, results of the133

infinitely fast VT case are obtained analytically using asymptotics. Finally, a concluding dicussion134

is presented in Section 5.135

2. The FARE Model and Energy136

a. Background and Derivation137

A typical Cloud Resolving Model (CRM) would be based on the equations of motion for a com-138

pressible fluid, or on the anelastic approximation filtering acoustic waves but allowing for vertical139

motions of depth comparable to the density scale height (Ogura and Phillips 1962; Lipps and Hem-140

ler 1982). The thermodynamics would be as comprehensive as possible, including multiple phases141

of water (vapor, cloud water, rain, snow, ice, hail, graupel, etc.), and often modeling the detailed142

cloud microphysics of individual water droplets (Grabowski and Smolarkiewicz 1996; Seifert and143

Beheng 2001, 2006; Grabowski and Morrison 2008). Although this comprehensive approach is144

necessary for weather prediction, some physical insights into the fundamental processes of moist145

convection may be more easily extracted from simplified systems. For example, in the context of146

organized convection, valuable insights have been gained from simplified perspectives (Moncrieff147

and Green 1972; Moncrieff and Miller 1976; Moncrieff 1981; Emanuel 1986; Moncrieff 1992;148

Garner and Thorpe 1992; Fovell and Tan 2000). In a similar simplified spirit, although not aimed149

at organized convection, we here consider the minimal FARE model, based on Boussinesq fluid150
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dynamics (Spiegel and Veronis 1960) and simplified thermodynamics retaining only water vapor151

and precipitating rain water. The reduction supports a system of equations with conservation of152

an equivalent potential temperature, and also conservation of total water and rain-water potential153

temperature in the limit of vanishing rainfall speed. Preservation of these basic conservation laws154

is presumably key to model utility in the absence of detailed physics. When the system is written155

in terms of total water and equivalent potential temperature (or rain-water potential temperature),156

then the source terms for condensation and evaporation do not appear explicitly, thus eliminating157

the need for closure models of phase changes. The FARE model is fully three-dimensional (3D)158

and, in principle, able to resolve turbulent motions at small scales. The Boussinesq approximation159

for shallow vertical motions is, of course, unrealistic for the real atmosphere, but our numerical160

computations have demonstrated that some regimes of convective organization (scattered con-161

vection and squall line formation) are supported by a Boussinesq atmosphere, and thus FARE’s162

minimal nature appears to outweigh its restrictions for our purposes.163

The limit of fast autoconversion eliminates the need to carry cloud water as a variable as well as164

the need to model autoconversion of cloud water to rain water. On the other hand, autoconversion165

occurs on a time scale on the order of minutes, whereas the condensation time scale is on the166

order of seconds (Rogers and Yau 1989; Houze 1993; Morrison and Grabowski 2008a). Thus167

it is sensible to also assume fast condensation. As a further simplification, Hernandez-Duenas168

et al. (2013) proposed an assumption of fast evaporation of rain water; such an assumption differs169

from the rain evaporation model of Seitter and Kuo (1983). Taken together, these simplifications170

form the model denoted FARE, with fast condensation and fast rain evaporation in addition to fast171

autoconversion. In such a model there is no possibility for supersaturation because the water vapor172

is instantaneously relaxed back toward the saturation profile. Furthermore, rain water cannot exist173
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in unsaturated air because it is instantaneously evaporated until water vapor is increased to the174

saturation level.175

The FARE model may be written as176

Du
Dt

=−∇p+ k̂ g
(

θ

θo
+ εoqv−qr

)
, ∇ ·u= 0 (1)

Dθ

Dt
=

L
cp

(Cd−Er),
Dqv

Dt
=−Cd +Er,

Dqr

Dt
−VT

∂qr

∂ z
=Cd−Er (2)

where D/Dt = ∂t +u ·∇ is the material derivative, u(x, t) is the 3D velocity vector with com-177

ponents (u,v,w), θ(x, t) is the potential temperature, p(x, t) is the pressure, and qv(x, t), qr(x, t)178

denote the mixing ratios of water vapor and rain water, respectively. The source terms Cd and Er179

represent phase changes of water substance, respectively, condensation Cd of water vapor to form180

rain water, and evaporation Er of rain water to form water vapor. The unit vector k̂ is the direction181

of gravity (not to be confused with the wavevector k introduced in Section 3). The rainfall speed182

VT is normally in the range 0 ≤ VT ≤ 10 m s−1 (see Table 8.1 in Rogers and Yau (1989)), and183

will be allowed to vary in the stability analysis of Section 3. The other parameters will be fixed at184

standard values: the latent heat factor L = 2.5×106 J kg−1, the specific heat cp = 103 J kg−1 K−1,185

the ratio of gas constants Rv/Rd = εo + 1 = 1.6, the acceleration of gravity g = 9.81 m s−2, and186

the reference potential temperature θo = 300 K.187

In the limit of fast condensation and evaporation, the source terms Cd and Er maintain the fol-188

lowing constraints and are actually defined so as to maintain these constraints:189

either qv < qvs(z), qr = 0 (unsaturated) (3)

or qv = qvs(z), qr ≥ 0 (saturated) (4)

9



where qvs(z) is an approximation for the saturation water vapor profile (Majda et al. 2010; Deng190

et al. 2012; Hernandez-Duenas et al. 2013). The formulation (3)–(4) is commonly used in CRMs191

(Grabowski and Smolarkiewicz 1996) and in more idealized models of moist convection (Brether-192

ton 1987a; Pauluis and Schumacher 2010) except with qc rather than qr. Due to constraints (3-4),193

only two thermodynamic variables are needed, instead of the three variables θ ,qv,qr.194

Here we choose to re-write FARE in terms of the mixing ratio of total water qt = qv + qr, and195

the (conserved) equivalent potential temperature θe = θ +(L/cp)qv, which is a linearization of the196

actual potential temperature θ exp(Lqv/(cpT )) (Stevens 2005). We use the relations197

qv = min(qt ,qvs), qr = max(0,qt−qvs), (5)

which follow from (3-4). Next, the last two equations of (2) are used to write the combined source198

terms199

Cd−Er =


0, if qt ≤ qvs

−w dqvs(z)/dz, if qt > qvs.

Finally, combining the first and third equations of (2) leads to200

Du
Dt

=−∇p+ k̂ g
[

θe

θo
+

(
εo−

L
cpθo

)
qv−qr

]
, ∇ ·u= 0 (6)

Dθe

Dt
= 0,

Dqt

Dt
−VT

∂qr

∂ z
= 0. (7)

Note that the total water qt is conserved in the limit as the rainfall speed VT → 0. In a dry or unsat-201

urated atmosphere, there is additional conservation of the (linearized) virtual potential temperature202

θv = θo(θ/θo + εoqv−qr), but the same will not be true for saturated regions.203
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When using the FARE model, water vapor and rain water are computed from total water qt using204

(5). Thus the model consists of (6)-(7) together with (5) and the relation θ = θe− (L/cp)qv. Note205

that nonlinear switches are still present in (5), presenting a challenge for analysis. Here we focus206

on linear analysis of completely unsaturated or completely saturated regions far enough away from207

the threshold for nonlinear effects of phase changes.208

Analogously to Hernandez-Duenas et al. (2013), one can show that the FARE model has an209

energy consistency equation:210

∂

∂ t

(
u ·u

2
+Π

)
+∇·

[
u

(
u ·u

2
+Π+ p

)]
− ∂

∂ z

[
VT g(z−a)qr

]
=−VT gqr, (8)

where the potential energy Π is given by (Vallis 2006; Pauluis 2008)211

Π(θe,qt ,z) =−
∫ z

a

g
θo

θv(θe,qt ,η) dη , (9)

and the linear virtual potential temperature θv as a function of θe,qt and z is given by212

θv = θv(θe,qt ,z) = θe−θoqt +θo

(
εo−

L
cpθo

+1
)

min(qt ,qvs(z)). (10)

The integration in (9) assumes θe and qt fixed, and a is an arbitrary reference height satisfying213

qvs(a) = 0. The energy sink term involving the rainfall speed VT is consistent with physical in-214

terpretation of −gqr as a frictional drag force on the surrounding air when VT > 0. The energy215

equation (8) involves the total dynamic and thermodynamics field variables, and is valid in general,216

including across phase changes. In a later section on energetics, we will assume a quiescent back-217

ground environment that is either unsaturated or saturated, away from phase changes. For these218

environments, (8) takes a simpler form with Π given by an explicit quadratic function of fluctua-219

tions from the background thermodynamic state, and the pressure re-defined to absorb background220

thermodynamic fields. It is important to note that there is a direct pathway from (8) to (28) below,221

but the algebra is rather tedious and so will be omitted for brevity.222
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b. The Linearized Equations223

To perform the linear stability analysis, we consider perturbations from an unsaturated or satu-224

rated resting state. Thus all thermodynamical variables are decomposed into a background func-225

tion of altitude and fluctuating part according to (·) = (̃·)+ (·)′. For a more general analysis, one226

could also consider a height-dependent background horizontal velocity, but the rest state ũ = 0227

allows for explicit calculation of linear eigenmodes using periodic boundary conditions. For sim-228

plicity, the background potential temperature will be linear θ̃ = θo + Bz with θo = 300 K. As229

mentioned above, the FARE model also assumes a saturation water vapor qvs(z) that is a function230

of height only. Our minimal modeling approach allows us to treat the background potential tem-231

perature gradient B as independent from the gradient of the saturation profile dqvs/dz = Bvs, both232

taken to be constant. Unless otherwise stated, we fix the value of B = 3 K km−1 corresponding to233

standard Brunt-Väisälä frequency of N =
√

gB/θo ≈ 10−2s−1, and then vary Bvs.234

As will be shown, different (in)stability parameters and (in)stability boundaries arise for the235

different cases: unsaturated regions; saturated non-precipitating regions with VT = 0; saturated236

precipitating regions with VT > 0; saturated precipitating regions with VT → ∞. The (in)stability237

parameters Γv,Γs,Γe involve background gradients of the thermodynamic variables, and are de-238

fined in Table 1.239

1) UNSATURATED REGIONS240

In unsaturated regions of the atmosphere with qr = 0, the linearized FARE model may be written241

as242

∂u′

∂ t
=−∇φ + k̂ g

(
θ ′

θo
+ εoq′v

)
, ∇ ·u′ = 0 (11)
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∂θ ′

∂ t
+Bw′ = 0,

∂q′v
∂ t

+w′
dq̃v

dz
= 0 (12)

where the background virtual potential temperature has been absorbed into the modified pressure243

such that φ = p− (g/θo)
∫ z

0 θ̃v(η)dη with θ̃v = θo(θ̃/θo + εoq̃v).244

One can directly compare the unsaturated moist and dry dynamics in the sense that the buoyancy245

b = (g/θo)θ
′
v = g(θ ′/θo + εoq′v) here includes water vapor but the material derivatives of both θ246

and qv are zero as in the dry Boussinesq dynamics. Rescaling and adding the two equations in (12)247

gives Dθv/Dt = 0, or equivalently248

Db
Dt

=−Γvw′, Γv =
g
θo

dθ̃v

dz
=

gB
θo

+gεo
dq̃v

dz
. (13)

As shown below, the stability condition is dictated by the gradient Γv, which involves the negative249

slope dq̃v/dz. The presence of moisture will introduce instabilities if dq̃v/dz is negative enough,250

even if the atmosphere is stably stratified with B > 0. However, we note that for B = 3 K km−1,251

the instability interface occurs at dq̃v/dz =−16.67 g kg−1 km−1. For an atmosphere of height 15252

km, the difference in moisture between the top and bottom would be more than 200 g kg−1, which253

is not a realistic scenario.254

2) SATURATED REGIONS255

In completely saturated regions of the FARE atmosphere, the mixing ratio of water vapor is256

equal to the saturation profile qv = qvs(z), and thus it follows that the rain water is given by qr =257

qt −qvs and q′r = q′t . To ensure a steady state background, we choose a constant background rain258

q̃r = qr,o = q̃t −qvs with dq̃r/dz = 0 and dq̃t/dz = dqvs/dz = Bvs. Then the linearized version of259

(6)-(7) may be written as260
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∂u′

∂ t
=−∇φ + k̂ g (

θ ′e
θo
−q′r), ∇ ·u′ = 0 (14)

g
θo

∂θ ′e
∂ t

+Γew′ = 0, g
∂q′r
∂ t

+(Γe−Γs)w′−VT g
∂q′r
∂ z

= 0 (15)

where261

Γe =
g
θo

dθ̃e

dz
=

g
θo

(
B+

L
cp

Bvs

)
, Γs =

g
θo

d(θ̃e−θoq̃t)

dz
=

g
θo

(B+
L
cp

Bvs)−gBvs, (16)

Γe−Γs = g
dq̃t

dz
= gBvs. (17)

The modified pressure is φ = p− (g/θo)
∫ z

0 θ̃v(η)dη with θ̃v = θo(θ̃/θo + εoqvs− qr,o). Given262

the appearance of Γs in (16), it is sensible to define a variable θs = θe−θoqt , which we will call263

the saturated potential temperature and which will be an important variable for linear (in)stability264

of a saturated environment. The parameter Γe is positive when the background of the equivalent265

potential temperature increases with height, whereas the difference Γs−Γe =−gdq̃t/dz =−gBvs266

is positive when the moisture background decreases with height (always assumed here). In the267

second equation of (15), the term involving VT leads to non-conservation of the virtual potential268

temperature θv, and consequently as shown next the linearized energy equation takes a form dif-269

ferent from the cases of unsaturated and non-precipitating saturated environments, both of which270

have the same form as the dry dynamics.271

c. Energetics272

In the following sections on energetics, we consider the nonlinear system in various regimes:273

unsaturated, saturated with VT = 0, and saturated with VT > 0. We choose to decompose the ther-274
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modynamics variables into background and fluctuations in order to extract the stability boundaries275

defined in terms of background gradients Γv,Γs,Γe of thermodynamics quantities.276

1) ENERGY EQUATION IN UNSATURATED REGIONS277

With θ = θ̃ +θ ′,qv = q̃v +q′v, the non-linear dynamics in unsaturated regions takes the form:278

Du
Dt

=−∇φ + k̂ g
(

θ ′

θo
+ εoq′v

)
, ∇ ·u= 0 (18)

279

Dθ ′

Dt
+Bw = 0,

Dq′v
Dt

+w
dq̃v

dz
= 0. (19)

It follows that the kinetic ||u||2/2 and ‘potential’ b2/(2Γv) energies satisfy the equations:280

D
Dt

(
1
2
||u||2

)
=−∇ · (uφ)+wb,

D
Dt

(
b2

2Γv

)
=−wb. (20)

Here b = g(θ ′/θo + εoq′v) is the buoyancy in unsaturated regions. Exchange of kinetic and poten-281

tial energy is possible due to the wb term in each equation, and the energy equation in conservation282

form is obtained after adding the two equations in (20):283

∂E
∂ t

+∇ · (u(E +φ)) = 0, E =
1
2
||u||2 + b2

2Γv
. (21)

From the form of this energy, it is clear that a sufficient condition for stability is Γv > 0. 1 What is284

not clear from the energy alone is the sufficient condition for instability, although it is well known285

to be Γv < 0 from linear stability analysis analogous to the dry dynamics (Vallis 2006).286

2) ENERGY EQUATION IN SATURATED REGIONS WITH VT = 0287

With θe = θ̃e +θ ′e,qr = q̃r +q′r, the non-linear dynamics in saturated regions takes the form:288

1Since energy is conserved, the condition Γv > 0 ensures that both kinetic and potential energies are positive and thus remain bounded assuming

appropriate boundary conditions. On the other hand, if Γv < 0, the oppositely signed kinetic and potential energies can grow without bound while

the total energy remains fixed, indicating the possibility of instability.
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Du
Dt

=−∇φ + k̂ g
(

θ ′e
θo
−q′r

)
, ∇ ·u= 0 (22)

289

g
θo

Dθ ′e
Dt

+Γew = 0, g
Dq′r
Dt

+(Γe−Γs)w−VT g
∂q′r
∂ z

= 0. (23)

Setting VT = 0 and subtracting the two equations in (23), one finds290

Du
Dt

=−∇φ + k̂b, ∇ ·u= 0,
Db
Dt

=−Γsw (24)

with buoyancy b = (g/θo)θ
′
v = g(θ ′e/θo− q′r). Notice that the equation for the buoyancy in (24)291

has the same form as equation (13) for unsaturated environments, with Γv in (13) replaced by Γs.292

Defining the energy293

E =
1
2
||u||2 + b2

2Γs
(25)

leads to294

∂E
∂ t

+∇ · (u(E +φ)) = 0. (26)

From the form of the energy in (25), it is clear that a sufficient condition for stability is Γs > 0.295

What is not immediately clear from (25) alone is a sufficient condition for instability. However,296

since the mathematical form of (24) is the same as (13) (i.e., the unsaturated case, but with Γv297

replaced by Γs), it follows that Γs < 0 is a sufficient condition for instability. Taking this mathe-298

matical equivalence further, explicit expressions for the frequencies of the linear eigenmodes are299

σ±=±(kh/k)Γ1/2
s , where k=(kx,ky,kz) is the wavevector, k =

√
k2

x + k2
y + k2

z is the wavenumber,300

and kh =
√

k2
x + k2

y is the horizontal equivalent.301
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3) ENERGY EQUATION IN SATURATED REGIONS WITH VT > 0302

The quantity (25) is not conserved if VT > 0 and hence a different form is required in this case.303

To arrive at an energy conservation principle for VT > 0 requires a separate scaling for each term304

in the buoyancy b = g(θ ′e/θo−q′r). Defining a precipitating energy305

Ep =
1
2
||u||2 + (gθ ′e/θo)

2

2Γe
+

(gq′r)
2

2(Γs−Γe)
, (27)

one finds306

∂Ep

∂ t
+∇ · (u(Ep +φ))−VT

∂

∂z

(
(gq′r)

2

2(Γs−Γe)

)
= 0. (28)

One can also arrive at the quadratic energy equation in (28) from (8) by using the decomposition307

θe = θ̃e +θ ′e, qt = q̃t +q′t , and then manipulating the corresponding equations (not shown).308

As in the other cases above, this energy Ep offers insight into the stability condition. As men-309

tioned above, the difference Γs−Γe is positive for decreasing profile of saturation water vapor.310

Therefore, for Bvs < 0, the condition Γe > 0 gives a positive definite energy and is a sufficient con-311

dition for stability when VT > 0. Note that this stability condition for VT > 0 is different from the312

stability condition for VT = 0. Also, what is not clear from the form of Ep is a sufficient condition313

for instability, which will be explored next.314

3. Linear Instability Analysis of a Saturated Environment315

While the energetics in Section 2 offers some insight into stability boundaries, it does not fully316

characterize instability boundaries. In particular, a more detailed linear instability analysis is317

needed to analyze how finite rainfall speed VT > 0 affects the stability. As in Emanuel (1986),318
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we consider the simplest case of periodic boundary conditions, and look for growing solutions to319

the system (14)-(15). Here we focus on stability/instability boundaries.320

a. Eigenvalue Problem and Characteristic Polynomial321

Starting from (14)-(15) and assuming Γe 6= 0, it is convenient to introduce the rescaled variables322

Θe =
g
θo

θ ′e
|Γe|1/2 , and Q =

gq′t
(Γs−Γe)1/2 (29)

We note again that Γs−Γe is always positive but Γe may be negative in physically relevant param-323

eter regimes. Written in terms of the new variables (29), the linearized equations become324

∂u′

∂ t
=−∇φ + k̂

(
|Γe|1/2

Θe− (Γs−Γe)
1/2Q

)
, ∇ ·u′ = 0 (30)

∂Θe

∂ t
+ sign(Γe) |Γe|1/2w′ = 0,

∂Q
∂ t
− (Γs−Γe)

1/2w′−VT
∂Q
∂ z

= 0. (31)

Periodic boundary conditions allow for solutions of the form (·)(x, t;k) = (·̂)(k)exp[i(k ·x−325

σ(k)t)] with wave vector k = (kx,ky,kz). After taking the divergence of the momentum equation326

in (30) and using the continuity condition, a Fourier transform yields327

φ̂ =− ikz

k2 |Γe|1/2
Θ̂e +

ikz

k2 (Γs−Γe)
1/2Q̂. (32)

Derivation of the remaining Fourier coefficients follows from substitution of (32) into the Fourier328

transforms of the momentum equation in (30) and equations (31):329

−iσ û =−ikxφ̂ =
−kxkz|Γe|1/2

k2 Θ̂e +
kxkz

k2 (Γs−Γe)
1/2Q̂
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−iσ v̂ =−ikyφ̂ =
−kykz|Γe|1/2

k2 Θ̂e +
kykz

k2 (Γs−Γe)
1/2Q̂

−iσ ŵ =−ikzφ̂ + |Γe|1/2
Θ̂e− (Γs−Γe)

1/2Q̂ =
k2

h
k2 |Γe|1/2

Θ̂e−
k2

h
k2 (Γs−Γe)

1/2Q̂

−iσΘ̂e =−sign(Γe) |Γe|1/2ŵ

−iσQ̂ = (Γs−Γe)
1/2ŵ+ ikzVT Q̂. (33)

Slaving of û, v̂ introduces a zero eigenvalue associated with the vortical mode. When kh 6= 0, the330

equations for ŵ,Θ̂e, Q̂ can be written in matrix form as331


0 ikhk−1|Γe|1/2 −ikhk−1(Γs−Γe)

1/2

−i sign(Γe) khk−1|Γe|1/2 0 0

i(Γs−Γe)
1/2khk−1 0 −kzVT




kk−1

h ŵ

Θ̂e

Q̂

= σ


kk−1

h ŵ

Θ̂e

Q̂


(34)

For brevity, we do not show the special case kh = 0. The matrix above is Hermitian when Γe332

is positive (sign(Γe) = 1); hence in this case all eigenvalues are real, and the system is neutrally333

stable. For the general case, the characteristic polynomial is given by334

[
k2

σ
3 + kzVT k2

σ
2− k2

hΓsσ − k2
hkzVT Γe

]
σ = 0. (35)

where the zero eigenvalue was also included.335
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b. Eigenmodes336

In order to make a connection to the eigenmodes of the dry dynamics, we first consider the337

special case VT = 0 and kh 6= 0, and then the precipitating case VT > 0 will be considered.338

For VT = 0, and in the case kh 6= 0, the four eigenvalues are339

σ
0,q = 0, σ

± =±kh

k
Γ

1/2
s . (36)

The four eigenmodes of (33) are five-component vectors (û, v̂, ŵ,Θ̂e, Q̂). The eigenmodes corre-340

sponding to (36) are341

φ0 = k−1
h



−ky

kx

0

0

0


, φq = (Γs−Γe + |Γe|)−1/2



0

0

0

(Γs−Γe)
1/2

|Γe|1/2


(37)

φ± = k−1|Γs|1/2 (Γs−Γe + |Γs|+ |Γe|)−1/2



ikxkzk−1
h

ikykzk−1
h

−ikh

∓k sign(Γe) |Γe|1/2Γ
−1/2
s

±k(Γs−Γe)
1/2Γ

−1/2
s


. (38)

Comparing to the dry dynamics, σ0 = 0,φ0 can be identified with the zero-frequency vortical342

mode. The eigenvalues σ± in (36) have the same form as the gravity waves frequencies of the343

dry, stratified case, but there is a stability boundary at Γs = 0: for Γs > 0, there are two neutrally344

stable, propagating modes; for Γs < 0, there is one growing mode and one decaying mode. There345
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is an additional zero eigenvalue σq = 0 and eigenmode φq associated with potential temperature346

and rain water fluctuations.347

For VT > 0, the solution to the characteristic polynomial is non-trivial and VT plays a central348

role in the structure of the eigenmodes. Assuming the most general case Γe 6= 0,Γs 6= 0,Γs−Γe 6=349

0,kh 6= 0,kz 6= 0, the vortical mode is the only eigenfunction with zero eigenvalue σ0 = 0, and the350

vortical eigenmode φ0 is given by (37). In addition, there are three more eigenvalues given by the351

cubic polynomial352

k2
σ

3 + kzVT k2
σ

2− k2
hΓsσ − k2

hkzVT Γe = 0 (39)

(see (35)). The corresponding eigenvectors are:353

φq,± =
[
k2 + k2

h
(
|Γe||σq,±|−2 +(Γs−Γe)|σq,±+ kzVT |−2)]−1/2 ×

×



ikxkzk−1
h

ikykzk−1
h

−ikh

−kh(σ
q,±)−1 sign(Γe) |Γe|1/2

kh(σ
q,±+ kzVT )

−1(Γs−Γe)
1/2


(40)

where the superscript q,±makes sense since the eigenvalues σq,± and the eigenmodes φq,± given354

by (40) converge to the VT = 0 expressions given by (36), (37) and (38).355

In addition to the special case when VT = 0,kh 6= 0, one can also compute the eigenvalues and356

eigenvectors for the other special cases such as kz = 0, Γe−Γs = 0, etc., but we will not present357

those cases for the sake of brevity.358
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For the case of (39) and (40), there is a real eigenvalue defining a neutrally stable mode that prop-359

agates, and there are two more eigenvalues that could be real or could be complex conjugates. In360

other words, these last two eigenmodes could be both neutrally stable or could be a stable/unstable361

pair, depending on the specific values of Γe,Γs,VT ,kh,kz.362

c. Numerical Results363

To further probe the stability and instability, we now turn to numerical computations of the364

eigenvalues from (39). Of particular interest are the VT > 0 cases, for which the instability prop-365

erties are not as easily deduced analytically.366

The behavior for varying VT and horizontal wavenumber kh is illustrated in Figure 2. The367

growth rate is plotted versus horizontal wavenumber, using fixed vertical wavenumber kz =368

km−1 2π/15, potential temperature gradient B = 3 K km−1 and saturation profile gradient Bvs =369

−1.28 g kg−1 km−1. The horizontal wavenumber kh has been scaled by km−1 2π/40000 and VT370

has the realistic values VT = 0.5,1,1.5,2, . . . ,5 m s−1 (Rogers and Yau 1989). When the rainfall371

speed is small, the instabilities occur in a finite band of smaller horizontal wavenumbers (larger372

horizontal scales). As VT increases, instabilities appear at increasingly smaller scales, but the373

growth rate appears to saturate. Qualitatively similar behavior is observed for growth rate vs. to-374

tal wavenumber, and for growth rate vs. kz for fixed kh (not shown). While it is unclear whether375

the large-scale unstable modes have physical significance, instability arises on scales of 50 km376

and smaller for reasonable values of VT (larger than roughly 0.6 m/s) and may be relevant for the377

growth of individual cumulus clouds.378

Figure 3 shows the (in)stability regions in the kh (km−12π/40000) vs. Bvs plane for VT = 0 m/s379

(left panel), VT = 0.01 m/s (middle left panel), VT = 1 m/s (middle right panel) and VT = 10 m/s380

(right panel). The gray region denotes the unstable scales. The dashed line Γe = 0 clearly separates381
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regions where all scales are stable from those where instabilities arise either in a finite band or at all382

scales. As the rainfall speed increases, the unstable region approaches the dashed line Γe = 0. This383

suggests that Γe = 0 is the stability boundary of the FARE model in saturated regions as VT → ∞.384

The other extreme limit VT → 0 appears to be a singular limit, in the sense that there is a qualitative385

change between VT = 0 and VT → 0 (see also equation 19 in Emanuel (1986)). The insert in the386

middle-left panel of Figure 3 shows a zoom at large scales, where for VT = 0.01 m s−1, we verify387

that instabilities occur at large scales provided that Γe < 0. Our numerical calculations indicate388

that for any positive VT and Γe < 0, there will be instabilities at large-enough scales (perhaps larger389

than planetary scales). On the other hand, the limiting case VT = 0 has all scales stable if Γs > 0390

and all scales unstable if Γs < 0.391

The conditional nature of the instabilities shown here is perhaps better understood in the (Bvs =392

dqvs/dz, B = dθ̃/dz) plane, allowing both Bvs and B to change. We let B vary about the standard393

value of 3 K km−1. Although it is much harder to identify a typical Bvs, we use values close to a394

decrease of 20 g kg−1 over 15 km. Figure 4 shows the stability regions for VT = 0 m s−1 (far left),395

VT = 0.05 m s−1 (middle left), VT = 5 m s−1 (middle right) and VT = 1000 m s−1 (far right). In396

each panel, the dashed line is Γe = 0 and the solid line is Γs = 0. On the left panel with VT = 0,397

we clearly identify Γs to be the stability parameter. On the right panel with VT = 1000 m s−1 very398

large, Γe replaces Γs as the stability boundary. As indicated by the middle left panel with very399

small but positive VT = 0.05 m s−1, the region where Γs > 0, Γe < 0 is unstable at large horizontal400

scales, but stable at small horizontal scales (1 km). In other words, for small VT , the large scales401

become unstable in the region where the equivalent potential temperature background decreases402

with height, and the small scales become unstable close to the Γs = 0 region. On the other hand,403

VT = 0 makes the large horizontal scales stable in the middle strip, indicating that VT = 0 is a404

singular limit. The middle right panel shows that for moderate values of VT , there can be a finite405
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wavenumber band of instabilities, or instability at all horizontal wavenumber, depending on the406

values of B and Bvs.407

Figure 5 helps to further analyze the effect of rainfall speed for the creation of instabilities. For408

fixed B = 3 K km−1, the figure shows the (in)stability regions as a function of Bvs = dqvs/dz and409

VT , with solid line to denote Γs = 0 (stability interface when VT = 0; Bvs≈−1.37 g kg−1 km−1),410

and with dashed line to denotes Γe = Γs + gBvs = 0 (Bvs≈−1.206 g kg−1 km−1). One can see411

that Γe > 0 is a sufficient condition for stability. The region Γe < 0 has unstable modes and is412

divided into three subregions: (dark gray) the region with instabilities at both kh = km−12π (small413

scales) and kh = km−12π/40000 (large scales); (gray) the region with instabilities at large scales;414

and (light gray) the region with no instabilities for these scales. The zoom to small values of VT415

on the right panel is necessary to see that the stability curve for scales smaller than the earth’s416

circumference starts at Γs = 0 for VT → 0, and asymptotes to Γe = 0 for VT large. Increasing417

rainfall speed changes the linear instability interface from Γs = 0 for VT = 0 to Γe = 0 as VT418

increases.419

Explicit expressions for the eigenvalues in the two extreme cases VT = 0 and VT → ∞ re-420

veal two stability parameters. The wave modes have a frequency of σ± = ±(kh/k)Γ1/2
s and421

σ± = ±(kh/k)Γ1/2
e for these two extreme cases, respectively. This shows that the gradient Γs422

controls stability in non-precipitating environments, while the parameter Γe replaces Γs for fast423

precipitation when VT → ∞. (See Section 4 for more discussion of the limit VT → ∞. Also, for424

comparison, recall that the frequencies are σ± = ±(kh/k)Γ1/2
v in the unsaturated case, where Γv425

is derived from the virtual potential temperature, θv.) A transition from one extreme to the other426

is shown in Figure 6 for the unstable region with Γs < 0, displaying growth rates as a function of427

horizontal wavenumber and various values of VT (fixed Bvs = −1.4 g kg−1km−1, B = 3 K km−1,428

kz = km−12π/15). The dashed and solid lines are curves proportional to kh/k as a function of kh,429
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with constant of proportionality |Γs|1/2 and |Γe|1/2, respectively. The intermediate curves corre-430

spond to finite values of VT , where VT = 20 m s−1 is already close to the limiting curve.431

4. Asymptotic Analysis in Saturated Environments for VT → ∞432

Beyond the numerical indications of the VT →∞ limit, a limiting system of equations can also be433

derived analytically. Here we consider the nonlinear FARE model (5), (6)-(7) in saturated environ-434

ments and for rainfall speed VT →∞ much larger than any other velocity scale in the system. With435

characteristic length scale L and nonlinear time scale T , and denoting non-dimensional quantities436

by ()∗, the equations for the fluctuating fields become437

∂u∗

∂ t∗
+u∗ ·∇∗u∗ =−∇

∗
φ
∗+ k̂ (θ ∗e −q∗r ), ∇

∗ ·u∗ = 0 (41)

∂θ ∗e
∂ t∗

+u∗ ·∇∗θ ∗e =−Γ
∗
ew∗,

∂q∗r
∂ t∗

+u∗ ·∇∗q∗r =V ∗T
∂q∗r
∂ z∗

+(Γ∗s −Γ
∗
e)w
∗. (42)

where u∗ = (T/L)u, φ∗ = (T 2/L2)φ , θ ∗e = gT 2θ ′e/(Lθo), q∗r = gT 2q′r/L, Γ∗e = T 2Γe, Γ∗s = T 2Γs438

and V ∗T = (T/L)VT .439

Assuming that the velocity scale L/T , Γ∗e and Γ∗s −Γ∗e are O(1), let us analyze the asymptotic440

behavior of the solution as V ∗T = ε−1 → ∞. All variables are assumed to admit the following441

expansion: (·)∗ = (·)0 +(·)1ε +(·)2ε2 . . .. Collecting the order O(ε−1) terms in equation (41)-442

(42), it immediately follows that ∂q∗r,0/∂ z∗ = 0 which implies q∗r,0 = q∗r,0(x
∗
h, t) does not depend443

on height. Also assuming that rain fluctuations vanish at high enough altitude in a column of444

saturated air leads to the conclusion that q∗r,0 = 0. Collecting O(1) terms in the second equation445

of (42), we obtain a diagnostic equation for the O(ε) rain water fluctuation in terms of the O(1)446

vertical velocity: ∂q∗r,1/∂ z∗ = (Γ∗s −Γ∗e)w
∗
0. Collecting the remaining O(1) terms, we find a closed447

system for the leading order dynamics448
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∂u∗0
∂ t∗

+u∗0 ·∇∗u∗0 =−∇
∗
φ
∗
0 + k̂ θ

∗
e,0, ∇

∗ ·u∗0 = 0 (43)

∂θ ∗e,0
∂ t∗

+u∗0 ·∇∗θ ∗e,0 =−Γ
∗
ew∗0. (44)

In dimensional units, the leading order terms are (dropping subscripts and assuming q∗r,0 = 0)449

Du
Dt

=−∇φ + k̂
gθ ′e
θo

, ∇ ·u= 0,
D
Dt

gθ ′e
θo

=−Γew. (45)

The limiting equation (45) has the conserved energy450

E0 =
1
2
||u||2 + (gθ ′e/θo)

2

2Γe
(46)

which indicates that Γe is the stability parameter. The non-zero eigenvalues for the corresponding451

linearized system are σ =±(kh/k)Γ1/2
e .452

The stability parameter obtained for asymptotic solutions as VT → ∞ in the FARE model co-453

incides with the numerical evidence presented in Section 3. Namely, the sign of the gradient of454

rescaled equivalent potential temperature determines stability for large VT .455

It is interesting to note a similarity with theories for convectively coupled equatorial waves456

(Emanuel et al. 1994; Neelin and Zeng 2000; Frierson et al. 2004; Stechmann and Majda 2006;457

Kiladis et al. 2009). In these theories, a “moist” phase speed cm =
√

1− Q̃ is identified as a458

reduced phase speed compared to the “dry” phase speed cd = 1. The moist phase speed cm is459

associated with a moist stability parameter 1− Q̃, which resembles a nondimensional version460

of Γe = (g/θ0)dθ̃e/dz = (g/θ0)[dθ̃/dz+(L/cp)dq̃v/dz], with the identifications of 1↔ dθ̃/dz461

and −Q̃↔ (L/cp)dq̃v/dz. In the theories for convectively coupled equatorial waves, the reduced462

stability parameter 1− Q̃ arises from an asymptotic assumption: convection is in a state of quasi-463
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equilibrium relative to the slowly varying, large-scale atmospheric circulation. In the present464

paper, interestingly, the reduced stability parameter Γe also arises from an asymptotic assumption:465

precipitation is fast (VT → ∞) relative to the time scales of atmospheric dynamics.466

5. Concluding Discussion467

A linear stability analysis was presented for fluid dynamics with water vapor and precipitation,468

where the precipitation falls relative to the fluid at speed VT . This system is an idealization of pre-469

cipitating atmospheric convection, with a highly simplified representation of cloud microphysics.470

One aim was to bridge the two extreme cases of VT by considering the full range of VT values: (i)471

VT = 0, (ii) finite VT , and (iii) the limit of infinitely fast VT . These results are summarized in Table472

2. A second aim was to identify the appropriate energy in each case and to relate the form of the473

energy to the stability conditions.474

In the VT = 0 case, a single boundary (dθs/dz = 0) divides the stable conditions (dθs/dz > 0)475

and the unstable conditions (dθs/dz < 0). The quantity θs was here called the saturated potential476

temperature, and it was defined as θs = θe−θ0qt . This is an idealization of the stability condition477

that has been previously derived from a thermodynamic perspective (e.g., see the quantity N2
m478

defined by Emanuel (1994), equation 6.2.10). The key point in this case is that, when VT = 0,479

the criterion dθs/dz = 0 is the single boundary that separates the stable and unstable conditions.480

An energy principle was also formulated for this case. The energy has the same form as for an481

unsaturated atmosphere, except the buoyancy frequency Γv (derived from θv) is replaced with482

Γs (derived from θs). We notice that although θv and θs have the same fluctuation in saturated483

conditions (θ ′v = θ ′s = θ ′e−θoq′t), their backgrounds θ̃v and θ̃s differ by θo(εo−L/(cpθo)+1)qvs(z).484
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In the finite VT > 0 case, in contrast, separate sufficient conditions are identified for stability485

versus instability: stability for dθe/dz > 0 versus instability for dθs/dz < 0. The energy in this486

case was derived, and it is convex only if the stability parameter Γe (derived from θe) is positive.487

Taken together, the results of these two cases (VT = 0 and VT > 0) show that the limit VT → 0 is488

a singular limit. Specifically, it is singular in the sense that the stability boundaries of the VT = 0489

case and the small VT case are fundamentally different. When VT = 0, stability is guaranteed490

for dθs/dz > 0; in contrast, for any VT > 0, stability is guaranteed only under the more restrictive491

condition dθe/dz > 0. Consequently, results that apply for a nonprecipitating atmosphere (VT = 0)492

may not hold for a precipitating atmosphere (VT > 0), and vice versa.493

Finally, in the case of infinitely fast VT , the single boundary dθe/dz = 0 divides the stable494

conditions (dθe/dz > 0) and the unstable conditions (dθe/dz < 0). Asymptotics were used to495

derive a limiting system of equations from the original fluid dynamics equations, in the limit496

VT →∞. The stability result follows from the limiting fluid dynamics equations, and it is illustrated497

in numerical results as well. Also, an energy equation is found, and the energy is guaranteed to be498

positive if and only if the stability parameter Γe (derived from θe) is positive.499

The two extreme cases here (VT = 0 and VT →∞) are reminiscent of two important moist thermo-500

dynamic processes: the reversible process and the pseudoadiabatic process. In the reversible pro-501

cess, when liquid condensate is formed, it is carried upward with the parcel (see Xu and Emanuel502

(1989), equation 1, or Williams and Renno (1993), equation 3, or Emanuel (1994), section 4.7). In503

other words, this is a case with VT = 0. On the other hand, in the pseudoadiabatic process, when504

liquid condensate is formed, it is immediately removed from the parcel (see Xu and Emanuel505

(1989), equation 2, or Williams and Renno (1993), equation 2, or Emanuel (1994), section 4.7).506

In other words, this is a case with VT → ∞. In these two cases, the buoyancy of a rising parcel507

is different, due to the inclusion or neglect of condensate loading, which appears here as the qr508
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term of (1). In the hydrodynamic model here, the smallness of condensate loading was derived509

as a result of asymptotics in the limit of VT → ∞; such a result confirms that these parcel-theory510

concepts have analogues when fluid dynamics (and hence nonhydrostatic pressure gradients) are511

included.512

In the identification of separate criteria for stability versus instability, the results here are rem-513

iniscent of the notion of conditional instability. In particular, conditional instability can be de-514

scribed as an atmospheric state where the lapse rate is stable with respect to the dry adiabatic lapse515

rates but unstable with respect to the moist adiabatic lapse rate. This notion is typically applied516

under unsaturated conditions, in which case a parcel must be brought to saturation in order to517

realize the moist instability; consequently, conditional instability can be described as a state of518

uncertainty with regard to stability (Sherwood 2000; Schultz et al. 2000). In the present paper,519

saturated conditions are assumed from the outset, which precludes a precise comparison; never-520

theless, uncertainty is found with regard to stability: it is possible for an atmospheric state to meet521

neither the sufficient condition for stability (dθe/dz > 0) nor the sufficient condition for instability522

(dθs/dz < 0). Here the uncertainty arises from the consideration of finite VT , in contrast to the523

traditional notion of conditional instability defined in terms of either a reversible process (VT = 0)524

or a pseudoadiabatic process (VT → ∞).525

An interesting feature that arises for finite VT is that the instability or stability is wavelength-526

dependent. Specifically, when VT is fixed at a finite value, Figure 2 shows that some wavelengths527

can be stable while other wavelengths are unstable. (This can also be seen in Emanuel (1986).) In528

contrast, when VT is zero or infinitely fast, either all wavelengths are unstable or all wavelengths529

are stable; and when parcel theory is considered, no notion of wavelength enters into the theory at530

all. It is possible that the wavelength-dependence of the instability plays a role in the formation531

of structures within broad areas of precipitating clouds, such as mesoscale convective systems532

29



(MCSs) (Houze 2004) for the case of deep convection or pockets of open cells (POCs) (Stevens533

et al. 2005; VanZanten et al. 2005; Wood et al. 2008) for the case of boundary layer stratocumulus534

clouds.535
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TABLE 1. Definition of thermodynamic quantities used throughout this paper.

Quantity Definition

Total water mixing ratio qt

Water vapor mixing ratio qv = min(qt ,qvs)

Rain water mixing ratio qr = max(qt −qvs,0)

Potential temperature θ

Virtual potential temperature θv = θ +θo(εoqv−qr)

Buoyancy frequency, unsaturated Γv = (g/θo)dθ̃v/dz

Saturated potential temperature θs = θe−θoqt

Buoyancy frequency, VT = 0 Γs = (g/θo)dθ̃s/dz

Equivalent potential temperature θe = θ + L
cp

qv

Buoyancy frequency, VT → ∞ Γe = (g/θo)dθ̃e/dz

Rain water potential temperature θr = θ − L
cp

qr
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TABLE 2. Summary of sufficient conditions for stability and instability, for different cases of rain fall velocity,

VT . For each case, the stability (instability) criterion is a positive (negative) vertical derivative, d/dz, of the

quantity listed. Two quantities arise: equivalent potential temperature, θe, or saturated potential temperature, θs,

defined in Table 1.

634

635

636

637

Case Stability Instability

Criterion Criterion

(Sufficient) (Sufficient)

VT = 0 dθs
dz > 0 dθs

dz < 0

VT finite dθe
dz > 0 dθs

dz < 0

VT → ∞
dθe
dz > 0 dθe

dz < 0
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FIG. 1. Contours of rain water qr in g kg−1 for two numerical simulations using the nonlinear FARE model.

The two cases are scattered convection (left) and a squall line (right). From Hernandez-Duenas et al. (2013).

Reprinted with permission. © Cambridge University Press 2013.
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